Effects of Hawthorn Fruit Supplementation on Facial Skin Phenotypes and Leukocyte Telomere Length Stratified by TERT Polymorphisms
Abstract
:1. Introduction
2. Participants and Methods
2.1. Study Design and Participants
2.2. Questionnaire Data Collection
2.3. Anthropometric Measurement
2.4. Assessment of Facial Skin Phenotypes
2.5. Assay of Leukocyte Telomere Length
2.6. Collection of DNA Samples for Genotyping
2.7. Statistical Analysis
3. Results
3.1. Comparison of Baseline Characteristics Between Control and HF Supplementation Groups
3.2. Comparison of Baseline and Follow-Up Data Between Control and HF Supplementation Groups
3.3. Correlations Between Relative Leukocyte Telomere Length Changes and Facial Skin Hydration Score Changes
3.4. Comparison of the TERT Polymorphism Genotype Frequencies Between Control and HF Supplementation Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chew, F.T.; Wong, Q.Y.A. Defining skin aging and its risk factors: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 22075. [Google Scholar] [CrossRef]
- Micol, V.; Pérez-Sánchez, A.; Herranz-López, M.; Barrajón-Catalán, E. Nutraceuticals for skin care: A comprehensive review of human clinical studies. Nutrients 2018, 10, 403. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Liu, Y.; Zhou, Z.; Li, C.; Liao, B.; Zhu, Z.; Cheng, L.; Fan, M.; Duan, B. Traditional uses, phytochemistry, pharmacology, and safety concerns of hawthorn (Crataegus genus): A comprehensive review. J. Ethnopharmacol. 2024, 319, 117229. [Google Scholar] [CrossRef]
- Chang, X.; Zhao, Y.; You, L.; Liu, S. Hawthorn polyphenol extract inhibits UVB-induced skin photoaging by regulating MMP expression and type I procollagen production in mice. J. Agric. Food Chem. 2018, 66, 8537–8546. [Google Scholar] [CrossRef]
- Yin, C.S.; Kim, H.-T.; Hwang, E.; Kim, Y.M.; Park, S.-Y.; Yi, T.H. Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin. J. Ginseng Res. 2017, 41, 69–77. [Google Scholar] [CrossRef]
- Kim, C.Y. Effects of Botanical Extracts on Telomere Length, Telomerase Activity and Inflammatory Biomarkers in Aged Animal Models. Master’s Thesis, Kookmin University, Seoul, Republic of Korea, 2021. [Google Scholar]
- Jeong, Y.R. Effects of Botanical Extracts on Aging and Inflammatory Biomarkers in Adult Rat Models. Master’s Thesis, Kookmin University, Seoul, Republic of Korea, 2022. [Google Scholar]
- E Gottschling, D.; Diede, S.J. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell 1999, 99, 723–733. [Google Scholar] [CrossRef]
- Fritz, P.; Friedrich, U.; Thon, K.-P.; Griese, E.-U.; Schwab, M.; Klotz, U. Telomere length in different tissues of elderly patients. Mech. Ageing Dev. 2000, 119, 89–99. [Google Scholar] [CrossRef]
