Identification of Priority Nutrients in the US: Targeting Malnutrition to Address Diet-Related Disease Across the Lifespan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Summary
2.2. Identification of Demographic Groups (Step 1)
2.3. Selection of Health Priorities (Step 2)
2.4. Identification of Nutrients (Step 3)
2.4.1. Dietary Intake: Inadequate or Excess
2.4.2. Evidence for Revised Needs: Increased or Decreased
2.4.3. Health Priority Association: Beneficial or Adverse
2.5. Prioritization of Nutrients (Step 4)
2.6. Assessment of Required Intake to Address Diet-Related Disease (Step 5)
3. Results
3.1. Identification of Demographic Groups (Step 1)
3.2. Selection of Health Priorities (Step 2)
3.3. Identification of Nutrients (Step 3)
3.4. Prioritization of Nutrients (Step 4)
3.5. Assessment of Required Intake to Address Diet-Related Disease (Step 5)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Adequate Intake |
AUS | Australia |
CDC | Centers for Disease Control and Prevention |
CVD | cardiovascular disease |
DHA | docosahexaenoic acid |
EPA | eicosapentaenoic acid |
EAR | Estimated Average Requirement |
DRI | Dietary Reference Intake |
IU | International units |
NHANES | National Health and Nutrition Examination Survey |
NRV | Nutrient Reference Value |
NZ | New Zealand |
RCT | randomized controlled trial |
RDA | Recommended Dietary Allowance |
SDT | Suggested Dietary Target |
SLR | systematic literature review |
T2D | type 2 diabetes |
UL | Tolerable Upper Intake Level |
US | United States of America |
WWEIA | What We Eat in America |
References
- Mokdad, A.H.; Ballestros, K.; Echko, M.; Glenn, S.; Olsen, H.E.; Mullany, E.; Lee, A.; Khan, A.R.; Ahmadi, A.; Ferrari, A.J.; et al. The State of US Health, 1990–2016: Burden of Diseases, Injuries, and Risk Factors Among US States. JAMA 2018, 319, 1444–1472. [Google Scholar] [CrossRef] [PubMed]
- Chong, B.; Jayabaskaran, J.; Kong, G.; Chan, Y.H.; Chin, Y.H.; Goh, R.; Kannan, S.; Ng, C.H.; Loong, S.; Kueh, M.T.W.; et al. Trends and predictions of malnutrition and obesity in 204 countries and territories: An analysis of the Global Burden of Disease Study 2019. eClinicalMedicine 2023, 57, 101850. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [PubMed]
- Passarelli, S.; Free, C.M.; Shepon, A.; Beal, T.; Batis, C.; Golden, C.D. Global estimation of dietary micronutrient inadequacies: A modelling analysis. Lancet Glob. Health 2024, 12, e1590–e1599. [Google Scholar] [CrossRef]
- Reider, C.A.; Chung, R.Y.; Devarshi, P.P.; Grant, R.W.; Hazels Mitmesser, S. Inadequacy of Immune Health Nutrients: Intakes in US Adults, the 2005–2016 NHANES. Nutrients 2020, 12, 1735. [Google Scholar] [CrossRef]
- Drake, V. Micronutrient Inadequacies in the US Population: An Overview: Oregon State University. 2018. Available online: https://lpi.oregonstate.edu/mic/micronutrient-inadequacies/overview#micronutrient-deficiencies-inadequacies (accessed on 12 December 2022).
- Freedman, M.R.; Fulgoni, V.L.; Lieberman, H.R. Temporal changes in micronutrient intake among United States Adults, NHANES 2003 through 2018: A cross-sectional study. Am. J. Clin. Nutr. 2024, 119, 1309–1320. [Google Scholar] [CrossRef]
- Benavidez, G.; Zahnd, W.; Hung, P.; Eberth, J. Chronic Disease Prevalence in the US: Sociodemographic and Geographic Variations by Zip Code Tabulation Area. Prev. Chronic Dis. 2024, 21, 230267. [Google Scholar] [CrossRef]
- US Food and Drug Administration. FDA Is Working to Combat the Epidemic of Diet-Related Chronic Disease Through Our Nutrition Efforts. 2023. Available online: https://www.fda.gov/news-events/fda-voices/fda-working-combat-epidemic-diet-related-chronic-disease-through-our-nutrition-efforts (accessed on 6 June 2024).
- Abreu, R.; Oliveira, C.B.; Costa, J.A.; Brito, J.; Teixeira, V.H. Effects of dietary supplements on athletic performance in elite soccer players: A systematic review. J. Int. Soc. Sports Nutr. 2023, 20, 2236060. [Google Scholar] [CrossRef]
- Matthews, E.D.; Kurnat-Thoma, E.L. U.S. food policy to address diet-related chronic disease. Front. Public Health 2024, 12, 1339859. [Google Scholar] [CrossRef]
- Starck, C.S.; Cassettari, T.; Beckett, E.; Marshall, S.; Fayet-Moore, F. Priority nutrients to address malnutrition and diet-related diseases in Australia and New Zealand. Front. Nutr. 2024, 11, 1370550. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, M.; Zhou, L.; Ling, S.; Li, Y.; Kong, B.; Huang, P. Dietary fiber intake and risks of proximal and distal colon cancers: A meta-analysis. Medicine 2018, 97, e11678. [Google Scholar] [CrossRef] [PubMed]
- Farvid, M.S.; Spence, N.D.; Holmes, M.D.; Barnett, J.B. Fiber consumption and breast cancer incidence: A systematic review and meta-analysis of prospective studies. Cancer 2020, 126, 3061–3075. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Zhang, G.; Qian, S.; Zhang, Q.; Tan, M. Associations between dietary fiber intake and cardiovascular risk factors: An umbrella review of meta-analyses of randomized controlled trials. Front. Nutr. 2022, 9, 972399. [Google Scholar] [CrossRef] [PubMed]
- Cormick, G.; Betran, A.P.; Romero, I.B.; Cormick, M.S.; Belizán, J.M.; Bardach, A.; Ciapponi, A. Effect of Calcium Fortified Foods on Health Outcomes: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 316. [Google Scholar] [CrossRef]
- Wu, J.; Xu, L.; Lv, Y.; Dong, L.; Zheng, Q.; Li, L. Quantitative analysis of efficacy and associated factors of calcium intake on bone mineral density in postmenopausal women. Osteoporos. Int. 2017, 28, 2003–2010. [Google Scholar] [CrossRef]
- Al Khalifah, R.; Alsheikh, R.; Alnasser, Y.; Alsheikh, R.; Alhelali, N.; Naji, A.; Al Backer, N. The impact of vitamin D food fortification and health outcomes in children: A systematic review and meta-regression. Syst. Rev. 2020, 9, 144. [Google Scholar] [CrossRef]
- Song, D.; Deng, Y.; Liu, K.; Zhou, L.; Li, N.; Zheng, Y.; Hao, Q.; Yang, S.; Wu, Y.; Zhai, Z.; et al. Vitamin D intake, blood vitamin D levels, and the risk of breast cancer: A dose-response meta-analysis of observational studies. Aging 2019, 11, 12708–12732. [Google Scholar] [CrossRef]
- Jamilian, H.; Amirani, E.; Milajerdi, A.; Kolahdooz, F.; Mirzaei, H.; Zaroudi, M.; Ghaderi, A.; Asemi, Z. The effects of vitamin D supplementation on mental health, and biomarkers of inflammation and oxidative stress in patients with psychiatric disorders: A systematic review and meta-analysis of randomized controlled trials. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 94, 109651. [Google Scholar] [CrossRef]
- Qi, K.J.; Zhao, Z.T.; Zhang, W.; Yang, F. The impacts of vitamin D supplementation in adults with metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Front. Pharmacol. 2022, 13, 1033026. [Google Scholar] [CrossRef]
- Elango, R.; Humayun, M.A.; Ball, R.O.; Pencharz, P.B. Evidence that protein requirements have been significantly underestimated. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 52–57. [Google Scholar] [CrossRef]
- Humayun, M.A.; Elango, R.; Ball, R.O.; Pencharz, P.B. Reevaluation of the protein requirement in young men with the indicator amino acid oxidation technique. Am. J. Clin. Nutr. 2007, 86, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Weiler, M.; Hertzler, S.R.; Dvoretskiy, S. Is It Time to Reconsider the U.S. Recommendations for Dietary Protein and Amino Acid Intake? Nutrients 2023, 15, 838. [Google Scholar] [CrossRef] [PubMed]
- National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes; National Health and Medical Research Council: Canberra, Australia, 2005.
- National Academies Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies: Washington, DC, USA, 2006. [Google Scholar]
- USDA Agricultual Research Service. Usual Nutrient Intake from Food and Beverages by Gender and Age, What We Eat in America, NHANES 2017-March 2020 Prepandemic; United States Department of Agriculture: Washington, DC, USA, 2023.
- USDA Agricultual Research Service. WWEIA Data Tables; USDA Agricultural Research Service: Beltsville, MD, USA, 2022.
- US Department of Agriculture and US Department of Health and Human Services. Dietary Guidelines for Americans 2020–2025, 9th ed.; USDA: Washington, DC, USA, 2020.
- Centers for Disease Control and Prevention. Vital Signs, Pregnancy-Related Deaths. 2019. Available online: https://www.cdc.gov/maternal-mortality/php/data-research/ (accessed on 12 January 2023).
