Effects of Polyphenols from Oat and Oat Bran on Anti-Inflammatory Activity and Intestinal Barrier Function in Raw264.7 and Caco-2 Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Sample Preparation
2.3. Phytochemical Profiles Analysis by HPLC
2.4. Cell Culture and Viability
2.5. NO Assay
2.6. Phagocytosis Assay
2.7. ROS Assay
2.8. Mitochondrial Membrane Potential Assay
2.9. Establishment of the Caco-2 Monolayer Model
2.10. Cytokine Assays
2.11. Real-Time PCR
2.12. Statistical Analysis
3. Results
3.1. Phenolic Profiles
3.2. Effect of Oat and Oat Bran Polyphenols on Cell Viability
3.3. Effect of Oat and Oat Bran Polyphenols on Phagocytosis of RAW264.7 Cells
3.4. NO and ROS Production
3.5. Inflammatory Cytokine Expression in Cells
3.6. Mitochondrial Membrane Potential
3.7. Effect of Oat and Bran Polyphenols on the mRNA Expression of Inflammatory Factors
3.8. Protection of the Intestinal Barrier by the Oat and Oat Bran Polyphenols
3.9. Effect of Oat and Oat Bran Polyphenols on Intestinal Epithelial Barrier Genes
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Samples | Part | Phytochemicals (μg/g DW) | |||||||
---|---|---|---|---|---|---|---|---|---|
Gallic Acid | Protocatechuic Acid | p-Hydroxybenzoic Acid | Vanillic Acid | Caffeic Acid | p-Coumaric Acid | Ferulic Acid | Avenanthramides C | ||
Oat | Free | 2.72 ± 0.04 | 0.52 ± 0.01 | 0.92 ± 0.01 | 1.2 ± 0.12 | 6.86 ± 0.17 | 1.15 ± 0.14 | 5.26 ± 0.02 | 1.33 ± 0.19 |
Bound | ND | 5.73 ± 0.03 | 8.32 ± 0.03 | 1.47 ± 0.09 | 0.86 ± 0.05 | 0.75 ± 0.74 | 198.09 ± 0.76 | ND | |
Total | 2.72 ± 0.04 | 6.24 ± 0.03 | 9.24 ± 0.03 | 2.67 ± 0.08 | 7.71 ± 0.14 | 1.91 ± 0.88 | 203.36 ± 0.74 | 1.33 ± 0.19 | |
Oat Bran | Free | 6.48 ± 0.02 | 1.13 ± 0.01 | 7.82 ± 0.03 | 0.93 ± 0.01 | 1.22 ± 0 | 2.91 ± 0.14 | 11.28 ± 0.02 | 8.82 ± 4.04 |
Bound | ND | 10.49 ± 0.05 | 8.03 ± 0.07 | 0.29 ± 0.04 | 1.76 ± 0.06 | 2.92 ± 0.11 | 335.15 ± 1.64 | ND | |
Total | 6.48 ± 0.02 | 11.62 ± 0.04 | 15.85 ± 0.09 | 1.22 ± 0.04 | 2.98 ± 0.06 | 5.83 ± 0.19 | 346.43 ± 1.62 | 8.82 ± 4.04 |
References
- Kellow, N.J.; Coughlan, M.T. Effect of diet-derived advanced glycation end products on inflammation. Nutr. Rev. 2015, 73, 737–759. [Google Scholar] [CrossRef] [PubMed]
- Fredman, G. DELineating resolution of inflammation. Nat. Immunol. 2019, 20, 2–3. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.B. Diet, Inflammation, and infectious diseases. Nutrients 2023, 15, 2891. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tanaka, I.; Pan, Z.; Ernst, P.B.; Kiyono, H.; Kurashima, Y. Intestinal homeostasis and inflammation: Gut microbiota at the crossroads of pancreas–intestinal barrier axis. Eur. J. Immunol. 2022, 52, 1035–1046. [Google Scholar] [CrossRef]
- Martins-Gomes, C.; Nunes, F.M.; Silva, A.M. Natural products as dietary agents for the prevention and mitigation of oxidative damage and inflammation in the intestinal barrier. Antioxidants 2024, 13, 65. [Google Scholar] [CrossRef]
- Kaplan, G.G.; Ng, S.C. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology 2017, 152, 313–321.e2. [Google Scholar] [CrossRef]
- Davis, E.M.; Kaufmann, Y.; Goyne, H.; Wang, Y.X.; Chen, T.; Theus, S.; Liu, J.J. Pyroptosis of intestinal epithelial cells is crucial to the development of mucosal barrier dysfunction and intestinal inflammation. Gastroenterology 2017, 152, S967. [Google Scholar] [CrossRef]
- Song, X.; Zhang, X.; Ma, C.; Hu, X.; Chen, F. Rediscovering the nutrition of whole foods: The emerging role of gut microbiota. Curr. Opin. Food Sci. 2022, 48, 100908. [Google Scholar] [CrossRef]
- Fang, W.; Peng, W.; Qi, W.; Zhang, J.; Song, G.; Pang, S.; Wang, Y. Ferulic acid combined with different dietary fibers improve glucose metabolism and intestinal barrier function by regulating gut microbiota in high-fat diet-fed mice. J. Funct. Foods 2024, 112, 105919. [Google Scholar] [CrossRef]