- Atkinson, J.; Schwartz, H.; Muralidhar, B.; Hedges, L.; Butler, M.G.; Aue, G.; Tilburt, J.; DeVries, A. Comparison of chromosome telomere integrity in multiple tissues from subjects at different ages. Cancer Genet. Cytogenet. 1998, 105, 138–144. [Google Scholar] [CrossRef]
- Srinivas, N.; Kumar, R.; Rachakonda, S. Telomeres and telomere length: A general overview. Cancers 2020, 12, 558. [Google Scholar] [CrossRef]
- Shin, C.; Yoon, D.; Jun, N.-R.; Baik, I.; Lee, J.-Y. Association between dietary patterns in the remote past and telomere length. Eur. J. Clin. Nutr. 2015, 69, 1048–1052. [Google Scholar] [CrossRef]
- Cawthon, R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002, 30, e47. [Google Scholar] [CrossRef]
- Lee, W.K.; Kim, C.H.; Lee, J.; Choi, J.E.; Jeon, H.-S.; Lee, S.Y.; Cha, S.I.; Yoo, S.S.; Choi, Y.Y.; Do, S.K.; et al. Replication of the results of genome-wide and candidate gene association studies on telomere length in a Korean population. Korean J. Intern. Med. 2015, 30, 719–726. [Google Scholar] [CrossRef]
- Gunter, M.; Melander, O.; Beekman, M.; Milaneschi, Y.; Lotta, L.A.; Nilsson, P.; Wareham, N.J.; Tumino, R.; Panico, S.; Slagboom, P.E.; et al. Genome-wide association analysis in humans links nucleotide metabolism to leukocyte telomere length. Am. J. Hum. Genet. 2020, 106, 389–404. [Google Scholar] [CrossRef]
- Souto, S.B.; Zaccardelli, M.; Severino, P.; Durazzo, A.; Santini, A.; Souto, E.B.; Silva, A.M.; Nazhand, A.; Cristarella, S.; Lucarini, M. Hawthorn (Crataegus spp.): An updated overview on its beneficial properties. Forests 2020, 11, 564. [Google Scholar] [CrossRef]
- Brown, P.N.; Dickinson, T.A.; Talent, N.; Edwards, J.E.; Shipley, P.R. A review of the chemistry of the genus Crataegus. Phytochemistry 2012, 79, 5–26. [Google Scholar] [CrossRef]
- Xing, Y.; Liu, L.; Li, H.; Yang, S.; Wu, M.; Cao, Y. Roles and mechanisms of hawthorn and its extracts on atherosclerosis: A review. Front. Pharmacol. 2020, 11, 118. [Google Scholar] [CrossRef]
- Sui, Q.; Zhao, Y.; Zou, J.; Chang, X.; Liu, S. Protective effects of hawthorn (Crataegus pinnatifida) polyphenol extract against UVB-induced skin damage by modulating the p53 mitochondrial pathway in vitro and in vivo. J. Food Biochem. 2019, 43, e12708. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Feng, J.; Jiang, L.; Wu, J. Effects of oral intake fruit or fruit extract on skin aging in healthy adults: A systematic review and meta-analysis of randomized controlled trials. Front. Nutr. 2023, 10, 1232229. [Google Scholar] [CrossRef]
- Blackburn, E.H. Switching and signaling at the telomere. Cell 2001, 106, 661–673. [Google Scholar] [CrossRef]
- Larsson, C.; Yuan, X.; Xu, D. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: Old actors and new players. Oncogene 2019, 38, 6172–6183. [Google Scholar] [CrossRef]