- Centers for Disease Control and Prevention. National Center for Health Statistics, FastStats. 2020. Available online: https://www.cdc.gov/nchs/fastats/default.htm (accessed on 12 January 2023).
- US Department of Health and Human Services and Office of Disease Prevention and Health Promotion. Healthy People 2030, Populations: US Government. 2022. Available online: https://health.gov/healthypeople/objectives-and-data/browse-objectives#populations (accessed on 12 January 2023).
- Miller, G.F.; Coffield, E.; Leroy, Z.; Wallin, R. Prevalence and Costs of Five Chronic Conditions in Children. J. Sch. Nurs. 2016, 32, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Newacheck, P.W.; McManus, M.A.; Fox, H.B. Prevalence and Impact of Chronic Illness Among Adolescents. Am. J. Dis. Child. 1991, 145, 1367–1373. [Google Scholar] [CrossRef]
- US Preventive Services Task Force. Hormone Therapy for the Prevention of Chronic Conditions in Postmenopausal Women: Recommendation Statement. Am. Fam. Physician 2005, 72, 311–316. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D; Institute of Medicine: Washington, DC, USA, 2011. [Google Scholar]
- National Academies of Science Engineering and Medicine. Dietary Reference Intakes for Sodium and Potassium; National Academies of Science Engineering and Medicine: Washington, DC, USA, 2019. [Google Scholar]
- Gerald, J.; Dorothy, R.; Global Dietary Database. Friedman School of Nutrition Science and Policy at Tufts University. 2024. Available online: https://globaldietarydatabase.org/ (accessed on 6 June 2024).
- OCEBM Levels of Evidence Working Group. The Oxford Levels of Evidence 2. Available online: https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence (accessed on 28 May 2025).
- Breehl, L.; Caban, O. Physiology, Puberty; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- USDA Agricultual Research Service. Dietary Fiber (g): Usual Nutrient Intakes from Food and Water, 2003–2006, Compared to Adequate Intakes. 2006. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/usual/usual_nutrient_intake_dietary_fiber_2003-06.pdf (accessed on 12 January 2023).
- USDA Agricultual Research Service. What We Eat in America, NHANES 2005–2006. Usual Nutrient Intakes from Food and Water Compared to 1997 Dietary Reference Intakes for Vitamin D, Calcium, Phosphorus, and Magnesium; US Department of Agriculture: Washington, DC, USA, 2009. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/usual/usual_nutrient_intake_vitD_ca_phos_mg_2005-06.pdf (accessed on 12 January 2023).
- Bailey, R.L.; Pac, S.G.; Fulgoni, V.L., III; Reidy, K.C.; Catalano, P.M. Estimation of Total Usual Dietary Intakes of Pregnant Women in the United States. JAMA Netw. Open 2019, 2, e195967. [Google Scholar] [CrossRef]
- Higgins, K.A.; Bi, X.; Davis, B.J.; Barraj, L.M.; Scrafford, C.G.; Murphy, M.M. Adequacy of total usual micronutrient intakes among pregnant women in the United States by level of dairy consumption, NHANES 2003–2016. Nutr. Health 2022, 28, 621–631. [Google Scholar] [CrossRef]
- Pratt, N.; Durham, H.; Sherry, C. Nutrient Intakes from Food of Lactating Women Do Not Meet Many Dietary Recommendations Important for Infant Development and Maternal Health. Food Nutr. Sci. 2014, 5, 1644–1651. [Google Scholar] [CrossRef]
- Sun, H.; Weaver, C.M. Iodine Intake Trends in United States Girls and Women between 2011 and 2020. J. Nutr. 2024, 154, 928–939. [Google Scholar] [CrossRef]
- Zhang, Z.; Fulgoni, V.L.; Kris-Etherton, P.M.; Mitmesser, S.H. Dietary Intakes of EPA and DHA Omega-3 Fatty Acids among US Childbearing-Age and Pregnant Women: An Analysis of NHANES 2001–2014. Nutrients 2018, 10, 416. [Google Scholar] [CrossRef]
- Li, N.; Jiang, J.; Guo, L. Effects of maternal folate and vitamin B12 on gestational diabetes mellitus: A dose-response meta-analysis of observational studies. Eur. J. Clin. Nutr. 2022, 76, 1502–1512. [Google Scholar] [CrossRef] [PubMed]
- Prades, N.; Varela, E.; Flamarique, I.; Deulofeu, R.; Baeza, I. Water-soluble vitamin insufficiency, deficiency and supplementation in children and adolescents with a psychiatric disorder: A systematic review and meta-analysis. Nutr. Neurosci. 2023, 26, 85–107. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Liu, M.; Yang, D.; Zhang, Y.; An, F. Efficacy and Safety of Omega-3 Fatty Acids in the Prevention of Cardiovascular Disease: A Systematic Review and Meta-analysis. Cardiovasc. Drugs Ther. 2024, 38, 799–817. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; He, R.; Zheng, X. Effect of vitamin D, calcium, or combined supplementation on fall prevention: A systematic review and updated network meta-analysis. BMC Geriatr. 2024, 24, 390. [Google Scholar] [CrossRef]
- de Souza, M.M.; Moraes Dantas, R.L.; Leão Durães, V.; Defante, M.L.R.; Mendes, T.B. Vitamin D Supplementation and the Incidence of Fractures in the Elderly Healthy Population: A Meta-analysis of Randomized Controlled Trials. J. Gen. Intern. Med. 2024, 39, 2829–2836. [Google Scholar] [CrossRef]
- Nguyen, N.T.K.; Fan, H.Y.; Tsai, M.C.; Tung, T.H.; Huynh, Q.T.V.; Huang, S.Y.; Chen, Y.C. Nutrient Intake through Childhood and Early Menarche Onset in Girls: Systematic Review and Meta-Analysis. Nutrients 2020, 12, 2544. [Google Scholar] [CrossRef]
- Zhao, H.; Mei, K.; Hu, Q.; Wu, Y.; Xu, Y.; Yu, P.; Deng, Y.; Zhu, W.; Yan, Z.; Liu, X.; et al. Circulating copper levels and the risk of cardio-cerebrovascular diseases and cardiovascular and all-cause mortality: A systematic review and meta-analysis of longitudinal studies. Env. Pollut. 2024, 340, 122711. [Google Scholar] [CrossRef]
- Mirrafiei, A.; Jayedi, A.; Shab-Bidar, S. Total and different dietary fiber subtypes and the risk of all-cause, cardiovascular, and cancer mortality: A dose-response meta-analysis of prospective cohort studies. Food Funct. 2023, 14, 10667–10680. [Google Scholar] [CrossRef]
- Kim, Y.; Je, Y. Dietary fibre intake and mortality from cardiovascular disease and all cancers: A meta-analysis of prospective cohort studies. Arch. Cardiovasc. Dis. 2016, 109, 39–54. [Google Scholar] [CrossRef]
- Winzenberg, T.; Powell, S.; Shaw, K.A.; Jones, G. Effects of vitamin D supplementation on bone density in healthy children: Systematic review and meta-analysis. BMJ 2011, 342, c7254. [Google Scholar] [CrossRef]
- Winzenberg, T.M.; Powell, S.; Shaw, K.A.; Jones, G. Vitamin D supplementation for improving bone mineral density in children. Cochrane Database Syst. Rev. 2010, 10, Cd006944. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Fuleihan, G.E.; Cai, G.; Lamberg-Allardt, C.; Viljakainen, H.T.; Rahme, M.; Grønborg, I.M.; Andersen, R.; Khadilkar, A.; Zulf, M.M.; et al. Vitamin D supplementation for improving bone density in vitamin D-deficient children and adolescents: Systematic review and individual participant data meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2023, 118, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Xu, Y.; Zhang, X.; Zhang, L.; Wu, Y.; Wang, X.; Zhu, C. The effect of vitamin D supplementation in treatment of children with autism spectrum disorder: A systematic review and meta-analysis of randomized controlled trials. Nutr. Neurosci. 2022, 25, 835–845. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhou, Q.; Zhang, G.; Tian, X.; Li, Y.; Wang, Z.; Zhao, Y.; Chen, Y.; Luo, Z. Vitamin D Supplementation and Allergic Diseases during Childhood: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 3947. [Google Scholar] [CrossRef]
- Shah, V.P.; Nayfeh, T.; Alsawaf, Y.; Saadi, S.; Farah, M.; Zhu, Y.; Firwana, M.; Seisa, M.; Wang, Z.; Scragg, R.; et al. A Systematic Review Supporting the Endocrine Society Clinical Practice Guidelines on Vitamin D. J. Clin. Endocrinol. Metab. 2024, 109, 1961–1974. [Google Scholar] [CrossRef]
- Gou, H.; Wang, Y.; Liu, Y.; Peng, C.; He, W.; Sun, X. Efficacy of vitamin D supplementation on child and adolescent overweight/obesity: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Pediatr. 2023, 182, 255–264. [Google Scholar] [CrossRef]
