Nutritional Management for Preterm Infants with Common Comorbidities: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Bronchopulmonary Dysplasia (BPD) and Nutritional Challenges
3.1. Calories and Fluid Intake
3.2. Enteral Nutrition (EN) and Human Milk
3.3. Macronutrients: Protein, Carbohydrate, and Lipid
3.4. Vitamin A and Other Micronutrients
3.5. Summary
4. Necrotizing Enterocolitis (NEC), Critical Illness, and Nutritional Challenges
4.1. Preventive Strategies—Feeding Approach
4.2. Human Milk and Fortification
4.3. Probiotics and Gut Microbiota
4.4. Supportive Care—Parenteral Nutrition (PN) and Electrolyte Balance
4.5. Nutritional Considerations in Critically Ill Infants
4.6. Early Enteral Feeding Resumption
4.7. Summary
5. Metabolic Bone Disease of Prematurity (MBDP) and Nutritional Challenges
5.1. Screening
5.2. Prevention
5.3. Enteral Nutrition (EN)
5.4. Parenteral Nutrition (PN)
5.5. Treatment
5.6. Summary
6. Patent Ductus Arteriosus (PDA) and Nutritional Challenges
6.1. Fluid Management in PDA
6.2. Impact of hsPDA on Gastrointestinal Function and Enteral Nutrition (EN)
6.3. Summary
7. Retinopathy of Prematurity (ROP) and Nutritional Challenges
7.1. Physiological Basis of Nutritional Strategies for ROP Prevention
- 1.
- IGF-1 and Early Growth: IGF-1 deficiency and poor early postnatal growth contribute to ROP development.
- 2.
- Optimized Early Nutrition: Adequate energy, lipid, and protein intake support optimal growth and reduce ROP.
- 3.
- Hyperglycemia and ROP: Elevated blood glucose levels are linked to an increased incidence of ROP.
- 4.
- Long-Chain Polyunsaturated Fatty Acids (LCPUFAs) in ROP Prevention: LCPUFAs support retinal development and may lower ROP risk.
7.2. Special Consideration in Enteral Nutrition (EN)
7.3. Special Consideration in Parenteral Nutrition (PN)
7.4. Summary
8. Limitations
9. Conclusions
Funding
Conflicts of Interest
Abbreviations
References
- Skinner, A.M.; Narchi, H. Preterm nutrition and neurodevelopmental outcomes. World J. Methodol. 2021, 11, 278–293. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, M.; Wilson, K.A.; Barr, S. Optimising nutrition of preterm and term infants in the neonatal intensive care unit. Paediatr. Child. Health 2021, 31, 38–45. [Google Scholar] [CrossRef]
- Abrams, S.A. Calcium and vitamin d requirements of enterally fed preterm infants. Pediatrics 2013, 131, e1676–e1683. [Google Scholar] [CrossRef]
- Embleton, N.D.; Jennifer Moltu, S.; Lapillonne, A.; van den Akker, C.H.P.; Carnielli, V.; Fusch, C.; Gerasimidis, K.; van Goudoever, J.B.; Haiden, N.; Iacobelli, S.; et al. Enteral Nutrition in Preterm Infants (2022): A Position Paper from the ESPGHAN Committee on Nutrition and Invited Experts. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 248–268. [Google Scholar] [CrossRef]
- van Goudoever, J.B.; Carnielli, V.; Darmaun, D.; Sainz de Pipaon, M. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Amino acids. Clin. Nutr. 2018, 37, 2315–2323. [Google Scholar] [CrossRef]
- Mihatsch, W.; Fewtrell, M.; Goulet, O.; Molgaard, C.; Picaud, J.C.; Senterre, T. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Calcium, phosphorus and magnesium. Clin. Nutr. 2018, 37, 2360–2365. [Google Scholar] [CrossRef]
- Mesotten, D.; Joosten, K.; van Kempen, A.; Verbruggen, S. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Carbohydrates. Clin. Nutr. 2018, 37, 2337–2343. [Google Scholar] [CrossRef]
- Joosten, K.; Embleton, N.; Yan, W.; Senterre, T. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Energy. Clin. Nutr. 2018, 37, 2309–2314. [Google Scholar] [CrossRef]
- Lapillonne, A.; Fidler Mis, N.; Goulet, O.; van den Akker, C.H.P.; Wu, J.; Koletzko, B. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Lipids. Clin. Nutr. 2018, 37, 2324–2336. [Google Scholar] [CrossRef]
