Effects of Beetroot Juice on Physical Performance in Professional Athletes and Healthy Individuals: An Umbrella Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Search Strategy
2.3. Study Selection
2.4. Data Extraction
2.5. Quality Assessment
2.6. Risk of Bias Assessment
2.7. Reviews with Overlapping Primary Studies
2.8. Data Synthesis
3. Results
3.1. Literature Search
3.2. Quality Assessment
3.3. Summary of the Results
3.3.1. Muscular Fitness (All Healthy Adults)
3.3.2. Aerobic Endurance (All Healthy Adults)
3.3.3. Lactate Tolerance (All Healthy Adults)
3.3.4. Speed (All Healthy Adults)
3.3.5. Subgroup Analysis
- (1)
- Effect on Muscular Strength in Professional Athletes and Non-Athletes: Beetroot juice significantly improved muscular strength in professional athletes (SMD: 0.27, 95%CI: 0.07–0.46, p = 0.007, I2 = 30.8%); however, the effect size was small. In contrast, no statistical improvement was observed in non-athletes (SMD: 0.08, 95% CI: −0.04 to 0.20, p = 0.210, I2 = 0%).
- (2)
- Effect on Aerobic Endurance in Professional Athletes and Non-Athletes: Beetroot juice significantly improved aerobic endurance in non-athletes (SMD: 0.26, 95% CI: 0.16–0.37, p < 0.001, I2 = 0%); yet the effect size was small. In professional athletes, no statistical improvement was observed (SMD: 0.08, 95% CI: −0.01 to 0.16, p = 0.086, I2 = 38.5%).
- (3)
- Effect of Dosage (supplementation of beetroot juice to achieve a certain level of nitrates): A dosage of 4.6–8.3 mmol/d (285–515 mg/d) of NO3− exhibited marginal significance [82,83] (SMD: 0.20, 95% CI: −0.01 to 0.40, p = 0.061, I2 = 65.6%), but the effect size was small. A higher dosage of 8.3–16.4 mmol/d (515–1017 mg/d) of NO3− demonstrated statistical improvement (SMD: 0.14, 95% CI: 0.02–0.27, p = 0.029, I2 = 17.5%); however, the effect size was negligible.
- (4)
- Acute vs. Chronic Supplementation: Acute beetroot juice supplementation (2–3 h before exercise) showed statistical improvement on physical performance (SMD: 0.20, 95% CI: 0.10–0.30, p < 0.001, I2 = 67.1%), but the effect size was small. Chronic supplementation (continuous intake over multiple days) also showed statistical improvement (SMD: 0.13, 95% CI: 0.07–0.20, p < 0.001, I2 = 27.1%), but the effect size remained negligible.
3.3.6. Heterogeneity
- (1)
- Muscular strength in professional athletes, aerobic endurance in professional athletes, and time trial (TT) showed moderate heterogeneity.
- (2)
- The time to exhaustion test (TTE), Yo-Yo IR1 test, 4.6–8.3 mmol/d dose of NO3−, and acute beetroot juice supplementation showed significant heterogeneity.
4. Discussion
4.1. Muscle Strength
4.2. Aerobic Endurance
4.3. Lactate Tolerance
4.4. Speed Performance
4.5. Beetroot Juice Supplementation Strategies
4.6. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Knapik, J.J.; Steelman, R.A.; Hoedebecke, S.S.; Austin, K.G.; Farina, E.K.; Lieberman, H.R. Prevalence of Dietary Supplement Use by Athletes: Systematic Review and Meta-Analysis. Sports Med. 2016, 46, 103–123. [Google Scholar] [CrossRef]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Shannon, O.M.; Allen, J.D.; Bescos, R.; Burke, L.; Clifford, T.; Easton, C.; Gonzalez, J.T.; Jones, A.M.; Jonvik, K.L.; Larsen, F.J.; et al. Dietary Inorganic Nitrate as an Ergogenic Aid: An Expert Consensus Derived via the Modified Delphi Technique. Sports Med. 2022, 52, 2537–2558. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, P. Nitrate in Vegetables: Toxicity, Content, Intake and EC Regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Jones, L.; Bailey, S.J.; Rowland, S.N.; Alsharif, N.; Shannon, O.M.; Clifford, T. The Effect of Nitrate-Rich Beetroot Juice on Markers of Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis of Human Intervention Trials. J. Diet. Suppl. 2022, 19, 749–771. [Google Scholar] [CrossRef]
- Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. The Potential Benefits of Red Beetroot Supplementation in Health and Disease. Nutrients 2015, 7, 2801–2822. [Google Scholar] [CrossRef]
- Hord, N.G.; Tang, Y.; Bryan, N.S. Food Sources of Nitrates and Nitrites: The Physiologic Context for Potential Health Benefits. Am. J. Clin. Nutr. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Wylie, L.J.; Kelly, J.; Bailey, S.J.; Blackwell, J.R.; Skiba, P.F.; Winyard, P.G.; Jeukendrup, A.E.; Vanhatalo, A.; Jones, A.M. Beetroot Juice and Exercise: Pharmacodynamic and Dose-Response Relationships. J. Appl. Physiol. 2013, 115, 325–336. [Google Scholar] [CrossRef]
- van Velzen, A.G.; Sips, A.J.; Schothorst, R.C.; Lambers, A.C.; Meulenbelt, J. The Oral Bioavailability of Nitrate from Nitrate-Rich Vegetables in Humans. Toxicol. Lett. 2008, 181, 177–181. [Google Scholar] [CrossRef]
- Jones, A.M.; Thompson, C.; Wylie, L.J.; Vanhatalo, A. Dietary Nitrate and Physical Performance. Annu. Rev. Nutr. 2018, 38, 303–328. [Google Scholar] [CrossRef]
- Nyakayiru, J.; Jonvik, K.L.; Trommelen, J.; Pinckaers, P.J.M.; Senden, J.M.; Van Loon, L.J.C.; Verdijk, L.B. Beetroot Juice Supplementation Improves High-Intensity Intermittent Type Exercise Performance in Trained Soccer Players. Nutrients 2017, 9, 314. [Google Scholar] [CrossRef]
- Bailey, S.J.; Winyard, P.; Vanhatalo, A.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Tarr, J.; Benjamin, N.; Jones, A.M. Dietary Nitrate Supplementation Reduces the O2 Cost of Low-Intensity Exercise and Enhances Tolerance to High-Intensity Exercise in Humans. J. Appl. Physiol. 2009, 107, 1144–1155. [Google Scholar] [CrossRef] [PubMed]