- Boukamp, P.; Härle-Bachor, C. Telomerase activity in the regenerative basal layer of the epidermis inhuman skin and in immortal and carcinoma-derived skin keratinocytes. Proc. Natl. Acad. Sci. USA 1996, 93, 6476–6481. [Google Scholar] [CrossRef]
- Kark, J.D.; Daniali, L.; Desai, K.K.; Granick, M.; Susser, E.; Benetos, A.; Kimura, M.; Aviv, A.; Labat, C. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat. Commun. 2013, 4, 1597. [Google Scholar] [CrossRef]
- Sgura, A.; Udroiu, I.; Marinaccio, J.; Muzzi, M.; Baranzini, N.; Grimaldi, A.; Carrozzo, R.; Moreno, S.; Leone, S.; Micheli, E.; et al. TERT extra-telomeric roles: Antioxidant activity and mitochondrial protection. Int. J. Mol. Sci. 2023, 24, 4450. [Google Scholar] [CrossRef]
- Jacczak, B.; Totoń, E.; Rubiś, B. Potential of naturally derived compounds in telomerase and telomere modulation in skin senescence and aging. Int. J. Mol. Sci. 2021, 22, 6381. [Google Scholar] [CrossRef]
Variables | Per–Protocol Analysis | Intention–to–Treat Analysis | |||||
---|---|---|---|---|---|---|---|
Control | HF Supplementation | p | Control | HF Supplementation | p | ||
Number of participants | 19 | 17 | 21 | 20 | |||
Age, years | 40.3 ± 13.9 | 46.8 ± 15.6 | 0.228 | 40.4 ± 14.2 | 44.8 ± 15.3 | 0.354 | |
Sex, n (%) | Male | 8 (42.1) | 7 (41.2) | 0.955 | 9 (42.9) | 7 (35.0) | 0.606 |
Female | 11 (57.9) | 10 (58.8) | 12 (57.1) | 13 (65.0) | |||
Weight, kg | 66.7 ± 14.6 | 62.4 ± 11.0 | 0.447 | 66.0 ± 15.5 | 60.7 ± 11.2 | 0.215 | |
Height, cm | 167.2 ± 8.5 | 164.4 ± 8.6 | 0.428 | 167.0 ± 8.6 | 163.8 ± 8.3 | 0.239 | |
Body mass index, kg/m2 | 23.6 ± 4.0 | 23.0 ± 3.5 | 0.751 | 23.4 ± 4.2 | 22.6 ± 3.5 | 0.470 | |
Waist measurement, cm | 83.3 ± 10.6 | 80.5 ± 9.9 | 0.466 | 82.4 ± 10.7 | 79.1 ± 9.8 | 0.309 | |
Smoking status, n (%) | Nonsmoker | 13 (68.4) | 14 (82.4) | 0.451 | 15 (71.4) | 17 (85.0) | 0.454 |
Smoker | 6 (31.6) | 3 (17.6) | 6 (28.6) | 3 (15.0) | |||
Total physical activity, MET–h | 42.8 ± 8.3 | 43.4 ± 7.5 | 0.668 | 43.5 ± 8.6 | 44.2 ± 8.0 | 0.789 |
Variables | Baseline Data | Follow-Up Data | Change Data * | |||
---|---|---|---|---|---|---|
Control | HF Supplementation | Control | HF Supplementation | Control | HF Supplementation | |
Skin phenotype scores | ||||||
Pigmentation | 6.47 ± 3.79 | 6.35 ± 3.46 | 5.11 ± 3.16 | 5.65 ± 3.32 | −1.37 ± 4.45 | −0.71 ± 4.27 |
Pores | 6.37 ± 4.07 | 5.35 ± 4.50 | 6.58 ± 3.88 | 4.35 ± 4.31 | 0.21 ± 3.88 | −1.00 ± 5.15 |
Hydration | 34.53 ± 7.04 | 30.35 ± 7.01 † | 31.53 ± 5.19 | 32.06 ± 3.91 | −3.00 ± 8.42 | 1.71 ± 8.18 † |
Wrinkles | 3.11 ± 2.21 | 2.53 ± 1.74 | 4.16 ± 1.71 | 2.89 ± 2.03 † | 1.05 ± 2.66 | 0.35 ± 2.12 |
Elasticity | 20.74 ± 12.18 | 24.24 ± 9.59 | 21.95 ± 14.00 | 25.59 ± 14.18 | 1.21 ± 15.36 | 1.35 ± 18.72 |
Relative leukocyte TL | 0.71 ± 0.33 | 0.69 ± 0.24 | 0.74 ± 0.32 | 0.72 ± 0.34 | 0.03 ± 0.13 | 0.03 ± 0.16 |