- Soltani, S.; Beigrezaei, S.; Abdollahi, S.; Clark, C.C.T.; Ashoori, M. Oral vitamin D supplementation and body weight in children and adolescents: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Pediatr. 2023, 182, 1977–1989. [Google Scholar] [CrossRef]
- Głąbska, D.; Kołota, A.; Lachowicz, K.; Skolmowska, D.; Stachoń, M.; Guzek, D. Vitamin D Supplementation and Mental Health in Inflammatory Bowel Diseases and Irritable Bowel Syndrome Patients: A Systematic Review. Nutrients 2021, 13, 3662. [Google Scholar] [CrossRef]
- Chen, Z.; Peng, C.; Mei, J.; Zhu, L.; Kong, H. Vitamin D can safely reduce asthma exacerbations among corticosteroid-using children and adults with asthma: A systematic review and meta-analysis of randomized controlled trials. Nutr. Res. 2021, 92, 49–61. [Google Scholar] [CrossRef]
- Liu, M.; Wang, J.; Sun, X. A Meta-Analysis on Vitamin D Supplementation and Asthma Treatment. Front. Nutr. 2022, 9, 860628. [Google Scholar] [CrossRef]
- Guo, X.F.; Zhao, T.; Han, J.M.; Li, S.; Li, D. Vitamin D and liver cancer risk: A meta-analysis of prospective studies. Asia Pac. J. Clin. Nutr. 2020, 29, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Lu, H.; Cheng, Y. To identify the association between dietary vitamin D intake and serum levels and risk or prognostic factors for melanoma-systematic review and meta-analysis. BMJ Open 2022, 12, e052442. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yang, N.; Yuan, M. Dietary and circulating vitamin D and risk of renal cell carcinoma: A meta-analysis of observational studies. Int. Braz. J. Urol. 2021, 47, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Winzenberg, T.; Shaw, K.; Fryer, J.; Jones, G. Effects of calcium supplementation on bone density in healthy children: Meta-analysis of randomised controlled trials. BMJ 2006, 333, 775. [Google Scholar] [CrossRef]
- Nielsen, F.H. The Problematic Use of Dietary Reference Intakes to Assess Magnesium Status and Clinical Importance. Biol. Trace Elem. Res. 2019, 188, 52–59. [Google Scholar] [CrossRef]
- Armah, S.M. Fractional zinc absorption for men, women, and adolescents is overestimated in the current dietary reference intakes. J. Nutr. 2016, 146, 1276–1280. [Google Scholar] [CrossRef]
- Meli, A.M.; Ali, A.; Mhd Jalil, A.M.; Mohd Yusof, H.; Tan, M.M.C. Effects of Physical Activity and Micronutrients on Cognitive Performance in Children Aged 6 to 11 Years: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicina 2021, 58, 57. [Google Scholar] [CrossRef]
- Tsang, B.L.; Holsted, E.; McDonald, C.M.; Brown, K.H.; Black, R.; Mbuya, M.N.N.; Grant, F.; Rowe, L.A.; Manger, M.S. Effects of Foods Fortified with Zinc, Alone or Cofortified with Multiple Micronutrients, on Health and Functional Outcomes: A Systematic Review and Meta-Analysis. Adv. Nutr. 2021, 12, 1821–1837. [Google Scholar] [CrossRef]
- McRae, M.P. Dietary Fiber Intake and Type 2 Diabetes Mellitus: An Umbrella Review of Meta-analyses. J. Chiropr. Med. 2018, 17, 44–53. [Google Scholar] [CrossRef]
- Reynolds, A.N.; Akerman, A.P.; Mann, J. Dietary fibre and whole grains in diabetes management: Systematic review and meta-analyses. PLoS Med. 2020, 17, e1003053. [Google Scholar] [CrossRef]
- Ramezani, F.; Pourghazi, F.; Eslami, M.; Gholami, M.; Mohammadian Khonsari, N.; Ejtahed, H.S.; Larijani, B.; Qorbani, M. Dietary fiber intake and all-cause and cause-specific mortality: An updated systematic review and meta-analysis of prospective cohort studies. Clin. Nutr. 2024, 43, 65–83. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Solmi, M.; Caruso, M.G.; Giannelli, G.; Osella, A.R.; Evangelou, E.; Maggi, S.; Fontana, L.; Stubbs, B.; Tzoulaki, I. Dietary fiber and health outcomes: An umbrella review of systematic reviews and meta-analyses. Am. J. Clin. Nutr. 2018, 107, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Watling, C.Z.; Wojt, A.; Florio, A.A.; Butera, G.; Albanes, D.; Weinstein, S.J.; Huang, W.Y.; Parisi, D.; Zhang, X.; Graubard, B.I.; et al. Fiber and whole grain intakes in relation to liver cancer risk: An analysis in 2 prospective cohorts and systematic review and meta-analysis of prospective studies. Hepatology 2024, 80, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Li, D.B.; Hao, Q.Q.; Hu, H.L. The relationship between dietary fibre and stroke: A meta-analysis. J. Stroke Cerebrovasc. Dis. 2023, 32, 107144. [Google Scholar] [CrossRef]
- Hujoel, P.P.; Hujoel, M.L.A. Vitamin C and scar strength: Analysis of a historical trial and implications for collagen-related pathologies. Am. J. Clin. Nutr. 2022, 115, 8–17. [Google Scholar] [CrossRef]
- Levine, M.; Conry-Cantilena, C.; Wang, Y.; Welch, R.W.; Washko, P.W.; Dhariwal, K.R.; Park, J.B.; Lazarev, A.; Graumlich, J.F.; King, J.; et al. Vitamin C pharmacokinetics in healthy volunteers: Evidence for a recommended dietary allowance. Proc. Natl. Acad. Sci. USA 1996, 93, 3704–3709. [Google Scholar] [CrossRef]
- Yosaee, S.; Keshtkaran, Z.; Abdollahi, S.; Shidfar, F.; Sarris, J.; Soltani, S. The effect of vitamin C supplementation on mood status in adults: A systematic review and meta-analysis of randomized controlled clinical trials. Gen. Hosp. Psychiatry 2021, 71, 36–42. [Google Scholar] [CrossRef]
- Ashor, A.W.; Siervo, M.; Lara, J.; Oggioni, C.; Afshar, S.; Mathers, J.C. Effect of vitamin C and vitamin E supplementation on endothelial function: A systematic review and meta-analysis of randomised controlled trials. Br. J. Nutr. 2015, 113, 1182–1194. [Google Scholar] [CrossRef]
- Jayedi, A.; Rashidy-Pour, A.; Parohan, M.; Zargar, M.S.; Shab-Bidar, S. Dietary and circulating vitamin C, vitamin E, β-carotene and risk of total cardiovascular mortality: A systematic review and dose-response meta-analysis of prospective observational studies. Public Health Nutr. 2019, 22, 1872–1887. [Google Scholar] [CrossRef]
- Guzek, D.; Kołota, A.; Lachowicz, K.; Skolmowska, D.; Stachoń, M.; Głąbska, D. Influence of Vitamin D Supplementation on Mental Health in Diabetic Patients: A Systematic Review. Nutrients 2021, 13, 3678. [Google Scholar] [CrossRef]
- Guzek, D.; Kołota, A.; Lachowicz, K.; Skolmowska, D.; Stachoń, M.; Głąbska, D. Effect of Vitamin D Supplementation on Depression in Adults: A Systematic Review of Randomized Controlled Trials (RCTs). Nutrients 2023, 15, 951. [Google Scholar] [CrossRef] [PubMed]
- Mikola, T.; Marx, W.; Lane, M.M.; Hockey, M.; Loughman, A.; Rajapolvi, S.; Rocks, T.; O’Neil, A.; Mischoulon, D.; Valkonen-Korhonen, M.; et al. The effect of vitamin D supplementation on depressive symptoms in adults: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2023, 63, 11784–11801. [Google Scholar] [CrossRef] [PubMed]
- Srifuengfung, M.; Srifuengfung, S.; Pummangura, C.; Pattanaseri, K.; Oon-Arom, A.; Srisurapanont, M. Efficacy and acceptability of vitamin D supplements for depressed patients: A systematic review and meta-analysis of randomized controlled trials. Nutrition 2023, 108, 111968. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xu, F.; Xia, X.; Xiong, A.; Dai, D.; Ling, Y.; Sun, R.; Qiu, L.; Ding, Y.; Xie, Z. The effect of vitamin D supplementation on primary depression: A meta-analysis. J. Affect. Disord. 2024, 344, 653–661. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Veronese, N.; Marrone, E.; Di Palermo, C.; Iommi, C.; Ruggirello, R.; Caffarelli, C.; Gonnelli, S.; Barbagallo, M. Vitamin D and Risk of Incident Type 2 Diabetes in Older Adults: An Updated Systematic Review and Meta-Analysis. Nutrients 2024, 16, 1561. [Google Scholar] [CrossRef]
- Musazadeh, V.; Zarezadeh, M.; Ghalichi, F.; Kalajahi, F.H.; Ghoreishi, Z. Vitamin D supplementation positively affects anthropometric indices: Evidence obtained from an umbrella meta-analysis. Front. Nutr. 2022, 9, 980749. [Google Scholar] [CrossRef]