- Flueck, J.L.; Bogdanova, A.; Mettler, S.; Perret, C. Is Beetroot Juice More Effective than Sodium Nitrate? The Effects of Equimolar Nitrate Dosages of Nitrate-Rich Beetroot Juice and Sodium Nitrate on Oxygen Consumption during Exercise. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2016, 41, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The Nitrate-Nitrite-Nitric Oxide Pathway in Physiology and Therapeutics. Nat. Rev. Drug Discov. 2008, 7, 156–167. [Google Scholar] [CrossRef]
- Hagen, T.; Taylor, C.T.; Lam, F.; Moncada, S. Redistribution of Intracellular Oxygen in Hypoxia by Nitric Oxide: Effect on HIF1alpha. Science 2003, 302, 1975–1978. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.D.; Liu, X.; Kantrow, S.P.; Lancaster, J.R. The Biological Lifetime of Nitric Oxide: Implications for the Perivascular Dynamics of NO and O2. Proc. Natl. Acad. Sci. USA 2001, 98, 355–360. [Google Scholar] [CrossRef]
- Moncada, S.; Palmer, R.M.; Higgs, E.A. Nitric Oxide: Physiology, Pathophysiology, and Pharmacology. Pharmacol. Rev. 1991, 43, 109–142. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Weitzberg, E.; Lundberg, J.M.; Alving, K. Intragastric Nitric Oxide Production in Humans: Measurements in Expelled Air. Gut 1994, 35, 1543–1546. [Google Scholar] [CrossRef]
- Shiva, S.; Huang, Z.; Grubina, R.; Sun, J.; Ringwood, L.A.; MacArthur, P.H.; Xu, X.; Murphy, E.; Darley-Usmar, V.M.; Gladwin, M.T. Deoxymyoglobin Is a Nitrite Reductase That Generates Nitric Oxide and Regulates Mitochondrial Respiration. Circ. Res. 2007, 100, 654–661. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Weitzberg, E. Nitric Oxide Signaling in Health and Disease. Cell 2022, 185, 2853–2878. [Google Scholar] [CrossRef]
- Stamler, J.S.; Meissner, G. Physiology of Nitric Oxide in Skeletal Muscle. Physiol. Rev. 2001, 81, 209–237. [Google Scholar] [CrossRef] [PubMed]
- Larsen, F.J.; Weitzberg, E.; Lundberg, J.O.; Ekblom, B. Effects of Dietary Nitrate on Oxygen Cost during Exercise. Acta Physiol. 2007, 191, 59–66. [Google Scholar] [CrossRef]
- Jones, A.M. Dietary Nitrate Supplementation and Exercise Performance. Sports Med. 2014, 44 (Suppl. 1), S35–S45. [Google Scholar] [CrossRef]
- Husmann, F.; Bruhn, S.; Mittlmeier, T.; Zschorlich, V.; Behrens, M. Dietary Nitrate Supplementation Improves Exercise Tolerance by Reducing Muscle Fatigue and Perceptual Responses. Front. Physiol. 2019, 10, 404. [Google Scholar] [CrossRef] [PubMed]
- Cermak, N.M.; Res, P.; Stinkens, R.; Lundberg, J.O.; Gibala, M.J.; van Loon, L.J.C. No Improvement in Endurance Performance after a Single Dose of Beetroot Juice. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Peacock, O.; Tjønna, A.E.; James, P.; Wisløff, U.; Welde, B.; Böhlke, N.; Smith, A.; Stokes, K.; Cook, C.; Sandbakk, O. Dietary Nitrate Does Not Enhance Running Performance in Elite Cross-Country Skiers. Med. Sci. Sports Exerc. 2012, 44, 2213–2219. [Google Scholar] [CrossRef]
- Wilkerson, D.P.; Hayward, G.M.; Bailey, S.J.; Vanhatalo, A.; Blackwell, J.R.; Jones, A.M. Influence of Acute Dietary Nitrate Supplementation on 50 Mile Time Trial Performance in Well-Trained Cyclists. Eur. J. Appl. Physiol. 2012, 112, 4127–4134. [Google Scholar] [CrossRef]
- Christensen, P.M.; Nyberg, M.; Bangsbo, J. Influence of Nitrate Supplementation on VO₂ Kinetics and Endurance of Elite Cyclists. Scand. J. Med. Sci. Sports 2013, 23, e21–e31. [Google Scholar] [CrossRef]
- Boorsma, R.K.; Whitfield, J.; Spriet, L.L. Beetroot Juice Supplementation Does Not Improve Performance of Elite 1500-m Runners. Med. Sci. Sports Exerc. 2014, 46, 2326–2334. [Google Scholar] [CrossRef]
- Coggan, A.R.; Broadstreet, S.R.; Mikhalkova, D.; Bole, I.; Leibowitz, J.L.; Kadkhodayan, A.; Park, S.; Thomas, D.P.; Thies, D.; Peterson, L.R. Dietary Nitrate-Induced Increases in Human Muscle Power: High versus Low Responders. Physiol. Rep. 2018, 6, e13575. [Google Scholar] [CrossRef]
- Tan, R.; Pennell, A.; Price, K.M.; Karl, S.T.; Seekamp-Hicks, N.G.; Paniagua, K.K.; Weiderman, G.D.; Powell, J.P.; Sharabidze, L.K.; Lincoln, I.G.; et al. Effects of Dietary Nitrate Supplementation on Performance and Muscle Oxygenation during Resistance Exercise in Men. Nutrients 2022, 14, 3703. [Google Scholar] [CrossRef] [PubMed]
- Jonvik, K.L.; Hoogervorst, D.; Peelen, H.B.; de Niet, M.; Verdijk, L.B.; van Loon, L.J.C.; van Dijk, J.-W. The Impact of Beetroot Juice Supplementation on Muscular Endurance, Maximal Strength and Countermovement Jump Performance. Eur. J. Sport Sci. 2021, 21, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.D.; Martin, M.P.; Mintz, J.A.; Rogers, R.R.; Ballmann, C.G. Effect of Acute Beetroot Juice Supplementation on Bench Press Power, Velocity, and Repetition Volume. J. Strength Cond. Res. 2020, 34, 924–928. [Google Scholar] [CrossRef]
- Tatlici, A.; Lima, Y.; Yilmaz, S.; Ekin, A.; Okut, S.; Ceviz, E. The Effects of Beetroot Juice Supplementation on Balance Performance of Wrestlers. Pak. J. Med. Health Sci. 2021, 15, 2234–2240. [Google Scholar] [CrossRef]
- López-Samanes, Á.; Pérez-Lopez, A.; Morencos, E.; Muñoz, A.; Kühn, A.; Sánchez-Migallón, V.; Moreno-Pérez, V.; González-Frutos, P.; Bach-Faig, A.; Roberts, J.; et al. Beetroot Juice Ingestion Does Not Improve Neuromuscular Performance and Match-Play Demands in Elite Female Hockey Players: A Randomized, Double-Blind, Placebo-Controlled Study. Eur. J. Nutr. 2023, 62, 1123–1130. [Google Scholar] [CrossRef]
- López-Samanes, Á.; Gómez Parra, A.; Moreno-Pérez, V.; Courel-Ibáñez, J. Does Acute Beetroot Juice Supplementation Improve Neuromuscular Performance and Match Activity in Young Basketball Players? A Randomized, Placebo-Controlled Study. Nutrients 2020, 12, 188. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.J.; Fulford, J.; Vanhatalo, A.; Winyard, P.G.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Benjamin, N.; Jones, A.M. Dietary Nitrate Supplementation Enhances Muscle Contractile Efficiency during Knee-Extensor Exercise in Humans. J. Appl. Physiol. 2010, 109, 135–148. [Google Scholar] [CrossRef]