Variables | All (n = 36) | Control (n = 19) | HF Supplementation (n = 17) | p Between Groups |
---|---|---|---|---|
Genotypes of rs7705526, n (%) | 0.393 | |||
CC | 15 (41.67) | 10 (52.63) | 5 (29.41) | |
CA | 16 (44.44) | 7 (36.84) | 9 (52.94) | |
AA | 5 (13.89) | 2 (10.53) | 3 (17.65) | |
Genotypes of rs2853669, n (%) | 0.636 | |||
AA | 13 (36.11) | 7 (36.84) | 6 (35.29) | |
AG | 21 (58.33) | 10 (52.63) | 11 (64.71) | |
GG | 2 (5.56) | 2 (10.53) | 0 (0.00) |
TERT Polymorphisms | Groups | Changes * in Facial Skin Phenotype Scores | Changes in LTL | ||||
---|---|---|---|---|---|---|---|
Pigmentation | Pores | Hydration | Wrinkles | Elasticity | |||
Genotypes of rs7705526 | |||||||
CC | Control | −2.60 ± 3.57 | −0.70 ± 4.79 | −4.30 ± 9.44 | 1.30 ± 2.36 | 3.30 ± 19.18 | −0.005 ± 0.12 |
HF supplementation | −5.20 ± 2.68 | −4.20 ± 4.60 | 5.80 ± 1.10 | −0.60 ± 2.70 | 9.00 ± 24.84 | 0.06 ± 0.22 | |
p between groups | 0.094 | 0.174 | 0.016 | 0.322 | 0.759 | 0.501 | |
CA and AA | Control | 0.01 ± 5.12 | 1.22 ± 3.07 | −1.56 ± 7.40 | 0.78 ± 3.07 | −1.11 ± 10.26 | 0.06 ± 0.15 |
HF supplementation | 1.17 ± 3.30 | 0.33 ± 4.92 | 0.01 ± 9.28 | 0.75 ± 1.82 | −1.83 ± 15.72 | 0.02 ± 0.14 | |
p between groups | 0.775 | 0.504 | 0.498 | 0.773 | 0.972 | 0.374 | |
Genotypes of rs2853669 | |||||||
AA | Control | −0.43 ± 4.12 | 0.01 ± 5.20 | −3.14 ± 5.30 | 2.86 ± 2.12 | 1.43 ± 19.56 | 0.04 ± 0.12 |
HF supplementation | −2.33 ± 4.23 | −0.50 ± 5.86 | 3.00 ± 4.20 | −0.50 ± 2.66 | −0.50 ± 24.42 | −0.001 ± 0.13 | |
p between groups | 0.428 | 0.763 | 0.050 | 0.030 | 0.721 | 0.721 | |
AG and GG | Control | −1.92 ± 4.72 | 0.33 ± 3.14 | −2.92 ± 10.03 | 0.01 ± 2.41 | 1.08 ± 13.31 | 0.02 ± 0.14 |
HF supplementation | 0.18 ± 4.21 | −1.27 ± 5.00 | 1.00 ± 9.84 | 0.82 ± 1.72 | 2.36 ± 16.10 | 0.05 ± 0.18 | |
p between groups | 0.422 | 0.290 | 0.338 | 0.198 | 0.782 | 0.976 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Baik, I. Effects of Hawthorn Fruit Supplementation on Facial Skin Phenotypes and Leukocyte Telomere Length Stratified by TERT Polymorphisms. Nutrients 2025, 17, 1983. https://doi.org/10.3390/nu17121983
Kim M, Baik I. Effects of Hawthorn Fruit Supplementation on Facial Skin Phenotypes and Leukocyte Telomere Length Stratified by TERT Polymorphisms. Nutrients. 2025; 17(12):1983. https://doi.org/10.3390/nu17121983
Chicago/Turabian StyleKim, Minju, and Inkyung Baik. 2025. "Effects of Hawthorn Fruit Supplementation on Facial Skin Phenotypes and Leukocyte Telomere Length Stratified by TERT Polymorphisms" Nutrients 17, no. 12: 1983. https://doi.org/10.3390/nu17121983
APA StyleKim, M., & Baik, I. (2025). Effects of Hawthorn Fruit Supplementation on Facial Skin Phenotypes and Leukocyte Telomere Length Stratified by TERT Polymorphisms. Nutrients, 17(12), 1983. https://doi.org/10.3390/nu17121983