- Arayici, M.E.; Basbinar, Y.; Ellidokuz, H. Vitamin D Intake, Serum 25-Hydroxyvitamin-D (25(OH)D) Levels, and Cancer Risk: A Comprehensive Meta-Meta-Analysis Including Meta-Analyses of Randomized Controlled Trials and Observational Epidemiological Studies. Nutrients 2023, 15, 2722. [Google Scholar] [CrossRef]
- Ismail, N.H.; Mussa, A.; Al-Khreisat, M.J.; Mohamed Yusoff, S.; Husin, A.; Johan, M.F.; Islam, M.A. The Global Prevalence of Vitamin D Deficiency and Insufficiency in Patients with Multiple Myeloma: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 3227. [Google Scholar] [CrossRef]
- Jung, S.; Jin, S.; Je, Y. Vitamin D Intake, Blood 25-Hydroxyvitamin D, and Risk of Ovarian Cancer: A Meta-Analysis of Observational Studies. J. Womens Health 2023, 32, 561–573. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Kim, S.; Lee, B.; Jeong, G.; Lee, D.H.; Keum, N.; Manson, J.E.; Giovannucci, E.L. Post-Diagnosis Vitamin D Supplement Use and Survival among Cancer Patients: A Meta-Analysis. Nutrients 2022, 14, 3418. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, L.; Wang, D.; Yan, N.; Li, C.; Wu, M.; Wang, F.; Mi, B.; Chen, F.; Jia, W.; et al. Omega-3 polyunsaturated fatty acid biomarkers and risk of type 2 diabetes, cardiovascular disease, cancer, and mortality. Clin. Nutr. 2022, 41, 1798–1807. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, A.S.; Brown, T.J.; Brainard, J.S.; Biswas, P.; Thorpe, G.C.; Moore, H.J.; Deane, K.H.; Summerbell, C.D.; Worthington, H.V.; Song, F.; et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2020, 3, Cd003177. [Google Scholar] [CrossRef] [PubMed]
- Bernasconi, A.A.; Wiest, M.M.; Lavie, C.J.; Milani, R.V.; Laukkanen, J.A. Effect of Omega-3 Dosage on Cardiovascular Outcomes: An Updated Meta-Analysis and Meta-Regression of Interventional Trials. Mayo Clin. Proc. 2021, 96, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.U.; Khan, M.U.; Riaz, H.; Valavoor, S.; Zhao, D.; Vaughan, L.; Okunrintemi, V.; Riaz, I.B.; Khan, M.S.; Kaluski, E.; et al. Effects of Nutritional Supplements and Dietary Interventions on Cardiovascular Outcomes: An Umbrella Review and Evidence Map. Ann. Intern. Med. 2019, 171, 190–198. [Google Scholar] [CrossRef]
- Marston, N.A.; Giugliano, R.P.; Im, K.; Silverman, M.G.; O’Donoghue, M.L.; Wiviott, S.D.; Ference, B.A.; Sabatine, M.S. Association Between Triglyceride Lowering and Reduction of Cardiovascular Risk Across Multiple Lipid-Lowering Therapeutic Classes: A Systematic Review and Meta-Regression Analysis of Randomized Controlled Trials. Circulation 2019, 140, 1308–1317. [Google Scholar] [CrossRef]
- Sohouli, M.H.; Roshan, M.M.; Olusola, O.F.; Fatahi, S.; Omidi, H.R.; Sharifi, P.; Hekmatdoost, A.; Kutbi, E.; Abu-Zaid, A. Impact of Omega-3 supplementation on homocysteine levels in humans: A systematic review and meta-regression analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 2013–2025. [Google Scholar] [CrossRef]
- Xu, Q.; Du, L.; Gu, H.; Ji, M.; Zhan, L. The effect of omega-3 polyunsaturated fatty acids on stroke treatment and prevention: A systematic review and meta-analysis. Nutr. Hosp. 2022, 39, 924–935. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Kuno, T.; Morita, S.X.; Slipczuk, L.; Takagi, H.; Briasoulis, A.; Latib, A.; Bangalore, S.; Heffron, S.P. Eicosapentaenoic Acid for Cardiovascular Events Reduction- Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. J. Cardiol. 2022, 80, 416–422. [Google Scholar] [CrossRef]
- Yu, F.; Qi, S.; Ji, Y.; Wang, X.; Fang, S.; Cao, R. Effects of omega-3 fatty acid on major cardiovascular outcomes: A systematic review and meta-analysis. Medicine 2022, 101, e29556. [Google Scholar] [CrossRef]
- Luo, S.; Hou, H.; Wang, Y.; Li, Y.; Zhang, L.; Zhang, H.; Jin, Q.; Wu, G.; Wang, X. Effects of omega-3, omega-6, and total dietary polyunsaturated fatty acid supplementation in patients with atherosclerotic cardiovascular disease: A systematic review and meta-analysis. Food Funct. 2024, 15, 1208–1222. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, X.; Zhou, N.; Shen, Y.; Li, B.; Chen, B.E.; Li, X. Association Between Omega-3 Fatty Acid Intake and Dyslipidemia: A Continuous Dose-Response Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2023, 12, e029512. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Xu, H.; Xia, J.; Lu, Y.; Xu, D.; Sun, J.; Wang, Y.; Liao, W.; Sun, G. Effect of Alpha-Linolenic Acid Supplementation on Cardiovascular Disease Risk Profile in Individuals with Obesity or Overweight: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2023, 14, 1644–1655. [Google Scholar] [CrossRef]
- Arabi, S.M.; Bahari, H.; Chambari, M.; Bahrami, L.S.; Mohaildeen Gubari, M.I.; Watts, G.F.; Sahebkar, A. Omega-3 fatty acids and endothelial function: A GRADE-assessed systematic review and meta-analysis. Eur. J. Clin. Investig. 2024, 54, e14109. [Google Scholar] [CrossRef]
- Lee, Y.S.; Park, J.W.; Joo, M.; Moon, S.; Kim, K.; Kim, M.G. Effects of Omega-3 Fatty Acids on Flow-mediated Dilatation and Carotid Intima Media Thickness: A Meta-analysis. Curr. Atheroscler. Rep. 2023, 25, 629–641. [Google Scholar] [CrossRef] [PubMed]
- Emami, M.R.; Safabakhsh, M.; Alizadeh, S.; Asbaghi, O.; Khosroshahi, M.Z. Effect of vitamin E supplementation on blood pressure: A systematic review and meta-analysis. J. Hum. Hypertens. 2019, 33, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.; Liu, L.; Jian, Z.; Ma, Y.; Li, H.; Jin, X.; Liao, B.; Wang, K. Vitamin E and Multiple Health Outcomes: An Umbrella Review of Meta-Analyses. Nutrients 2023, 15, 3301. [Google Scholar] [CrossRef]
- Fu, J.; Sun, J.; Zhang, C. Vitamin D supplementation and risk of stroke: A meta-analysis of randomized controlled trials. Front. Neurol. 2022, 13, 970111. [Google Scholar] [CrossRef]
- Pei, Y.Y.; Zhang, Y.; Peng, X.C.; Liu, Z.R.; Xu, P.; Fang, F. Association of Vitamin D Supplementation with Cardiovascular Events: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 3158. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, P.; Jie, Y.; Sun, Y.; Wang, X.; Fan, Y. Predictive value of 25-hydroxyvitamin D level in patients with coronary artery disease: A meta-analysis. Front. Nutr. 2022, 9, 984487. [Google Scholar] [CrossRef]
- Mattumpuram, J.; Maniya, M.T.; Faruqui, S.K.; Ahmed, A.; Jaiswal, V.; Harshakumar, S.P. Cardiovascular and Cerebrovascular Outcomes with Vitamin D Supplementation: A Systematic Review and Meta-Analysis. Curr. Probl. Cardiol. 2024, 49 Pt C, 102119. [Google Scholar] [CrossRef]
- Qi, S.; Luo, X.; Liu, S.; Ling, B.; Si, M.; Jin, H. Effect of vitamin B(2), vitamin C, vitamin D, vitamin E and folic acid in adults with essential hypertension: A systematic review and network meta-analysis. BMJ Open 2024, 14, e074511. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, M.A.; Darvishzadehdaledari, S.; Alizadeh, Z.; Moradi, G.; Gholami, F.; Mahmoudian, A. Vitamin D Supplementation and Cardiovascular Disease Risks in More Than 134000 Individuals in 29 Randomized Clinical Trials and 157000 Individuals in 30 Prospective Cohort Studies: An Updated Systematic Review and Meta-analysis. J. Res. Health Sci. 2023, 23, e00594. [Google Scholar] [CrossRef] [PubMed]
- Serra, M.O.; de Macedo, L.R.; Silva, M.; Lautner, R.Q. Effect of Vitamin D supplementation on blood pressure in hypertensive individuals with hypovitaminosis D: A systematic review and meta-analysis. J. Hypertens. 2024, 42, 594–604. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zhao, C.; Li, J.; Li, Y. A systematic review and meta-analysis of the linkage between low vitamin D and the risk as well as the prognosis of stroke. Brain Behav. 2024, 14, e3577. [Google Scholar] [CrossRef]
- Iliuta, F.; Pijoan, J.I.; Lainz, L.; Exposito, A.; Matorras, R. Women’s vitamin D levels and IVF results: A systematic review of the literature and meta-analysis, considering three categories of vitamin status (replete, insufficient and deficient). Hum. Fertil. 2022, 25, 228–246. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, J.; Wan, Q.; Huang, J.; Han, T.; Qu, T.; Yu, L.L. Influence of Vitamin D supplementation on reproductive outcomes of infertile patients: A systematic review and meta-analysis. Reprod. Biol. Endocrinol. 2023, 21, 17. [Google Scholar] [CrossRef]