- Mosher, S.L.; Sparks, S.A.; Williams, E.L.; Bentley, D.J.; Mc Naughton, L.R. Ingestion of a Nitric Oxide Enhancing Supplement Improves Resistance Exercise Performance. J. Strength Cond. Res. 2016, 30, 3520–3524. [Google Scholar] [CrossRef]
- Ranchal-Sanchez, A.; Diaz-Bernier, V.M.; De La Florida-Villagran, C.A.; Llorente-Cantarero, F.J.; Campos-Perez, J.; Jurado-Castro, J.M. Acute Effects of Beetroot Juice Supplements on Resistance Training: A Randomized Double-Blind Crossover. Nutrients 2020, 12, 1912. [Google Scholar] [CrossRef]
- Garnacho-Castaño, M.V.; Sánchez-Nuño, S.; Molina-Raya, L.; Carbonell, T.; Maté-Muñoz, J.L.; Pleguezuelos-Cobo, E.; Serra-Payá, N. Circulating Nitrate-Nitrite Reduces Oxygen Uptake for Improving Resistance Exercise Performance after Rest Time in Well-Trained CrossFit Athletes. Sci. Rep. 2022, 12, 9671. [Google Scholar] [CrossRef]
- Fulford, J.; Winyard, P.G.; Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; Jones, A.M. Influence of Dietary Nitrate Supplementation on Human Skeletal Muscle Metabolism and Force Production during Maximum Voluntary Contractions. Pflugers Arch.-Eur. J. Physiol. 2013, 465, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Craig, J.C.; Broxterman, R.M.; Smith, J.R.; Allen, J.D.; Barstow, T.J. Effect of Dietary Nitrate Supplementation on Conduit Artery Blood Flow, Muscle Oxygenation, and Metabolic Rate during Handgrip Exercise. J. Appl. Physiol. 2018, 125, 254–262. [Google Scholar] [CrossRef] [PubMed]
- DE Souza, D.B.; Ribeiro, J.N.; Simão, A.N.C.; Aguilar-Navarro, M.; Polito, M.D. The Acute Effect of In Natura Beetroot Juice Intake on Intra-Session Exercise Sequences during Concurrent Training. Int. J. Exerc. Sci. 2022, 15, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Trexler, E.T.; Keith, D.S.; Lucero, A.A.; Stoner, L.; Schwartz, T.A.; Persky, A.M.; Ryan, E.D.; Smith-Ryan, A.E. Effects of Citrulline Malate and Beetroot Juice Supplementation on Energy Metabolism and Blood Flow during Submaximal Resistance Exercise. J. Diet. Suppl. 2020, 17, 698–717. [Google Scholar] [CrossRef]
- de Oliveira, G.V.; do Nascimento, L.A.D.; Volino-Souza, M.; do Couto Vellozo, O.; Alvares, T.S. A Single Oral Dose of Beetroot-Based Gel Does Not Improve Muscle Oxygenation Parameters, but Speeds up Handgrip Isometric Strength Recovery in Recreational Combat Sports Athletes. Biol. Sport 2020, 37, 93–99. [Google Scholar] [CrossRef]
- Daab, W.; Bouzid, M.A.; Lajri, M.; Bouchiba, M.; Saafi, M.A.; Rebai, H. Chronic Beetroot Juice Supplementation Accelerates Recovery Kinetics Following Simulated Match Play in Soccer Players. J. Am. Coll. Nutr. 2021, 40, 61–69. [Google Scholar] [CrossRef]
- de Oliveira, G.V.; do Nascimento, L.A.D.; Volino-Souza, M.; Mesquita, J.D.S.; Alvares, T.S. Beetroot-Based Gel Supplementation Improves Handgrip Strength and Forearm Muscle O2 Saturation but Not Exercise Tolerance and Blood Volume in Jiu-Jitsu Athletes. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2018, 43, 920–927. [Google Scholar] [CrossRef]
- Reynolds, C.M.E.; Evans, M.; Halpenny, C.; Hughes, C.; Jordan, S.; Quinn, A.; Hone, M.; Egan, B. Acute Ingestion of Beetroot Juice Does Not Improve Short-Duration Repeated Sprint Running Performance in Male Team Sport Athletes. J. Sports Sci. 2020, 38, 2063–2070. [Google Scholar] [CrossRef]
- Tan, R.; Merrill, C.; Riley, C.F.; Hammer, M.A.; Kenney, R.T.; Riley, A.A.; Li, J.; Zink, A.C.; Karl, S.T.; Price, K.M.; et al. Acute Inorganic Nitrate Ingestion Does Not Impact Oral Microbial Composition, Cognitive Function, or High-Intensity Exercise Performance in Female Team-Sport Athletes. Eur. J. Appl. Physiol. 2024, 124, 3511–3525. [Google Scholar] [CrossRef]
- Garnacho-Castaño, M.V.; Palau-Salvà, G.; Cuenca, E.; Muñoz-González, A.; García-Fernández, P.; Del Carmen Lozano-Estevan, M.; Veiga-Herreros, P.; Maté-Muñoz, J.L.; Domínguez, R. Effects of a Single Dose of Beetroot Juice on Cycling Time Trial Performance at Ventilatory Thresholds Intensity in Male Triathletes. J. Int. Soc. Sports Nutr. 2018, 15, 49. [Google Scholar] [CrossRef]
- Esen, O.; Karayigit, R.; Peart, D.J. Acute Beetroot Juice Supplementation Did Not Enhance Intermittent Running Performance in Trained Rugby Players. Eur. J. Sport Sci. 2023, 23, 2321–2328. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Heredero, B.; Morencos, E.; Morais, J.; Barbosa, T.M.; Veiga, S. A Single Dose of Beetroot Juice Not Enhance Performance during Intervallic Swimming Efforts. J. Sports Sci. Med. 2024, 23, 228. [Google Scholar] [CrossRef] [PubMed]
- Campos, H.O.; Drummond, L.R.; Rodrigues, Q.T.; Machado, F.S.M.; Pires, W.; Wanner, S.P.; Coimbra, C.C. Nitrate Supplementation Improves Physical Performance Specifically in Non-Athletes during Prolonged Open-Ended Tests: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2018, 119, 636–657. [Google Scholar] [CrossRef] [PubMed]
- Porcelli, S.; Ramaglia, M.; Bellistri, G.; Pavei, G.; Pugliese, L.; Montorsi, M.; Rasica, L.; Marzorati, M. Aerobic Fitness Affects the Exercise Performance Responses to Nitrate Supplementation. Med. Sci. Sports Exerc. 2015, 47, 1643–1651. [Google Scholar] [CrossRef]
- Rimer, E.G.; Peterson, L.R.; Coggan, A.R.; Martin, J.C. Increase in Maximal Cycling Power with Acute Dietary Nitrate Supplementation. Int. J. Sports Physiol. Perform. 2016, 11, 715–720. [Google Scholar] [CrossRef]