- Robinson, D.T.; Calkins, K.L.; Chen, Y.; Cober, M.P.; Falciglia, G.H.; Church, D.D.; Mey, J.; McKeever, L.; Sentongo, T. Guidelines for parenteral nutrition in preterm infants: The American Society for Parenteral and Enteral Nutrition. JPEN J. Parenter. Enter. Nutr. 2023, 47, 830–858. [Google Scholar] [CrossRef]
- Boullata, J.I.; Gilbert, K.; Sacks, G.; Labossiere, R.J.; Crill, C.; Goday, P.; Kumpf, V.J.; Mattox, T.W.; Plogsted, S.; Holcombe, B.A.S.P.E.N. clinical guidelines: Parenteral nutrition ordering, order review, compounding, labeling, and dispensing. JPEN J. Parenter. Enter. Nutr. 2014, 38, 334–377. [Google Scholar] [CrossRef] [PubMed]
- Vanek, V.W.; Borum, P.; Buchman, A.; Fessler, T.A.; Howard, L.; Jeejeebhoy, K.; Kochevar, M.; Shenkin, A.; Valentine, C.J. A.S.P.E.N. position paper: Recommendations for changes in commercially available parenteral multivitamin and multi-trace element products. Nutr. Clin. Pract. 2012, 27, 440–491. [Google Scholar] [CrossRef]
- Ray, S. NICE guideline review: Neonatal parenteral nutrition (NG154). Arch. Dis. Child. Educ. Pract. Ed. 2021, 106, 292–295. [Google Scholar] [CrossRef]
- Bolisetty, S.; Osborn, D.; Schindler, T.; Sinn, J.; Deshpande, G.; Wong, C.S.; Jacobs, S.E.; Phad, N.; Pharande, P.; Tobiansky, R.; et al. Standardised neonatal parenteral nutrition formulations—Australasian neonatal parenteral nutrition consensus update 2017. BMC Pediatr. 2020, 20, 59. [Google Scholar] [CrossRef]
- Chiang, M.C.; Lin, H.Y. Recommendation on Nutritional Care of Taiwan Preterm Infants, 4th ed.; The Taiwan Society of Neonatology: Taichung, Taiwan, 2022; ISBN 978-626-96759-0-6. [Google Scholar]
- Rogulska, J.; Fenton, T.R.; Szczapa, T.; Wróblewska-Seniuk, K. Association of Neonatal Morbidities and Postnatal Growth Faltering in Preterm Neonates. Healthcare 2025, 13, 235. [Google Scholar] [CrossRef]
- Mowitz, M.E.; Gao, W.; Sipsma, H.; Zuckerman, P.; Wong, H.; Ayyagari, R.; Sarda, S.P. Burden of Comorbidities and Healthcare Resource Utilization Among Medicaid-Enrolled Extremely Premature Infants. J. Health Econ. Outcomes Res. 2022, 9, 147–155. [Google Scholar] [CrossRef]
- Babla, K.; Dassios, T.; Pushparajah, K.; Hickey, A.; Greenough, A. Premature infants with patent ductus arteriosus: Postnatal growth according to type of management. Pediatr. Neonatol. 2021, 62, 36–40. [Google Scholar] [CrossRef]
- Lima, P.A.T.; Méio, M.; Moreira, M.E.L.; de Abranches, A.D.; Milanesi, B.G.; Gomes Junior, S.C.S. Energy expenditure and body composition in infants with bronchopulmonary dysplasia at term age. Eur. J. Pediatr. 2022, 181, 3039–3047. [Google Scholar] [CrossRef]
- Milanesi, B.G.; Lima, P.A.; Villela, L.D.; Martins, A.S.; Gomes-Junior, S.C.S.; Moreira, M.E.L.; Méio, M. Assessment of early nutritional intake in preterm infants with bronchopulmonary dysplasia: A cohort study. Eur. J. Pediatr. 2021, 180, 1423–1430. [Google Scholar] [CrossRef]
- Uberos, J.; Jimenez-Montilla, S.; Molina-Oya, M.; García-Serrano, J.L. Early energy restriction in premature infants and bronchopulmonary dysplasia: A cohort study. Br. J. Nutr. 2020, 123, 1024–1031. [Google Scholar] [CrossRef]
- Thiess, T.; Lauer, T.; Woesler, A.; Neusius, J.; Stehle, S.; Zimmer, K.P.; Eckert, G.P.; Ehrhardt, H. Correlation of Early Nutritional Supply and Development of Bronchopulmonary Dysplasia in Preterm Infants <1,000 g. Front. Pediatr. 2021, 9, 741365. [Google Scholar] [CrossRef]
- Al-Jebawi, Y.; Agarwal, N.; Groh Wargo, S.; Shekhawat, P.; Mhanna, M.J. Low caloric intake and high fluid intake during the first week of life are associated with the severity of bronchopulmonary dysplasia in extremely low birth weight infants. J. Neonatal Perinat. Med. 2020, 13, 207–214. [Google Scholar] [CrossRef]