- Roager, H.M.; Vogt, J.K.; Kristensen, M.; Hansen, L.B.S.; Ibrügger, S.; Mærkedahl, R.B.; Licht, T.R. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: A randomised cross-over trial. Gut 2019, 68, 83. [Google Scholar] [CrossRef]
- Adom, K.K.; Liu, R.H. Antioxidant activity of grains. J. Agric. Food Chem. 2002, 50, 6182–6187. [Google Scholar] [CrossRef] [PubMed]
- Awika, J.M.; Rose, D.J.; Simsek, S. Complementary effects of cereal and pulse polyphenols and dietary fiber on chronic inflammation and gut health. Food Funct. 2018, 9, 1389–1409. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Song, R.J.; Jiang, H.; Zhang, W.; Han, S.F. Oat fiber supplementation alleviates intestinal inflammation and ameliorates intestinal mucosal barrier via acting on gut microbiota-derived metabolites in LDLR–/– mice. Nutrition 2022, 95, 111558. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Qin, C.; Li, Y.; Wu, Z.; Liu, L. Oat phenolic compounds regulate metabolic syndrome in high fat diet-fed mice via gut microbiota. Food Biosci. 2022, 50, 101946. [Google Scholar] [CrossRef]
- Ma, L.; Luo, Z.; Huang, Y.; Li, Y.; Guan, J.; Zhou, T.; Cao, S. Modulating gut microbiota and metabolites with dietary fiber oat β-glucan interventions to improve growth performance and intestinal function in weaned rabbits. Front. Microbiol. 2022, 13, 1074036. [Google Scholar] [CrossRef]
- Soycan, G.; Schär, M.Y.; Kristek, A.; Boberska, J.; Alsharif, S.N.S.; Corona, G.; Spencer, J.P.E. Composition and content of phenolic acids and avenanthramides in commercial oat products: Are oats an important polyphenol source for consumers? Food Chem. X 2019, 3, 100047. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, T.; Zhang, Y.; Chen, Y.; Ge, X.; Sui, W.; Zhang, M. Release of bound polyphenols from wheat bran soluble dietary fiber during simulated gastrointestinal digestion and colonic fermentation in vitro. Food Chem. 2023, 402, 134111. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Yang, X.; Zhu, L.; Wu, G.; Qi, X.; Zhang, H. Trapping of reactive carbonyl species by fiber-bound polyphenols from whole grains under simulated physiological conditions. Food Res. Int. 2022, 156, 111142. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Chen, Z.X.; Luo, X.H.; Li, Y.F.; Wang, R.; Li, J.; Li, Y.A.; Wang, T.; Wu, J. Effects of milk proteins on the bioaccessibility and antioxidant activity of oat phenolics during in vitro digestion. J. Food Sci. 2019, 84, 895–903. [Google Scholar] [CrossRef]
- Li, X.; Du, Y.; Zhang, C.; Tu, Z.; Wang, L. Modified highland barley regulates lipid metabolism, liver inflammation and gut microbiota in high-fat/cholesterol diet mice as revealed by LC-MS based metabonomics. Food Funct. 2022, 13, 9119–9142. [Google Scholar] [CrossRef]
- Hong, S.; Pangloli, P.; Perumal, R.; Cox, S.; Noronha, L.E.; Dia, V.P.; Smolensky, D. A comparative study on phenolic content, antioxidant activity and anti-inflammatory capacity of aqueous and ethanolic extracts of sorghum in lipopolysaccharide-induced RAW 264.7 macrophages. Antioxidants 2020, 9, 1297. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Shan, S.; Zhang, C.; Shi, J.; Li, H.; Li, Z. Inhibitory effects of bound polyphenol from foxtail millet bran on colitis-associated carcinogenesis by the restoration of gut microbiota in a mice model. J. Agric. Food Chem. 2020, 68, 3506–3517. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.W.; Zhu, J.; Zuo, S.; Zhang, J.; Chen, Z.Y.; Chen, G.W.; Wang, P. Protective effect of hydrogen sulfide on TNF-α and IFN-γ-induced injury of intestinal epithelial barrier function in Caco-2 monolayers. Inflamm. Res. 2015, 64, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.J.; Kim, Y.; Jin, S.G.; Kim, J.Y. Acai berry extract as a regulator of intestinal inflammation pathways in a Caco-2 and RAW 264.7 co-culture model. J. Food Biochem. 2021, 45, e13848. [Google Scholar] [CrossRef]