- Shannon, O.M.; Barlow, M.J.; Duckworth, L.; Williams, E.; Wort, G.; Woods, D.; Siervo, M.; O’Hara, J.P. Dietary Nitrate Supplementation Enhances Short but Not Longer Duration Running Time-Trial Performance. Eur. J. Appl. Physiol. 2017, 117, 775–785. [Google Scholar] [CrossRef]
- Sakong, H.; Cho, Y.-H.; Seo, T.-B. High or Low Volume Beetroot Juice Supplementation Might Positively Affect Physical Capacity and Isokinetic Muscle Function in Power Athletes. Isokinet. Exerc. Sci. 2023, 31, 303–310. [Google Scholar] [CrossRef]
- Evangelista, J.F.; Meirelles, C.M.; Aguiar, G.S.; Alves, R.; Matsuura, C. Effects of Beetroot-Based Supplements on Muscular Endurance and Strength in Healthy Male Individuals: A Systematic Review and Meta-Analysis. J. Am. Nutr. Assoc. 2024, 43, 77–91. [Google Scholar] [CrossRef]
- Alsharif, N.S.; Clifford, T.; Alhebshi, A.; Rowland, S.N.; Bailey, S.J. Effects of Dietary Nitrate Supplementation on Performance during Single and Repeated Bouts of Short-Duration High-Intensity Exercise: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Antioxidants 2023, 12, 1194. [Google Scholar] [CrossRef]
- Silva, K.V.C.; Costa, B.D.; Gomes, A.C.; Saunders, B.; Mota, J.F. Factors That Moderate the Effect of Nitrate Ingestion on Exercise Performance in Adults: A Systematic Review with Meta-Analyses and Meta-Regressions. Adv. Nutr. 2022, 13, 1866–1881. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Healthcare Interventions: Explanation and Elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [PubMed]
- Van De Walle, G.P.; Vukovich, M.D. The Effect of Nitrate Supplementation on Exercise Tolerance and Performance: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2018, 32, 1796–1808. [Google Scholar] [CrossRef]
- Coggan, A.R.; Baranauskas, M.N.; Hinrichs, R.J.; Liu, Z.; Carter, S.J. Effect of Dietary Nitrate on Human Muscle Power: A Sys-tematic Review and Individual Participant Data Meta-Analysis. J. Int. Soc. Sports Nutr. 2021, 18, 66. [Google Scholar] [CrossRef]
- Alvares, T.S.; Oliveira, G.V.D.; Volino-Souza, M.; Conte-Junior, C.A.; Murias, J.M. Effect of Dietary Nitrate Ingestion on Muscular Performance: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Crit. Rev. Food Sci. Nutr. 2022, 62, 5284–5306. [Google Scholar] [CrossRef]
- Hogwood, A.C.; Anderson, K.C.; Ortiz De Zevallos, J.; Paterson, C.; Weltman, A.; Allen, J.D. Limited Effects of Inorganic Nitrate Supplementation on Exercise Training Responses: A Systematic Review and Meta-Analysis. Sports Med.-Open 2023, 9, 84. [Google Scholar] [CrossRef]
- Tan, R.; Cass, J.K.; Lincoln, I.G.; Wideen, L.E.; Nicholl, M.J.; Molnar, T.J.; Gough, L.A.; Bailey, S.J.; Pennell, A. Effects of Dietary Nitrate Supplementation on High-Intensity Cycling Sprint Performance in Recreationally Active Adults: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 2764. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.; Pennell, A.; Karl, S.T.; Cass, J.K.; Go, K.; Clifford, T.; Bailey, S.J.; Perkins Storm, C. Effects of Dietary Nitrate Supplementation on Back Squat and Bench Press Performance: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 2493. [Google Scholar] [CrossRef]
- Wong, T.H.; Sim, A.; Burns, S.F. The Effects of Nitrate Ingestion on High-Intensity Endurance Time-Trial Performance: A Systematic Review and Meta-Analysis. J. Exerc. Sci. Fit. 2022, 20, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.H.; Sim, A.; Burns, S.F. The Effect of Beetroot Ingestion on High-Intensity Interval Training: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3674. [Google Scholar] [CrossRef]
- McMahon, N.F.; Leveritt, M.D.; Pavey, T.G. The Effect of Dietary Nitrate Supplementation on Endurance Exercise Performance in Healthy Adults: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 735–756. [Google Scholar] [CrossRef]
- Hoon, M.W.; Johnson, N.A.; Chapman, P.G.; Burke, L.M. The Effect of Nitrate Supplementation on Exercise Performance in Healthy Individuals: A Systematic Review and Meta-Analysis. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Gupta, S.; Adli, T.; Hou, W.; Coolsaet, R.; Hayes, A.; Kim, K.; Pandey, A.; Gordon, J.; Chahil, G.; et al. The Effects of Dietary Nitrate Supplementation on Endurance Exercise Performance and Cardiorespiratory Measures in Healthy Adults: A Systematic Review and Meta-Analysis. J. Int. Soc. Sports Nutr. 2021, 18, 55. [Google Scholar] [CrossRef]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; et al. AMSTAR 2: A Critical Appraisal Tool for Systematic Reviews That Include Randomised or Non-Randomised Studies of Healthcare Interventions, or Both. BMJ 2017, 358, j4008. [Google Scholar] [CrossRef]
- Kulinskaya, E.; Morgenthaler, S.; Staudte, R.G. Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence; Wiley Series in Probability and Statistics; Wiley: Chichester, UK, 2008; ISBN 978-0-470-02864-3. [Google Scholar]
- Bracchiglione, J.; Meza, N.; Bangdiwala, S.I.; Niño De Guzmán, E.; Urrútia, G.; Bonfill, X.; Madrid, E. Graphical Representation of Overlap for OVErviews: GROOVE Tool. Res. Synth. Methods 2022, 13, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Kirvalidze, M.; Abbadi, A.; Dahlberg, L.; Sacco, L.B.; Calderón-Larrañaga, A.; Morin, L. Estimating Pairwise Overlap in Umbrella Reviews: Considerations for Using the Corrected Covered Area (CCA) Index Methodology. Res. Synth. Methods 2023, 14, 764–767. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Li, T.; Deeks, J.J. Choosing Effect Measures and Computing Estimates of Effect. In Cochrane Handbook for Systematic Reviews of Interventions; Wiley: Chichester, UK, 2019; pp. 143–176. ISBN 978-1-119-53660-4. [Google Scholar]
- Cochrane Handbook for Systematic Reviews of Interventions. Available online: https://training.cochrane.org/handbook (accessed on 2 March 2025).