- Moridi, I.; Chen, A.; Tal, O.; Tal, R. The Association between Vitamin D and Anti-Müllerian Hormone: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1567. [Google Scholar] [CrossRef]
- Altaf, R.; Gonzalez, I.; Rubino, K.; Nemec, E.C., II. Folate as adjunct therapy to SSRI/SNRI for major depressive disorder: Systematic review & meta-analysis. Complement. Ther. Med. 2021, 61, 102770. [Google Scholar] [CrossRef]
- Lam, N.S.K.; Long, X.X.; Li, X.; Saad, M.; Lim, F.; Doery, J.C.; Griffin, R.C.; Galletly, C. The potential use of folate and its derivatives in treating psychiatric disorders: A systematic review. Biomed. Pharmacother. 2022, 146, 112541. [Google Scholar] [CrossRef]
- Aydoğdu, G.S.; Akyakar, B.; Kalaycı, Z.; Uçar, A.; Gezmen-Karadağ, M. Folic Acid as a Potential Vitamin in Glycemic Control: A Systematic Review. Curr. Nutr. Rep. 2024, 13, 729–750. [Google Scholar] [CrossRef]
- Lei, J.; Ren, F.; Li, W.; Guo, X.; Liu, Q.; Gao, H.; Pang, Y.; He, Y.; Guo, J.; Zeng, J. Use of folic acid supplementation to halt and even reverse the progression of gastric precancerous conditions: A meta-analysis. BMC Gastroenterol. 2022, 22, 370. [Google Scholar] [CrossRef] [PubMed]
- Moazzen, S.; Dolatkhah, R.; Tabrizi, J.S.; Shaarbafi, J.; Alizadeh, B.Z.; de Bock, G.H.; Dastgiri, S. Folic acid intake and folate status and colorectal cancer risk: A systematic review and meta-analysis. Clin. Nutr. 2018, 37, 1926–1934. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Xu, P.; Zhang, D.; Liu, K.; Song, D.; Zheng, Y.; Yang, S.; Li, N.; Hao, Q.; Wu, Y.; et al. Association of folate intake and plasma folate level with the risk of breast cancer: A dose-response meta-analysis of observational studies. Aging 2020, 12, 21355–21375. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Guo, Y.; Chen, Y.; Lin, Y.; Lu, Y.; Guo, Q. The effect of B-vitamins on the prevention and treatment of cardiovascular diseases: A systematic review and meta-analysis. Nutr. Rev. 2024, 82, 1386–1401. [Google Scholar] [CrossRef]
- Ribamar, A.; Almeida, B.; Soares, A.; Peniche, B.; Jesus, P.; Cruz, S.P.D.; Ramalho, A. Relationship between vitamin D deficiency and both gestational and postpartum depression. Nutr. Hosp. 2020, 37, 1238–1245. [Google Scholar] [CrossRef]
- Tan, Q.; Liu, S.; Chen, D. Poor vitamin D status and the risk of maternal depression: A dose-response meta-analysis of observational studies. Public Health Nutr. 2021, 24, 2161–2170. [Google Scholar] [CrossRef]
- Chan, K.Y.; Wong, M.M.H.; Pang, S.S.H.; Lo, K.K.H. Dietary supplementation for gestational diabetes prevention and management: A meta-analysis of randomized controlled trials. Arch. Gynecol. Obs. 2021, 303, 1381–1391. [Google Scholar] [CrossRef]
- Chien, M.C.; Huang, C.Y.; Wang, J.H.; Shih, C.L.; Wu, P. Effects of vitamin D in pregnancy on maternal and offspring health-related outcomes: An umbrella review of systematic review and meta-analyses. Nutr. Diabetes 2024, 14, 35. [Google Scholar] [CrossRef]
- Gallo, S.; McDermid, J.M.; Al-Nimr, R.I.; Hakeem, R.; Moreschi, J.M.; Pari-Keener, M.; Stahnke, B.; Papoutsakis, C.; Handu, D.; Cheng, F.W. Vitamin D Supplementation during Pregnancy: An Evidence Analysis Center Systematic Review and Meta-Analysis. J. Acad. Nutr. Diet. 2020, 120, 898–924.e894. [Google Scholar] [CrossRef]
- Irwinda, R.; Hiksas, R.; Lokeswara, A.W.; Wibowo, N. Vitamin D supplementation higher than 2000 IU/day compared to lower dose on maternal-fetal outcome: Systematic review and meta-analysis. Womens Health 2022, 18, 17455057221111066. [Google Scholar] [CrossRef]
- Palacios, C.; Kostiuk, L.L.; Cuthbert, A.; Weeks, J. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2024, 7, Cd008873. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Chen, Z.; Hu, Y.; Wang, Y.; Wu, Y.; Lian, F.; Li, H.; Yang, J.; Xu, X. The effects of vitamin D supplementation on glycemic control and maternal-neonatal outcomes in women with established gestational diabetes mellitus: A systematic review and meta-analysis. Clin. Nutr. 2021, 40, 3148–3157. [Google Scholar] [CrossRef] [PubMed]
- Fogacci, S.; Fogacci, F.; Banach, M.; Michos, E.D.; Hernandez, A.V.; Lip, G.Y.H.; Blaha, M.J.; Toth, P.P.; Borghi, C.; Cicero, A.F.G. Vitamin D supplementation and incident preeclampsia: A systematic review and meta-analysis of randomized clinical trials. Clin. Nutr. 2020, 39, 1742–1752. [Google Scholar] [CrossRef] [PubMed]
- Gunabalasingam, S.; De Almeida Lima Slizys, D.; Quotah, O.; Magee, L.; White, S.L.; Rigutto-Farebrother, J.; Poston, L.; Dalrymple, K.V.; Flynn, A.C. Micronutrient supplementation interventions in preconception and pregnant women at increased risk of developing pre-eclampsia: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2023, 77, 710–730. [Google Scholar] [CrossRef]
- Wu, C.; Song, Y.; Wang, X. Vitamin D Supplementation for the Outcomes of Patients with Gestational Diabetes Mellitus and Neonates: A Meta-Analysis and Systematic Review. Int. J. Clin. Pract. 2023, 2023, 1907222. [Google Scholar] [CrossRef]
- Bahardoust, M.; Salari, S.; Ghotbi, N.; Rahimpour, E.; Haghmoradi, M.; Alipour, H.; Soleimani, M. Association between prenatal vitamin D deficiency with dental caries in infants and children: A systematic review and meta-analysis. BMC Pregnancy Childbirth 2024, 24, 256. [Google Scholar] [CrossRef]
- Luo, C.; Sun, Y.; Zeng, Z.; Liu, Y.; Peng, S. Vitamin D supplementation in pregnant women or infants for preventing allergic diseases: A systematic review and meta-analysis of randomized controlled trials. Chin. Med. J. 2022, 135, 276–284. [Google Scholar] [CrossRef]
- Shi, D.; Wang, D.; Meng, Y.; Chen, J.; Mu, G.; Chen, W. Maternal vitamin D intake during pregnancy and risk of asthma and wheeze in children: A systematic review and meta-analysis of observational studies. J. Matern. Fetal Neonatal Med. 2021, 34, 653–659. [Google Scholar] [CrossRef]
- Sobczak, M.; Pawliczak, R. Relationship between vitamin D and asthma from gestational to adulthood period: A meta-analysis of randomized clinical trials. BMC Pulm. Med. 2023, 23, 212. [Google Scholar] [CrossRef]
- Bi, W.G.; Nuyt, A.M.; Weiler, H.; Leduc, L.; Santamaria, C.; Wei, S.Q. Association Between Vitamin D Supplementation During Pregnancy and Offspring Growth, Morbidity, and Mortality: A Systematic Review and Meta-analysis. JAMA Pediatr. 2018, 172, 635–645. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, C.; Xu, R.; Wang, K.; Zhang, D.; Pang, W.; Tu, W.; Chen, Y. Effects of vitamin D supplementation during pregnancy on offspring health at birth: A meta-analysis of randomized controlled trails. Clin. Nutr. 2022, 41, 1532–1540. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Lin, Y.; Lu, J.; Lian, X.; Guo, Y.; Han, L.; Guo, Y. Effects of vitamin D supplementation during pregnancy on bone health and offspring growth: A systematic review and meta-analysis of randomized controlled trials. PLoS ONE 2022, 17, e0276016. [Google Scholar] [CrossRef] [PubMed]
- Moon, R.J.; Green, H.D.; D’Angelo, S.; Godfrey, K.M.; Davies, J.H.; Curtis, E.M.; Cooper, C.; Harvey, N.C. The effect of pregnancy vitamin D supplementation on offspring bone mineral density in childhood: A systematic review and meta-analysis. Osteoporos. Int. 2023, 34, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Huang, Y. Magnesium supplementation for glycemic status in women with gestational diabetes: A systematic review and meta-analysis. Gynecol. Endocrinol. 2022, 38, 202–206. [Google Scholar] [CrossRef]
- Mocking, R.J.T.; Steijn, K.; Roos, C.; Assies, J.; Bergink, V.; Ruhé, H.G.; Schene, A.H. Omega-3 Fatty Acid Supplementation for Perinatal Depression: A Meta-Analysis. J. Clin. Psychiatry 2020, 81, 19r13106. [Google Scholar] [CrossRef]