- He, Z.Q.; Deng, N.; Zheng, B.S.; Li, T.; Liu, R.H.; Yuan, L.; Li, W.Z. Changes in polyphenol fractions and bacterial composition after in vitrofermentation of apple peel polyphenol by gut microbiota. Int. J. Food Sci. Technol. 2022, 57, 4268–4276. [Google Scholar] [CrossRef]
- Ji, K.-Y.; Kim, K.M.; Kim, Y.H.; Im, A.R.; Lee, J.Y.; Park, B.; Chae, S. The enhancing immune response and anti-inflammatory effects of Anemarrhena asphodeloides extract in RAW 264.7 cells. Phytomedicine 2019, 59, 152789. [Google Scholar] [CrossRef]
- Xiong, L.; Ouyang, K.H.; Jiang, Y.; Yang, Z.W.; Hu, W.-B.; Chen, H.; Wang, W.J. Chemical composition of Cyclocarya paliurus polysaccharide and inflammatory effects in lipopolysaccharide-stimulated RAW264.7 macrophage. Int. J. Biol. Macromol. 2018, 107, 1898–1907. [Google Scholar] [CrossRef]
- Wang, H.; Guo, X.; Liu, J.; Li, T.; Fu, X.; Liu, R.H. Comparative suppression of NLRP3 inflammasome activation with LPS-induced inflammation by blueberry extracts (Vaccinium spp.). RSC Adv. 2017, 7, 28931–28939. [Google Scholar] [CrossRef]
- Kapoor, S.; Padwad, Y.S. Phloretin suppresses intestinal inflammation and maintained epithelial tight junction integrity by modulating cytokines secretion in model of gut inflammation. Cell. Immunol. 2023, 391-392, 104754. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, R.R.; Chen, Q.Q.; Zhang, Q.Q.; Wu, J.J.; Yin, D.K. Coptis chinensis polysaccharides dynamically influence the paracellular absorption pathway in the small intestine by modulating the intestinal mucosal immunity microenvironment. Phytomedicine 2022, 104, 154322. [Google Scholar] [CrossRef]
- Guo, T.Y.; Lin, Q.L.; Li, X.H.; Nie, Y.; Wang, L.; Shi, L.M.; Luo, F.J. Octacosanol attenuates inflammation in both RAW264.7 macrophages and a mouse model of colitis. J. Agric. Food Chem. 2017, 65, 3647–3658. [Google Scholar] [CrossRef] [PubMed]
- Gong, E.S.; Gao, N.X.; Li, T.; Chen, H.Y.; Wan, Y.H.; Si, X.; Liu, R.H. Effect of in vitro digestion on phytochemical profiles and cellular antioxidant activity of whole grains. J. Agric. Food Chem. 2019, 67, 7016–7024. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.L.; Tang, Y.; Zhao, Y.T.; Sang, S.M. Quantitative analysis and anti-inflammatory activity evaluation of the a-type avenanthramides in commercial sprouted oat products. J. Agric. Food Chem. 2020, 68, 13068–13075. [Google Scholar] [CrossRef]
- Hitayezu, R.; Baakdah, M.M.; Kinnin, J.; Henderson, K.; Tsopmo, A. Antioxidant activity, avenanthramide and phenolic acid contents of oat milling fractions. J. Cereal Sci. 2015, 63, 35–40. [Google Scholar] [CrossRef]
- Schultze, J.L.; Rosenstiel, P.; Consortium, S. Systems medicine in chronic inflammatory diseases. Immunity 2018, 48, 608–613. [Google Scholar] [CrossRef]
- Van den Bossche, J.; Baardman, J.; Otto, N.A.; van der Velden, S.; Neele, A.E.; van den Berg, S.M.; de Winther, M.P.J. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 2016, 17, 684–696. [Google Scholar] [CrossRef]
- Guo, C.; Yang, L.; Luo, J.; Zhang, C.; Xia, Y.Z.; Ma, T.; Kong, L.Y. Sophoraflavanone G from inhibits lipopolysaccharide-induced inflammation in RAW264.7 cells by targeting PI3K/Akt, JAK/STAT and Nrf2/HO-1 pathways. Int. Immunopharmacol. 2016, 38, 349–356. [Google Scholar] [CrossRef]
- Hsieh, S.C.; Hsieh, W.J.; Chiang, A.N.; Su, N.W.; Yeh, Y.T.; Liao, Y.C. The methanol-ethyl acetate partitioned fraction from Chinese olive fruits inhibits cancer cell proliferation and tumor growth by promoting apoptosis through the suppression of the NF-κB signaling pathway. Food Funct. 2016, 7, 4797–4803. [Google Scholar] [CrossRef]