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G. Quantifying Heterogeneity in a Meta-Analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Bushman, B. (Ed.) Embracing Physical Activity: A Complete Exercise Program. In ACSM’s Complete Guide to Fitness & Health, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2017; p. 28. [Google Scholar]
- Olsson-Collentine, A.; Van Assen, M.A.L.M.; Hartgerink, C.H.J. The Prevalence of Marginally Significant Results in Psychology over Time. Psychol. Sci. 2019, 30, 576–586. [Google Scholar] [CrossRef]
- Pritschet, L.; Powell, D.; Horne, Z. Marginally Significant Effects as Evidence for Hypotheses: Changing Attitudes over Four Decades. Psychol. Sci. 2016, 27, 1036–1042. [Google Scholar] [CrossRef]
- Coggan, A.R.; Peterson, L.R. Dietary Nitrate Enhances the Contractile Properties of Human Skeletal Muscle. Exerc. Sport Sci. Rev. 2018, 46, 254–261. [Google Scholar] [CrossRef]
- Hernández, A.; Schiffer, T.A.; Ivarsson, N.; Cheng, A.J.; Bruton, J.D.; Lundberg, J.O.; Weitzberg, E.; Westerblad, H. Dietary Nitrate Increases Tetanic [Ca2+]i and Contractile Force in Mouse Fast-Twitch Muscle. J. Physiol. 2012, 590, 3575–3583. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.K.; Holdsworth, C.T.; Wright, J.L.; Fees, A.J.; Allen, J.D.; Jones, A.M.; Musch, T.I.; Poole, D.C. Microvascular Oxygen Pressures in Muscles Comprised of Different Fiber Types: Impact of Dietary Nitrate Supplementation. Nitric Oxide Biol. Chem. 2015, 48, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Wylie, L.J.; Park, J.W.; Vanhatalo, A.; Kadach, S.; Black, M.I.; Stoyanov, Z.; Schechter, A.N.; Jones, A.M.; Piknova, B. Human Skeletal Muscle Nitrate Store: Influence of Dietary Nitrate Supplementation and Exercise. J. Physiol. 2019, 597, 5565–5576. [Google Scholar] [CrossRef] [PubMed]
- Cordingley, D.M.; Anderson, J.E.; Cornish, S.M. Myokine Response to Blood-Flow Restricted Resistance Exercise in Younger and Older Males in an Untrained and Resistance-Trained State: A Pilot Study. J. Sci. Sport Exerc. 2023, 5, 203–217. [Google Scholar] [CrossRef]
- Bassett, D.R.; Howley, E.T. Limiting Factors for Maximum Oxygen Uptake and Determinants of Endurance Performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef]
- Poole, D.C.; Richardson, R.S. Determinants of Oxygen Uptake. Implications for Exercise Testing. Sports Med. 1997, 24, 308–320. [Google Scholar] [CrossRef]
- Astrand, P.O.; Saltin, B. Oxygen Uptake during the First Minutes of Heavy Muscular Exercise. J. Appl. Physiol. 1961, 16, 971–976. [Google Scholar] [CrossRef]
- Gastin, P.B. Energy System Interaction and Relative Contribution during Maximal Exercise. Sports Med. 2001, 31, 725–741. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Atakan, M.M.; Kuang, J.; Hu, Y.; Bishop, D.J.; Yan, X. The Molecular Adaptive Responses of Skeletal Muscle to High-Intensity Exercise/Training and Hypoxia. Antioxidants 2020, 9, 656. [Google Scholar] [CrossRef]
- Xu, F.; Rhodes, E.C. Oxygen Uptake Kinetics during Exercise. Sports Med. 1999, 27, 313–327. [Google Scholar] [CrossRef]
- Carlström, M.; Weitzberg, E.; Lundberg, J.O. Nitric Oxide Signaling and Regulation in the Cardiovascular System: Recent Advances. Pharmacol. Rev. 2024, 76, 1038–1062. [Google Scholar] [CrossRef] [PubMed]
- Poderoso, J.J.; Helfenberger, K.; Poderoso, C. The Effect of Nitric Oxide on Mitochondrial Respiration. Nitric Oxide Biol. Chem. 2019, 88, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Clements, W.T.; Lee, S.-R.; Bloomer, R.J. Nitrate Ingestion: A Review of the Health and Physical Performance Effects. Nutrients 2014, 6, 5224–5264. [Google Scholar] [CrossRef] [PubMed]
- Hargreaves, M.; Spriet, L.L. Skeletal Muscle Energy Metabolism during Exercise. Nat. Metab. 2020, 2, 817–828. [Google Scholar] [CrossRef]
- Berlanga, L.A.; Lopez-Samanes, A.; Martin-Lopez, J.; de la Cruz, R.M.; Garces-Rimon, M.; Roberts, J.; Bertotti, G. Dietary Nitrate Ingestion Does Not Improve Neuromuscular Performance in Male Sport Climbers. J. Hum. Kinet. 2023, 87, 47–57. [Google Scholar] [CrossRef]
- Hassel, E.; Stensvold, D.; Halvorsen, T.; Wisløff, U.; Langhammer, A.; Steinshamn, S. Association between Pulmonary Function and Peak Oxygen Uptake in Elderly: The Generation 100 Study. Respir. Res. 2015, 16, 156. [Google Scholar] [CrossRef]
- Clerc, P.; Rigoulet, M.; Leverve, X.; Fontaine, E. Nitric Oxide Increases Oxidative Phosphorylation Efficiency. J. Bioenerg. Biomembr. 2007, 39, 158–166. [Google Scholar] [CrossRef]
- Basu, S.; Azarova, N.A.; Font, M.D.; King, S.B.; Hogg, N.; Gladwin, M.T.; Shiva, S.; Kim-Shapiro, D.B. Nitrite Reductase Activity of Cytochrome. J. Biol. Chem. 2008, 283, 32590–32597. [Google Scholar] [CrossRef]
- McConell, G.K.; Bradley, S.J.; Stephens, T.J.; Canny, B.J.; Kingwell, B.A.; Lee-Young, R.S. Skeletal Muscle nNOS Mu Protein Content Is Increased by Exercise Training in Humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R821–R828. [Google Scholar] [CrossRef]
- Andersen, P.; Henriksson, J. Capillary Supply of the Quadriceps Femoris Muscle of Man: Adaptive Response to Exercise. J. Physiol. 1977, 270, 677–690. [Google Scholar] [CrossRef]