- Sun, J.; Wang, J.; Ma, W.; Miao, M.; Sun, G. Effects of Additional Dietary Fiber Supplements on Pregnant Women with Gestational Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Studies. Nutrients 2022, 14, 4626. [Google Scholar] [CrossRef]
- Bakouei, F.; Delavar, M.A.; Mashayekh-Amiri, S.; Esmailzadeh, S.; Taheri, Z. Efficacy of n-3 fatty acids supplementation on the prevention of pregnancy induced-hypertension or preeclampsia: A systematic review and meta-analysis. Taiwan. J. Obs. Gynecol. 2020, 59, 8–15. [Google Scholar] [CrossRef]
- Liu, W.; Gao, M.; Yang, S.; Sun, C.; Bi, Y.; Li, Y.; Wang, J.; Yuan, X. Effects of omega-3 supplementation on glucose and lipid metabolism in patients with gestational diabetes: A meta-analysis of randomized controlled trials. J. Diabetes Complicat. 2023, 37, 108451. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.; Osama, H.; Saeed, H.; Madney, Y.M.; Harb, H.S.; Abdelrahim, M.E.A. Impact of n-3 polyunsaturated fatty acid intake in pregnancy on maternal health and birth outcomes: Systematic review and meta-analysis from randomized controlled trails. Arch. Gynecol. Obs. 2023, 307, 249–262. [Google Scholar] [CrossRef]
- Bilgundi, K.; Viswanatha, G.L.; Purushottam, K.M.; John, J.; Kamath, A.P.; Kishore, A.; Nayak, P.G.; Nandakumar, K. Docosahexaenoic Acid and Pregnancy: A Systematic Review and Meta-Analysis of the Association with Improved Maternal and Fetal Health. Nutr. Res. 2024, 128, 82–93. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, C.; Wang, Y.; Li, Y. Does vitamin E prevent asthma or wheeze in children: A systematic review and meta-analysis. Paediatr. Respir. Rev. 2018, 27, 60–68. [Google Scholar] [CrossRef]
- Montgomery, S.C.; Streit, S.M.; Beebe, M.L.; Maxwell IV, P.J. Micronutrient needs of the elderly. Nutr. Clin. Pract. 2014, 29, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Jayedi, A.; Daneshvar, M.; Jibril, A.T.; Sluyter, J.D.; Waterhouse, M.; Romero, B.D.; Neale, R.E.; Manson, J.E.; Shab-Bidar, S. Serum 25(OH)D Concentration, Vitamin D Supplementation, and Risk of Cardiovascular Disease and Mortality in Patients with Type 2 Diabetes or Prediabetes: A Systematic Review and Dose-Response Meta-Analysis. Am. J. Clin. Nutr. 2023, 118, 697–707. [Google Scholar] [CrossRef] [PubMed]
- Gaugris, S.; Heaney, R.P.; Boonen, S.; Kurth, H.; Bentkover, J.D.; Sen, S.S. Vitamin D inadequacy among post-menopausal women: A systematic review. QJM 2005, 98, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Habibi Ghahfarrokhi, S.; Mohammadian-Hafshejani, A.; Sherwin, C.M.T.; Heidari-Soureshjani, S. Relationship between serum vitamin D and hip fracture in the elderly: A systematic review and meta-analysis. J. Bone Min. Metab. 2022, 40, 541–553. [Google Scholar] [CrossRef]
- Liu, C.; Kuang, X.; Li, K.; Guo, X.; Deng, Q.; Li, D. Effects of combined calcium and vitamin D supplementation on osteoporosis in postmenopausal women: A systematic review and meta-analysis of randomized controlled trials. Food Funct. 2020, 11, 10817–10827. [Google Scholar] [CrossRef]
- Reis, A.R.; Santos, R.K.F.; Dos Santos, C.B.; Santos, B.D.C.; de Carvalho, G.B.; Brandão-Lima, P.N.; de Oliveira, E.S.A.M.; Pires, L.V. Supplementation of vitamin D isolated or calcium-associated with bone remodeling and fracture risk in postmenopausal women without osteoporosis: A systematic review of randomized clinical trials. Nutrition 2023, 116, 112151. [Google Scholar] [CrossRef]
- Cormick, G.; Ciapponi, A.; Harbron, J.; Perez, S.M.; Vazquez, P.; Rivo, J.; Metzendorf, M.I.; Althabe, F.; Belizán, J.M. Calcium supplementation for people with overweight or obesity. Cochrane Database Syst. Rev. 2024, 5, Cd012268. [Google Scholar] [CrossRef]
- Ghoreishy, S.M.; Bagheri, A.; Nejad, M.M.; Larijani, B.; Esmaillzadeh, A. Association between calcium intake and risk of breast cancer: An updated systematic review and dose-response meta-analysis of cohort studies. Clin. Nutr. ESPEN 2023, 55, 251–259. [Google Scholar] [CrossRef]
- Bristow, S.M.; Bolland, M.J.; Gamble, G.D.; Leung, W.; Reid, I.R. Dietary calcium intake and change in bone mineral density in older adults: A systematic review of longitudinal cohort studies. Eur. J. Clin. Nutr. 2022, 76, 196–205. [Google Scholar] [CrossRef]
- ter Borg, S.; Verlaan, S.; Hemsworth, J.; Mijnarends, D.M.; Schols, J.M.; Luiking, Y.C.; de Groot, L.C. Micronutrient intakes and potential inadequacies of community-dwelling older adults: A systematic review. Br. J. Nutr. 2015, 113, 1195–1206. [Google Scholar] [CrossRef] [PubMed]
- D’Ecclesiis, O.; Gavioli, C.; Martinoli, C.; Raimondi, S.; Chiocca, S.; Miccolo, C.; Bossi, P.; Cortinovis, D.; Chiaradonna, F.; Palorini, R.; et al. Vitamin D and SARS-CoV2 infection, severity and mortality: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0268396. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Y.; Cheng, Y.C.; Chiu, C.C.; Liu, H.C.; Huang, M.C.; Tu, Y.K.; Kuo, P.H. Effects of Vitamin D Supplementation on Cognitive Outcomes: A Systematic Review and Meta-Analysis. Neuropsychol. Rev. 2024, 34, 568–580. [Google Scholar] [CrossRef] [PubMed]
- Bergink, A.P.; Zillikens, M.C.; Van Leeuwen, J.P.; Hofman, A.; Uitterlinden, A.G.; van Meurs, J.B. 25-Hydroxyvitamin D and osteoarthritis: A meta-analysis including new data. Semin. Arthritis Rheum. 2016, 45, 539–546. [Google Scholar] [CrossRef]
- Cao, Y.; Winzenberg, T.; Nguo, K.; Lin, J.; Jones, G.; Ding, C. Association between serum levels of 25-hydroxyvitamin D and osteoarthritis: A systematic review. Rheumatology 2013, 52, 1323–1334. [Google Scholar] [CrossRef]
- Hung, K.C.; Wang, L.K.; Lin, Y.T.; Yu, C.H.; Chang, C.Y.; Sun, C.K.; Chen, J.Y. Association of preoperative vitamin D deficiency with the risk of postoperative delirium and cognitive dysfunction: A meta-analysis. J. Clin. Anesth. 2022, 79, 110681. [Google Scholar] [CrossRef]
- Wang, K.; Xia, C.; Zhou, L.; Zheng, Y.; Wang, X.; Cheng, L. The Association between Vitamin D Deficiency and the Risk of Mortality after Hip Fractures: A Systematic Review and Meta-Analysis. J. Nutr. Sci. Vitaminol. 2024, 70, 89–97. [Google Scholar] [CrossRef]
- Xiong, A.; Li, H.; Lin, M.; Xu, F.; Xia, X.; Dai, D.; Sun, R.; Ling, Y.; Qiu, L.; Wang, R.; et al. Effects of active vitamin D analogues on muscle strength and falls in elderly people: An updated meta-analysis. Front. Endocrinol. 2024, 15, 1327623. [Google Scholar] [CrossRef]
- Chen, F.; Wang, J.; Cheng, Y.; Li, R.; Wang, Y.; Chen, Y.; Scott, T.; Tucker, K.L. Magnesium and Cognitive Health in Adults: A Systematic Review and Meta-Analysis. Adv. Nutr. 2024, 15, 100272. [Google Scholar] [CrossRef]
- Müller, O.; Krawinkel, M. Malnutrition and health in developing countries. Can. Med. Assoc. J. 2005, 173, 279–286. [Google Scholar] [CrossRef]
- World Health Organization. Malnutrition. Available online: https://www.who.int/health-topics/malnutrition#tab=tab_1 (accessed on 6 June 2024).
- Dietary Guidelines for Americans. Food Sources of Select Nutrients. Available online: https://www.dietaryguidelines.gov/resources/2020-2025-dietary-guidelines-online-materials/food-sources-select-nutrients (accessed on 6 June 2024).
- Smith, N.W.; Fletcher, A.J.; Hill, J.P.; McNabb, W.C. Modeling the Contribution of Milk to Global Nutrition. Front. Nutr. 2022, 8, 716100. [Google Scholar] [CrossRef] [PubMed]
- Juul, F.; Parekh, N.; Martinez-Steele, E.; Monteiro, C.A.; Chang, V.W. Ultra-processed food consumption among US adults from 2001 to 2018. Am. J. Clin. Nutr. 2022, 115, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Stewart, H.; Kuchler, F.; Dong, D.; Cessna, J. Examining the Decline in U.S. Per Capita Consumption of Fluid Cow’s Milk, 2003–2018; US Department of Agriculture: Washington, DC, USA, 2021. Available online: https://www.ers.usda.gov/publications/pub-details?pubid=102446 (accessed on 6 June 2024).