- Nathan, C.; Xie, Q.W. Nitric oxide synthases: Roles, tolls, and controls. Cell 1994, 78, 915–918. [Google Scholar] [CrossRef]
- Ishii, M.; Nakahara, T.; Araho, D.; Murakami, J.; Nishimura, M. Glycolipids from spinach suppress LPS-induced vascular inflammation through eNOS and NK-κB signaling. Biomed. Pharmacother. 2017, 91, 111–120. [Google Scholar] [CrossRef]
- Yang, B.Y.; Dong, Y.X.; Wang, F.; Zhang, Y. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules 2020, 25, 4613. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Shi, X.J.; Li, J.; Huang, Q.P.; Ji, Q.; Yao, Y.; Yang, G. A small molecule selected from a DNA-Encoded library of natural products that binds to TNF-α and attenuates inflammation in vivo. Adv. Sci. 2022, 9, 2201258. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Joosse, M.E.; Liu, L.; Sun, Y.; Dong, Y.; Cai, C.C.; Li, X.H. Deletion of IL-6 exacerbates colitis and induces systemic inflammation in IL-10-deficient mice. J. Crohn’s Colitis 2020, 14, 831–840. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Han, S.; Li, X.X.; Wang, Q.Q.; Cui, Y.; Chen, Y.; Yang, S. Diethyl blechnic exhibits anti-Inflammatory and antioxidative activity via the TLR4/MyD88 signaling pathway in LPS-stimulated RAW264.7 cells. Molecules 2019, 24, 4502. [Google Scholar] [CrossRef]
- George, G.; Shyni, G.L.; Abraham, B.; Nisha, P.; Raghu, K.G. Downregulation of TLR4/MyD88/p38MAPK and JAK/STAT pathway in RAW 264.7 cells by Alpinia galanga reveals its beneficial effects in inflammation. J. Ethnopharmacol. 2021, 275, 114132. [Google Scholar] [CrossRef]
- Jutanom, M.; Kato, S.; Yamashita, S.; Toda, M.; Kinoshita, M.; Nakagawa, K. Analysis of oxidized glucosylceramide and its effects on altering gene expressions of inflammation induced by LPS in intestinal tract cell models. Sci. Rep. 2023, 13, 22537. [Google Scholar] [CrossRef]
- Chen, Y.H.; Shin, J.Y.; Wei, H.M.; Lin, C.C.; Yu, L.C.H.; Liao, W.T.; Chu, C.L. Prevention of dextran sulfate sodium-induced mouse colitis by the fungal protein Ling Zhi-8 promoting the barrier function of intestinal epithelial cells. Food Funct. 2021, 12, 1639–1650. [Google Scholar] [CrossRef]
- Calabrese, V.; Cornelius, C.; Trovato-Salinaro, A.; Cambria, M.T.; Locascio, M.S.; Di Rienzo, L.; Condorelli, D.F.; Mancuso, C.; De Lorenzo, A.; Calabrese, E.J. The hormetic role of dietary antioxidants in free radical-related diseases. Curr. Pharm. Des. 2010, 16, 877–883. [Google Scholar] [CrossRef]
- Bein, A.; Zilbershtein, A.; Golosovsky, M.; Davidov, D.; Schwartz, B. LPS induces hyper-permeability of intestinal epithelial cells. J. Cell. Physiol. 2017, 232, 381–390. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, W.; Zheng, B.; Li, T.; Liu, R.H. Effects of Polyphenols from Oat and Oat Bran on Anti-Inflammatory Activity and Intestinal Barrier Function in Raw264.7 and Caco-2 Models. Nutrients 2025, 17, 1962. https://doi.org/10.3390/nu17121962
Duan W, Zheng B, Li T, Liu RH. Effects of Polyphenols from Oat and Oat Bran on Anti-Inflammatory Activity and Intestinal Barrier Function in Raw264.7 and Caco-2 Models. Nutrients. 2025; 17(12):1962. https://doi.org/10.3390/nu17121962
Chicago/Turabian StyleDuan, Wen, Bisheng Zheng, Tong Li, and Rui Hai Liu. 2025. "Effects of Polyphenols from Oat and Oat Bran on Anti-Inflammatory Activity and Intestinal Barrier Function in Raw264.7 and Caco-2 Models" Nutrients 17, no. 12: 1962. https://doi.org/10.3390/nu17121962
APA StyleDuan, W., Zheng, B., Li, T., & Liu, R. H. (2025). Effects of Polyphenols from Oat and Oat Bran on Anti-Inflammatory Activity and Intestinal Barrier Function in Raw264.7 and Caco-2 Models. Nutrients, 17(12), 1962. https://doi.org/10.3390/nu17121962