- Poveda, J.J.; Riestra, A.; Salas, E.; Cagigas, M.L.; López-Somoza, C.; Amado, J.A.; Berrazueta, J.R. Contribution of Nitric Oxide to Exercise-Induced Changes in Healthy Volunteers: Effects of Acute Exercise and Long-Term Physical Training. Eur. J. Clin. Investig. 1997, 27, 967–971. [Google Scholar] [CrossRef] [PubMed]
- Sarzynski, M.A.; Ghosh, S.; Bouchard, C. Genomic and Transcriptomic Predictors of Response Levels to Endurance Exercise Training. J. Physiol. 2017, 595, 2931–2939. [Google Scholar] [CrossRef]
- Esfarjani, F.; Laursen, P.B. Manipulating High-Intensity Interval Training: Effects on VO2max, the Lactate Threshold and 3000 m Running Performance in Moderately Trained Males. J. Sci. Med. Sport 2007, 10, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, J.; Ohtake, K.; Murata, I.; Sonoda, K. Nitric Oxide Bioavailability for Red Blood Cell Deformability in the Microcirculation: A Review of Recent Progress. Nitric Oxide Biol. Chem. 2022, 129, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Landa, R.E.; Lazo, M.; Salado, D.D.; Sánchez-Almanzar, E.; Cepeda-Marte, J.L.; Zare, R.; Ali Redha, A.; Clifford, T. Dietary Supplementation Strategies for Improving Training Adaptations, Antioxidant Status and Performance of Volleyball Players: A Systematic Review. J. Sci. Sport Exerc. 2024. [Google Scholar] [CrossRef]
- Currell, K.; Jeukendrup, A.E. Validity, Reliability and Sensitivity of Measures of Sporting Performance. Sports Med. 2008, 38, 297–316. [Google Scholar] [CrossRef] [PubMed]
- Marcora, S.M.; Staiano, W.; Manning, V. Mental Fatigue Impairs Physical Performance in Humans. J. Appl. Physiol. 2009, 106, 857–864. [Google Scholar] [CrossRef]
- Tyler, C.J.; Reeve, T.; Hodges, G.J.; Cheung, S.S. The Effects of Heat Adaptation on Physiology, Perception and Exercise Performance in the Heat: A Meta-Analysis. Sports Med. 2016, 46, 1699–1724. [Google Scholar] [CrossRef]
- Neglia, A. Nutrition, Eating Disorders, and Behavior in Athletes. Psychiatr. Clin. N. Am. 2021, 44, 431–441. [Google Scholar] [CrossRef]
- Baião, D.D.S.; da Silva, D.V.T.; Paschoalin, V.M.F. Beetroot, a Remarkable Vegetable: Its Nitrate and Phytochemical Contents Can Be Adjusted in Novel Formulations to Benefit Health and Support Cardiovascular Disease Therapies. Antioxidants 2020, 9, 960. [Google Scholar] [CrossRef]
- Gholami, F.; Rahmani, L.; Amirnezhad, F.; Cheraghi, K. High Doses of Sodium Nitrate Prior to Exhaustive Exercise Increases Plasma Peroxynitrite Levels in Well-Trained Subjects: Randomized, Double-Blinded, Crossover Study. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2019, 44, 1305–1310. [Google Scholar] [CrossRef] [PubMed]
- Sandbakk, S.B.; Sandbakk, Ø.; Peacock, O.; James, P.; Welde, B.; Stokes, K.; Böhlke, N.; Tjønna, A.E. Effects of Acute Supplementation of L-Arginine and Nitrate on Endurance and Sprint Performance in Elite Athletes. Nitric Oxide Biol. Chem. 2015, 48, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Kramer, S.J.; Baur, D.A.; Spicer, M.T.; Vukovich, M.D.; Ormsbee, M.J. The Effect of Six Days of Dietary Nitrate Supplementation on Performance in Trained CrossFit Athletes. J. Int. Soc. Sports Nutr. 2016, 13, 39. [Google Scholar] [CrossRef]
- Nyakayiru, J.M.; Jonvik, K.L.; Pinckaers, P.J.M.; Senden, J.; van Loon, L.J.C.; Verdijk, L.B. No Effect of Acute and 6-Day Nitrate Supplementation on VO2 and Time-Trial Performance in Highly Trained Cyclists. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 11–17. [Google Scholar] [CrossRef]
- Jonvik, K.L.; Lenaerts, K.; Smeets, J.S.J.; Kolkman, J.J.; VAN Loon, L.J.C.; Verdijk, L.B. Sucrose but Not Nitrate Ingestion Reduces Strenuous Cycling-Induced Intestinal Injury. Med. Sci. Sports Exerc. 2019, 51, 436–444. [Google Scholar] [CrossRef]
- Gasier, H.G.; Reinhold, A.R.; Loiselle, A.R.; Soutiere, S.E.; Fothergill, D.M. Effects of Oral Sodium Nitrate on Forearm Blood Flow, Oxygenation and Exercise Performance during Acute Exposure to Hypobaric Hypoxia (4300 m). Nitric Oxide Biol. Chem. 2017, 69, 1–9. [Google Scholar] [CrossRef]
- Clifford, T.; Constantinou, C.M.; Keane, K.M.; West, D.J.; Howatson, G.; Stevenson, E.J. The Plasma Bioavailability of Nitrate and Betanin from Beta Vulgaris Rubra in Humans. Eur. J. Nutr. 2017, 56, 1245–1254. [Google Scholar] [CrossRef]
- Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. Beetroot Juice Is More Beneficial than Sodium Nitrate for Attenuating Muscle Pain after Strenuous Eccentric-Bias Exercise. Appl. Physiol. Nutr. Metab. 2017, 42, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
- Aucouturier, J.; Boissière, J.; Pawlak-Chaouch, M.; Cuvelier, G.; Gamelin, F.-X. Effect of Dietary Nitrate Supplementation on Tolerance to Supramaximal Intensity Intermittent Exercise. Nitric Oxide Biol. Chem. 2015, 49, 16–25. [Google Scholar] [CrossRef]
- Vanhatalo, A.; Bailey, S.J.; Blackwell, J.R.; DiMenna, F.J.; Pavey, T.G.; Wilkerson, D.P.; Benjamin, N.; Winyard, P.G.; Jones, A.M. Acute and Chronic Effects of Dietary Nitrate Supplementation on Blood Pressure and the Physiological Responses to Moderate-Intensity and Incremental Exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R1121–R1131. [Google Scholar] [CrossRef]