- Monroe-Lord, L.; Harrison, E.; Ardakani, A.; Duan, X.; Spechler, L.; Jeffery, T.D.; Jackson, P. Changes in Food Consumption Trends among American Adults since the COVID-19 Pandemic. Nutrients 2023, 15, 1769. [Google Scholar] [CrossRef] [PubMed]
- Chungchunlam, S.M.S.; Moughan, P.J. Comparative bioavailability of vitamins in human foods sourced from animals and plants. Crit. Rev. Food Sci. Nutr. 2024, 64, 11590–11625. [Google Scholar] [CrossRef]
Nutrient Type | Nutrients Included in the Priority Assessment |
---|---|
Macronutrients | Protein, dietary fiber, n-6 (linoleic) fatty acids, n-3 (ALA, DHA, EPA) fatty acids. |
Vitamins | Vitamin A, vitamin C, vitamin D, vitamin E, vitamin K, thiamine, riboflavin, niacin, vitamin B6, folate, B12, choline. |
Minerals | Calcium, copper, iodine, iron, magnesium, phosphorus, potassium, selenium, zinc. |
Scoring Criteria | Beneficial Nutrient Scoring | Score | Nutrient of Concern Scoring | Score |
---|---|---|---|---|
Dietary intake score | No inadequacy | 0 | No excess | 0 |
≥20 to <40 population less than EAR OR ≥50 to <75% population less than AI OR mean intake < EAR or AI | 1 | ≥20 to <40 population greater than the UL | −1 | |
≥40 to <60 population less than EAR OR ≥75 population less than AI | 2 | ≥40 to <60 population greater than the UL | −2 | |
≥60 to <80 population less than EAR | 3 | ≥60 to <80 population greater than the UL | −3 | |
≥80 population less than EAR | 4 | ≥80 population greater than the UL | −4 | |
Sub-score dietary intake | Beneficial nutrient or nutrient of concern baseline score | |||
Revised needs score | No increased need | 0 | No decreased need | 0 |
Increased need identified | 1 | Decreased need identified | −1 | |
Sub-score revised needs | Increased need or decreased need score | |||
Health association score | No beneficial association | 0 | No adverse association | 0 |
Beneficial association with 1 health priority | 1 | Adverse association with 1 health priority | −1 | |
Beneficial association with 2 to 5 health priorities | Σ25 | Adverse association with 2 to 5 health priorities | −Σ25 | |
Sub-score health association | Beneficial association score minus adverse association score | |||
TOTAL PRIORITY SCORE | Sub-score dietary intake + Sub-score revised needs + Sub-score health association |
Demographic | Health Priority | Health Outcomes Included |
---|---|---|
Children 4–8 years | Growth and development | Bone health, cognitive development, muscle development, and neurodevelopmental disorders |
Respiratory health | Respiratory allergies, asthma, and respiratory infections | |
Metabolic health | Obesity and bodyweight-related markers, body composition, blood glucose control, insulin resistance | |
Mood and mental health | Mood disorders, depression, anxiety | |
Adolescent males 9–18 years | Growth and development | Bone health, cognitive development, muscle development, and pubertal development |
Mood and mental health | Idem. | |
Metabolic health | Idem. | |
Respiratory health | Idem. | |
Cancer | Total cancer, individual cancers (all types), and cancer-related mortality | |
Adolescent females 9–18 years | Growth and development | Bone health, cognitive development, muscle development, and pubertal development |
Mood and mental health | Idem. | |
Metabolic health | Idem. | |
Respiratory health | Idem. | |
Cancer | Idem. | |
Adult males 19–70 years | Metabolic health | Idem. |
Cardiovascular health | Risk and risk factors (including cholesterol, triglycerides) for cardiovascular diseases (including stroke), and cardiovascular disease-related mortality | |
Cancer | Idem. | |
Mood and mental health | Idem. | |
Adult females 19–50 years | Fertility | Fertility-related markers, including in vitro fertilization rate, ovarian reserve, pregnancy rate, implantation, and miscarriage |
Cardiovascular health | Idem. | |
Cancer | Idem. | |
Mood and mental health | Idem. | |
Metabolic health | Idem. | |
Pregnancy and lactation 19–50 years | Fetal development | Markers for healthy development include birth size, weight, and length, premature birth, labor induction, live birth rate, neurodevelopment, and health during childhood |
Cardiovascular health | Idem. | |
Metabolic health | Idem. | |
Mood and mental health | Idem. | |
Infectious immunity | Infection and infectious disease incidence and risk | |
Menopause and post-menopause 51–70 years | Cardiovascular health | Idem. |
Cancer | Idem. | |
Bone density | Bone mineral density, osteoporosis, fractures, and fracture risk | |
Metabolic health | Idem. | |
Mood and mental health | Idem. | |
Older adults >70 years | Cardiovascular health | Idem. |
Cancer | Idem. | |
Metabolic health | Idem. | |
Infectious immunity | Idem. | |
Independence | Physical and cognitive independence, including incidence and risk of sarcopenia, frailty, osteoporosis, osteoarthritis, cognitive function/decline, fractures, and falls |
Demographic | Inadequate Intake 1 | Increased Needs 2 | Health Priority Association 3 |
---|---|---|---|
Children 4–8 years | Dietary fiber, vitamin D, vitamin E, vitamin K, choline, calcium, iodine, potassium | Protein, magnesium | Beneficial Calcium, iron, zinc, vitamin B12, vitamin D, omega-3 fatty acids Adverse Folate |
Adolescent males 9–18 years | Dietary fiber, vitamin A, vitamin C, vitamin D, vitamin E, choline, calcium, iodine, magnesium, phosphorus, potassium | Zinc, protein, magnesium | Beneficial Calcium, vitamin D, iron, zinc, vitamin B12, and omega-3 fatty acids Adverse Folate |
Adolescent females 9–18 years | Protein, dietary fiber, vitamin A, vitamin C, vitamin D, vitamin E, vitamin K, vitamin B6, folate, vitamin B12, choline, calcium, copper, iodine, iron, magnesium, phosphorus, zinc, potassium | Zinc, protein, magnesium | Beneficial Calcium, vitamin D, iron, zinc, vitamin B12, dietary fiber, omega-3 fatty acids Adverse Protein, folate |
Adult males 19–70 years | Dietary fiber, vitamin A, vitamin C, vitamin D, vitamin E, vitamin K, choline, calcium, iodine, magnesium, zinc, potassium | Zinc, protein, magnesium, and vitamin C | Beneficial Vitamin D, omega-3 fatty acids, vitamin C, vitamin E, folate, zinc, dietary fiber, calcium, omega-6 fatty acids, protein, vitamin B12, and vitamin B6 Adverse Omega-3 fatty acids, copper |
Adult females 19–50 years | Dietary fiber, vitamin A, vitamin C, vitamin D, vitamin E, folate, choline, calcium, iodine, iron, magnesium, potassium | Zinc, protein, magnesium, and vitamin C | Beneficial Vitamin D, omega-3 fatty acids, vitamin C, vitamin E, folate, zinc, dietary fiber, calcium, omega-6 fatty acids, protein, vitamin B12, and vitamin B6 Adverse Omega-3 fatty acids, copper |
Pregnancy and lactation 19–50 years | Dietary fiber, linoleic acid, alpha-linolenic acid, vitamin A, vitamin C, vitamin D, vitamin E, vitamin B6, folate, choline, calcium, iodine, iron, magnesium, zinc, potassium | Zinc, protein, magnesium | Beneficial Vitamin D, omega-3 fatty acids, vitamin E, dietary fiber, folate, magnesium, zinc, calcium, iodine Adverse Folate |
Menopause and postmenopause 51–70 years | Dietary fiber, vitamin A, vitamin C, vitamin D, vitamin E, vitamin B6, folate, choline, calcium, iodine, magnesium, potassium | Zinc, protein, magnesium, vitamin C, vitamin D, calcium | Beneficial Vitamin D, omega-3 fatty acids, vitamin C, vitamin E, folate, zinc, dietary fiber, calcium, omega-6 fatty acids, protein, vitamin B12, and vitamin B6 Adverse Omega-3 fatty acids, copper |