- Thompson, K.G.; Turner, L.; Prichard, J.; Dodd, F.; Kennedy, D.O.; Haskell, C.; Blackwell, J.R.; Jones, A.M. Influence of Dietary Nitrate Supplementation on Physiological and Cognitive Responses to Incremental Cycle Exercise. Respir. Physiol. Neurobiol. 2014, 193, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Wylie, L.J.; Mohr, M.; Krustrup, P.; Jackman, S.R.; Ermιdis, G.; Kelly, J.; Black, M.I.; Bailey, S.J.; Vanhatalo, A.; Jones, A.M. Dietary Nitrate Supplementation Improves Team Sport-Specific Intense Intermittent Exercise Performance. Eur. J. Appl. Physiol. 2013, 113, 1673–1684. [Google Scholar] [CrossRef] [PubMed]
- Rienks, J.N.; Vanderwoude, A.A.; Maas, E.; Blea, Z.M.; Subudhi, A.W. Effect of Beetroot Juice on Moderate-Intensity Exercise at a Constant Rating of Perceived Exertion. Int. J. Exerc. Sci. 2015, 8, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Coggan, A.R.; Leibowitz, J.L.; Kadkhodayan, A.; Thomas, D.P.; Ramamurthy, S.; Spearie, C.A.; Waller, S.; Farmer, M.; Peterson, L.R. Effect of Acute Dietary Nitrate Intake on Maximal Knee Extensor Speed and Power in Healthy Men and Women. Nitric Oxide Biol. Chem. 2015, 48, 16–21. [Google Scholar] [CrossRef]
- Hoon, M.W.; Jones, A.M.; Johnson, N.A.; Blackwell, J.R.; Broad, E.M.; Lundy, B.; Rice, A.J.; Burke, L.M. The Effect of Variable Doses of Inorganic Nitrate-Rich Beetroot Juice on Simulated 2,000-m Rowing Performance in Trained Athletes. Int. J. Sports Physiol. Perform. 2014, 9, 615–620. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
Name and Year | Include Studies | Population | Interventions | Dose/Time | Physical Performance Evaluation Methods | SMD (95% CI) | AMSTAR-2 |
---|---|---|---|---|---|---|---|
(Van De Walle & Vukovich, 2018) [62] | 29 | Untrained individuals and trained individuals | Running, cycling, rowing, kayaking, team sports (soccer and rugby), and interval sprints, among others | N/A | MAIN: TT SUB: ATH, NON | TT, MAIN −0.05 (0.17 −0.28) ATH, SUB 0.1 (0.61 −0.41) NON, SUB 0.32 (0.47 0.1) | M |
(Campos et al., 2018) [53] | 53 | Non-athletes (physically active) and athletes | Long-term open-ended test, long-duration test versus graded exercise test, and short-term test | N/A | SUB: ATH | ATH, SUB 0.04 (0.15 −0.05) ATH, SUB 0.25 (0.38 0.11) | M |
(Evangelista et al., 2024) [58] | 27 | Healthy adult males, exercisers, and athletes | Isotonic: exercises such as squats and bench presses. Isokinetic, e.g., knee extension and flexion. Isometric Exercise intensity includes maximum repetitions (1RM) and repetitions to exhaustion | DOSE: Muscular Endurance ≤ 6.4 mmol/d, muscle endurance > 6.4 mmol/d TIME: 2–3 h before muscular endurance exercise, muscular endurance exercise after 3–8 days; 2–3 h before muscle strength exercise, muscle strength exercise after 3–8 days | MAIN: ME, MS SUB: ATH, NON, DOSE, TIME | MS, MAIN 0.26 (0.48 0.03) ME, MAIN 0.31 (0.51 0.1) ATH, SUB 0.48 (0.88 0.08) ATH, SUB 0.5 (0.85 0.14) NON, SUB 0.04 (0.68 −0.6) DOSE, SUB 0.57 (0.91 0.17) DOSE, SUB 0.17 (0.42 −0.08) TIME, SUB 0.24 (0.49 0) TIME, SUB 0.04 (0.79 0.01) TIME, SUB 0.2 (0.55 −0.16) TIME, SUB 0.33 (0.64 0.02) | H |
(Coggan et al., 2021) [63] | 19 | Healthy college students, trained athletes | Exercises with large muscle groups (such as sprint riding) Exercises for small muscle groups (e.g., knee extensions) | TIME: acute muscle strength exercise, muscle strength exercise after 5–6 days | SUB: TIME | TIME, SUB 0.54 (0.71 0.37) TIME, SUB 0.25 (0.49 0.01) | M |
(Alvares et al., 2022) [64] | 34 | Physically active people, athletes and non-training individual | Isometric contraction, isotonic contraction. The knee extensors were the most tested muscle group (18 studies), followed by the forearm flexors (11 studies) | TIME: 1.5–4 h before muscle strength exercise, muscle strength exercise after 4–8 days; 1.5–4 h before muscle endurance exercise, muscle endurance exercise after 4–8 days | MAIN: MS, ME SUB: ATH, NON, TIME | MS, MAIN 0.08 (0.15 0.01) ME, MAIN 0.31 (0.38 0.23) ATH, SUB 0.2 (0.42 −0.02) ATH, SUB 0.27 (0.82 −0.28) NON, SUB 0.08 (0.2 −0.05) NON, SUB 0.18 (1.13 −0.07) TIME, SUB 0.12 (0.24 −0.01) TIME, SUB 0.04 (0.13 −0.05) TIME, SUB 0.25 (0.45 0.05) TIME, SUB 0.42 (0.71 0.12) | M |
(Hogwood et al., 2023) [65] | 9 | Healthy adult | Sprint interval training, high-intensity high-volume training, high-intensity interval training, and high-intensity endurance training | N/A | MAIN: TTE, MAIN SUB: VO2max | TTE, MAIN 0.08 (0.37 −0.21) VO2max, MAIN0.26 (0.57 −0.05) | H |
(Esen et al., 2023) [51] | 19 | Elite athletic and healthy adults | Isometric exercises, isokinetic exercises, Wingate tests (e.g., 30 s full ride or running sprints), repetitive sprint tests (e.g., 4 × 20 s cycling sprints), and inertia load squats | Time: 2–3 h before peak power output exercise, 2–3 h before mean power output exercise, 2–3 h before time to peak power exercise | MAIN: MS SUB: TIME | MS, MAIN 0.25 (0.48 0.02) MS, MAIN 0.03 (0.74 −0.86) TIME, SUB 0.25 (0.48 0.02) TIME, SUB 0.28 (0.53 0.03) TIME, SUB −0.78 (−0.43 −1.14) | M |