Older adults >70 years | Dietary fiber, vitamin A, vitamin C, vitamin D, vitamin E, vitamin K, vitamin B6, folate, choline, calcium, iodine, magnesium, zinc, potassium | Zinc, protein, magnesium, vitamin C, vitamin D, vitamin B12 | Beneficial Dietary fiber, vitamin D, omega-3 fatty acids, vitamin C, vitamin E, calcium, omega-6 fatty acids, folate, protein, zinc, vitamin B12, vitamin B6, magnesium Adverse Omega-3 fatty acids, copper |
Priority Nutrient | DRI 5 | Intake | Increased Need | Beneficial Association with a Health Priority | |||
---|---|---|---|---|---|---|---|
Mean Intake 1,6 | PI 4 | Suggested Increase 2 | PI 4 | Dose Range Associated with One or More Health Priorities 3 | PI 4 | ||
Children 4–8 years | |||||||
Dietary fiber | AI: 25 g/day | 13.2–13.8 g/day | 0.54 | NA | 1 | NA | 1 |
Vitamin D | RDA: 15 µg/day | 4.7–5.5 µg/day | 0.34 | NA | 1 | 132–7000 IU/day [18,57,58,59,60,61,62,63,64,65] | 1.41 |
Vitamin E | RDA: 7 mg/day | 6.2–7.2 mg/day | 0.96 | NA | 1 | NA | 1 |
Potassium | AI: 2300 mg/day | 1920–2082 mg/day | 0.87 | NA | 1 | NA | 1 |
Adolescent males 9–18 years | |||||||
Vitamin D | RDA: 15 µg/day | 4.7–5.4 µg /day | 0.31 | NA | 1 | 132–7000 IU/day; [18,57,58,59,61,62,63,64,65,66,67] H vs. L blood status [19,68,69,70] | 1.24 |
Vitamin E | RDA: 15 mg/day | 8.6–9 mg/day | 0.57 | NA | 1 | NA | 1 |
Calcium | RDA: 1300 mg/day | 1036–1081 mg/day | 0.81 | NA | 1 | 460–850 mg/day [16,71] | 1.17 |
Magnesium | RDA: 410 mg/day | 247–276 mg/day | 0.64 | Not provided [72] | 1 | NA | 1 |
Adolescent females 9–18 years | |||||||
Vitamin D | RDA: 15 µg/day | 3.2–4.8 µg/day | 0.27 | NA | 1 | 132–7000 IU/day; [18,57,58,59,61,62,63,64,65,66,67] H vs. L blood status [19,68,69,70] | 1.2 |
Vitamin E | RDA: 15 mg/day | 7.3–8.7 mg/day | 0.53 | NA | 1 | NA | 1 |
Calcium | RDA: 1300 mg/day | 811–987 mg/day | 0.69 | NA | 1 | 460–850 mg/day [16,71] | 1.05 |
Magnesium | RDA: 360 mg/day | 218–246 mg/day | 0.64 | Not provided [72] | 1 | NA | 1 |
Zinc | RDA: 9 mg/day | 7.7–9.6 mg/day | 0.96 | 10% increase [73] | 1.1 | 1.66–5.6 mg/day [74,75] | 0.98 |
Adult males 19–70 years | |||||||
Dietary fiber | AI: 38 g/day | 16.1–18.8 g/day | 0.46 | NA | 1 | 3–35 g/day; H vs. L intake; increase of 10–15 g/day [13,15,55,56,76,77,78,79,80,81] | 0.6 |
Vitamin C | RDA: 90 mg/day | 68.7–87.5 mg/day | 0.87 | >75–200 mg/day [82,83] | 1.53 | 100–3000 mg/day; H vs. L intake; H vs. low blood levels [84,85,86] | 3.75 |
Vitamin D | RDA: 15 µg/day | 4.2–5.2 µg/day | 0.31 | NA | 1 | 1000–14,000 IU/day; H vs. L blood levels; H vs. L intake [19,21,50,62,65,68,69,70,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111] | 2.48 |
Vitamin E | RDA: 15 mg/day | 9.3–10.8 mg/day | 0.67 | NA | 1 | 54–1200 mg/day; increase of 10 mg/day; H vs. L intake; H vs. L blood levels) [112,113] | 2.67 |
Magnesium | RDA: 420 mg/day | 306–353 mg/day | 0.78 | Not provided [72] | 1 | NA | 1 |
Adult females 19–50 years | |||||||
Dietary fiber | AI: 25 g/day | 14.3–15.2 g/day | 0.59 | NA | 1 | 3–35 g/day; H vs. L intake; increase of 10–15 g/day [13,15,55,56,76,77,78,79,80,81] | 0.8 |
Vitamin D | RDA: 15 µg/day | 3.5–3.8 µg/day | 0.24 | NA | 1 | 1000–14,000 IU/day; H vs. L blood levels; H vs. L intake [19,21,62,65,68,69,70,87,88,89,90,91,93,94,95,96,114,115,116,117,118,119,120,121,122,123,124] | 2.58 |
Vitamin E | RDA: 15 mg/day | 8.7 mg/day | 0.58 | NA | 1 | 54–1200 mg/day; increase of 10 mg/day; H vs. L intake; H vs. L blood levels) [112,113] | 2.67 |
Vitamin C | RDA: 75 mg/day | 66.8–71.5 mg/day | 0.92 | >75–200 mg/day [82,83] | 1.83 | 100–3000 mg/day; H vs. L intake; H vs. low blood levels [84,85,86] | 4.5 |
Folate | RDA: 400 µg/day | 431–432 µg/day | 1.08 | NA | 1 | 0.5 to 30 mg/day folic acid; 7.5 to 15 mg/day 5-MTHF; H vs. L intake; H vs. L blood levels [125,126,127,128,129,130,131] | 2.5 7 |
Pregnancy and lactation 19–50 years | |||||||
Vitamin D | RDA: 15 µg/day | 3.6–5.5 µg/day | 0.3 | NA | 1 | 400–7100 IU/day; S vs. D blood status; H vs. L blood status [62,122,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150] | 0.96 |
Magnesium | RDA: 360 mg/day | 254–294 mg/day | 0.76 | Not provided [72] | 1 | 150 mg Mg equivalent [151] | 1.18 |
Omega-3 fatty acids | AI: 1.4 g/day (ALA) | 1.29 g/day (ALA + DHA + EPA) | 0.92 | NA | 1 | 200–3000 mg/day [152,153,154,155,156,157] | 1.32 |
Vitamin E | RDA: 19 mg/day | 6.3–7.8 mg/day | 0.37 | NA | 1 | 7.9–400 mg/day [158] | 1.42 |
Menopause and post-menopause 51–70 years | |||||||
Dietary fiber | AI: 21 g/day | 15.5 g/day | 0.74 | NA | 1 | 3–35 g/day; H vs. L intake; increase of 10–15 g/day [13,15,55,56,76,77,78,79,80,81] | 0.99 |
Vitamin D | RDA: 15 µg/day | 3.8 µg/day | 0.25 | Not provided [159] | 1 | 400–14,000 IU/day; H vs. L intake; H vs. L blood levels [19,21,62,65,68,69,70,87,88,89,90,91,92,93,94,95,96,97,101,114,115,116,117,118,119,120,121,160,161,162,163,164] | 2.12 |
Vitamin E | RDA: 15 mg/day | 8.4 mg/day | 0.56 | NA | 1 | 54–1200 mg/day; increase of 10 mg/day; H vs. L intake; H vs. L blood levels) [112,113] | 2.67 |
Folate | RDA: 400 µg/day | 400 µg/day | 1 | NA | 1 | 0.5 to 30 mg/day folic acid; 7.5 to 15 mg/day 5-MTHF; H vs. L folate/folic acid intake [101,125,126,127,128,129,131] | 2.5 7 |
Calcium | RDA: 1200 mg/day | 832 mg/day | 0.69 | NA | 1 | 350–1200 mg/day [17,165,166,167] | 1.4 |
Older adults > 70 years | |||||||
Dietary fiber | AI: 30 g/day | 15.3–19.1 g/day | 0.57 | NA | 1 | 3–35 g/day; H vs. L intake; increase of 10–15 g/day [13,15,55,56,76,77,78,79,80,81] | 0.75 |
Vitamin D | RDA: 20 µg/day | 4.3–5.9 µg/day | 0.26 | Not provided [159,168] | 1 | 400–8000 IU/day; H vs. L blood levels; H vs. L intake; 0.25–1 µg/day prescription forms of vitamin D (active) [19,21,51,62,68,69,70,92,94,95,96,97,101,114,115,116,117,118,119,120,121,160,164,169,170,171,172,173,174,175] | 1.62 |
Vitamin E | RDA: 15 mg/day | 9.2–10.2 mg/day | 0.61 | NA | 1 | 134–1200 mg/day; increase of 10 mg/day; H vs. L intake; H vs. L blood levels [113] | 5.3 |
Calcium | RDA: 1200 mg/day | 785–968 mg/day | 0.73 | NA | 1 | ≥1000 mg/day; increase of 350 mg/day [165,166] | 1.29 |
Magnesium | RDA: 420 mg/day | 256–330 mg/day | 0.7 | Not provided [72] | 1 | H vs. L blood levels [176] | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starck, C.S.; Cassettari, T.; Beckett, E.; Duve, E.; Fayet-Moore, F. Identification of Priority Nutrients in the US: Targeting Malnutrition to Address Diet-Related Disease Across the Lifespan. Nutrients 2025, 17, 1957. https://doi.org/10.3390/nu17121957
Starck CS, Cassettari T, Beckett E, Duve E, Fayet-Moore F. Identification of Priority Nutrients in the US: Targeting Malnutrition to Address Diet-Related Disease Across the Lifespan. Nutrients. 2025; 17(12):1957. https://doi.org/10.3390/nu17121957
Chicago/Turabian StyleStarck, Carlene S., Tim Cassettari, Emma Beckett, Emily Duve, and Flavia Fayet-Moore. 2025. "Identification of Priority Nutrients in the US: Targeting Malnutrition to Address Diet-Related Disease Across the Lifespan" Nutrients 17, no. 12: 1957. https://doi.org/10.3390/nu17121957
APA StyleStarck, C. S., Cassettari, T., Beckett, E., Duve, E., & Fayet-Moore, F. (2025). Identification of Priority Nutrients in the US: Targeting Malnutrition to Address Diet-Related Disease Across the Lifespan. Nutrients, 17(12), 1957. https://doi.org/10.3390/nu17121957