(Alsharif et al., 2023) [59] | 25 | Healthy adults, and athletes. | Cycling, running, canoeing, tennis, fighting, speed skating, cross-fit and sprinting | DOSE: <8 mmol/d average power output, ≥8 mmol/d average power output TIME: Single-day before total work exercise, total work exercise after multi-day (3–7 d); Single-day before average power output, average power output after Multi-day (3–7 d) | MAIN: MS, YY SUB: DOSE, TIME | MS, MAIN 0.01 (0.08 −0.06) YY, MAIN 0.17 (0.24 0.09) DOSE, SUB −0.14 (0.09 −0.37) DOSE, SUB 0.23 (0.49 −0.03) DOSE, SUB 0.19 (0.4 −0.02) DOSE, SUB 0.27 (0.54 0.01) TIME, SUB −0.1 (0.07 −0.28) TIME, SUB 0.34 (0.6 0.09) TIME, SUB 0.12 (0.26 −0.03) TIME, SUB 0.27 (0.54 0.01) | M |
(Tan et al., 2024) [66] | 6 | Adult men and women healthy and actively involved in recreational sports. | 30 s of all-out sprint test, repeat short sprint test | DOSE: 11.2–13 mmol, 5.6–8.3 mmol TIME: Mean Power Output after 5–6 d, 2.5–3 h before Mean Power Output; Peak Power Output exercise after 5–6 d, 2.5–3 h before peak power output | MAIN: MS SUB: DOSE, TIME | MS, MAIN 0.14 (0.349 −0.073) DOSE, SUB −0.17 (0.34 −0.38) DOSE, SUB 0.29 (0.59 0.01) DOSE, SUB 0.01 (0.35 −0.33) DOSE, SUB 0.2 (0.48 −0.05) TIME, SUB −0.02 (0.34 −0.38) TIME, SUB 0.29 (0.59 −0.01) TIME, SUB 0.05 (0.49 −0.39) TIME, SUB 0.16 (0.41 −0.08) | H |
(Tan et al., 2023) [67] | 6 | Adult male | Squats with free weights, smith machine, flywheel machine mode; bench press is available in free weights and smith machine methods. | N/A | MAIN: MS | MS, MAIN 0.204 (0.411 −0.004) | M |
(Wong et al., 2022) [68] | 24 | Active adults, recreational exercisers, and athletes | Time Trial (TT): Running, cycling, skiing, and rowing | TIME: 2–3 h before endurance exercise (exercise duration 30 min), endurance time exercise after 3–15 days (exercise duration 30 min); 2–3 h before endurance exercise (exercise duration 60 min), endurance time exercise after 3–15 days (exercise duration 60 min) | MAIN: TT SUB: TIME | TT, MAIN 0.15 (0.31 0) TT, MAIN 0.13 (0.47 −0.2) TIME, SUB 0.1 (0.28 −0.08) TIME, SUB 0.3 (0.59 0) TIME, SUB 0.03 (0.52 −0.46) TIME, SUB 0.22 (0.68 −0.23) | M |
(Wong et al., 2021) [69] | 17 | Healthy adults, athletes, and athletic/trained individuals. | High-intensity interval training (HIIT), Treadmill sprinting, Kayak sprinting, and Yo-Yo IR1 | TIME: 2–3 h before Average power output exercise, Average power output exercise after 3–6 d; 2–3 h before Peak Power Output, Peak Power Output exercise after 5–6 d | MAIN: MS, YY SUB: TIME | MS, MAIN 0.08 (0.3 −0.14) YY, MAIN 0.46 (0.77 0.14) TIME, SUB −0.18 (0.31 −0.66) TIME, SUB 0.04 (0.4 −0.31) TIME, SUB 0.05 (0.37 −0.26) TIME, SUB 0.11 (0.41 −0.2) | M |
(McMahon et al., 2017) [70] | 47 | Healthy human adolescents or adults. | Endurance Exercise Tests: Includes time trial (TT), Exhaustion Time Test (TTE), and Increasing Load Exercise Test (GXT). | N/A | MAIN: TT, TTE | TT, MAIN −0.1 (0.06 −0.27) TTE, MAIN 0.33 (0.5 0.15) VO2max, MAIN 0.25 (0.56 −0.06) | H |
(Hoon et al., 2013) [71] | 17 | Active adults. | Exhaustion test (GXT), constant load exercise to exhaustion test (TTE), endurance exercise time/distance (i.e., time trial [TT]), and one study used a repeat time trial design (6×500m time trial). Exercise programs include cycling, running, rowing, leg stretching, arm cranking, etc. | N/A | MAIN: TT, TTE, VO2max | TT, MAIN 0.11 (0.37 −0.16) TTE, MAIN 0.79 (1.35 0.23) VO2max, MAIN 0.26 (0.62 −0.1) | M |
(Gao et al., 2021) [72] | 73 | Healthy adults, and elite athletes. | Various endurance exercise forms, such as running, cycling, swimming, rowing, etc., the types of exercise tests include constant load exercise to exhaustion, increasing load exercise to exhaustion, time trial, etc. | N/A | MAIN: TT, TTE SUB: ATH, NON | TT, MAIN −0.08 (0.04 −0.21) TTE, MAIN 0.47 (0.64 0.3) ATH, SUB 0.05 (0.3 −0.2) NON, SUB 0.09 (0.56 −0.38) | M |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, C.; Jiang, Q.; Han, M.; Guo, L.; Huang, R.; Zhao, L.; Mao, S. Effects of Beetroot Juice on Physical Performance in Professional Athletes and Healthy Individuals: An Umbrella Review. Nutrients 2025, 17, 1958. https://doi.org/10.3390/nu17121958
Tian C, Jiang Q, Han M, Guo L, Huang R, Zhao L, Mao S. Effects of Beetroot Juice on Physical Performance in Professional Athletes and Healthy Individuals: An Umbrella Review. Nutrients. 2025; 17(12):1958. https://doi.org/10.3390/nu17121958
Chicago/Turabian StyleTian, Chen, Qingrui Jiang, Mengke Han, Lu Guo, Ruixin Huang, Li Zhao, and Shanshan Mao. 2025. "Effects of Beetroot Juice on Physical Performance in Professional Athletes and Healthy Individuals: An Umbrella Review" Nutrients 17, no. 12: 1958. https://doi.org/10.3390/nu17121958
APA StyleTian, C., Jiang, Q., Han, M., Guo, L., Huang, R., Zhao, L., & Mao, S. (2025). Effects of Beetroot Juice on Physical Performance in Professional Athletes and Healthy Individuals: An Umbrella Review. Nutrients, 17(12), 1958. https://doi.org/10.3390/nu17121958