- Matsushita, F.Y.; Krebs, V.L.J.; Ferraro, A.A.; de Carvalho, W.B. Early fluid overload is associated with mortality and prolonged mechanical ventilation in extremely low birth weight infants. Eur. J. Pediatr. 2020, 179, 1665–1671. [Google Scholar] [CrossRef]
- Jung, E.; Lee, B.S. Late-Onset Sepsis as a Risk Factor for Bronchopulmonary Dysplasia in Extremely Low Birth Weight Infants: A Nationwide Cohort Study. Sci. Rep. 2019, 9, 15448. [Google Scholar] [CrossRef]
- Lin, B.; Xiong, X.; Lu, X.; Zhao, J.; Huang, Z.; Chen, X. Enteral Feeding/Total Fluid Intake Ratio Is Associated with Risk of Bronchopulmonary Dysplasia in Extremely Preterm Infants. Front. Pediatr. 2022, 10, 899785. [Google Scholar] [CrossRef]
- Uberos, J.; Sanchez-Ruiz, I.; Fernández-Marin, E.; Ruiz-López, A.; Cubero-Millan, I.; Campos-Martínez, A. Breast-feeding as protective factor against bronchopulmonary dysplasia in preterm infants. Br. J. Nutr. 2024, 131, 1405–1412. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, S.; Deng, X.; Luo, Z.; Chen, A.; Yu, R. Effects of Antioxidants in Human Milk on Bronchopulmonary Dysplasia Prevention and Treatment: A Review. Front. Nutr. 2022, 9, 924036. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, Z.; Li, Q.; Zhou, J.; Yin, X.; Ma, Y.; Yin, Y.; Jiang, S.; Zhu, R.; Wu, Y.; et al. Dose-dependent effect of human milk on Bronchopulmonary dysplasia in very low birth weight infants. BMC Pediatr. 2020, 20, 522. [Google Scholar] [CrossRef]
- Martin, C.R.; Dasilva, D.A.; Cluette-Brown, J.E.; Dimonda, C.; Hamill, A.; Bhutta, A.Q.; Coronel, E.; Wilschanski, M.; Stephens, A.J.; Driscoll, D.F.; et al. Decreased postnatal docosahexaenoic and arachidonic acid blood levels in premature infants are associated with neonatal morbidities. J. Pediatr. 2011, 159, 743–749.e2. [Google Scholar] [CrossRef]
- Ndiaye, A.; Mohamed, I.; Pronovost, E.; Angoa, G.; Piedboeuf, B.; Lemyre, B.; Afifi, J.; Qureshi, M.; Sériès, T.; Guillot, M.; et al. Use of SMOF lipid emulsion in very preterm infants does not affect the incidence of bronchopulmonary dysplasia-free survival. JPEN J. Parenter. Enter. Nutr. 2022, 46, 1892–1902. [Google Scholar] [CrossRef]
- Wendel, K.; Aas, M.F.; Gunnarsdottir, G.; Rossholt, M.E.; Bratlie, M.; Nordvik, T.; Landsend, E.C.S.; Fugelseth, D.; Domellöf, M.; Pripp, A.H.; et al. Effect of arachidonic and docosahexaenoic acid supplementation on respiratory outcomes and neonatal morbidities in preterm infants. Clin. Nutr. 2023, 42, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Rysavy, M.A.; Li, L.; Tyson, J.E.; Jensen, E.A.; Das, A.; Ambalavanan, N.; Laughon, M.M.; Greenberg, R.G.; Patel, R.M.; Pedroza, C.; et al. Should Vitamin A Injections to Prevent Bronchopulmonary Dysplasia or Death Be Reserved for High-Risk Infants? Reanalysis of the National Institute of Child Health and Human Development Neonatal Research Network Randomized Trial. J. Pediatr. 2021, 236, 78–85.e75. [Google Scholar] [CrossRef] [PubMed]
- Rakshasbhuvankar, A.A.; Simmer, K.; Patole, S.K.; Stoecklin, B.; Nathan, E.A.; Clarke, M.W.; Pillow, J.J. Enteral Vitamin A for Reducing Severity of Bronchopulmonary Dysplasia: A Randomized Trial. Pediatrics 2021, 147, e2020009985. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Bay, J.; Franz, A.R.; Ehrhardt, H.; Klein, L.; Petzinger, J.; Binder, C.; Kirschenhofer, S.; Stein, A.; Hüning, B.; et al. Early postnatal high-dose fat-soluble enteral vitamin A supplementation for moderate or severe bronchopulmonary dysplasia or death in extremely low birthweight infants (NeoVitaA): A multicentre, randomised, parallel-group, double-blind, placebo-controlled, investigator-initiated phase 3 trial. Lancet Respir. Med. 2024, 12, 544–555. [Google Scholar] [CrossRef]
- Bronsky, J.; Campoy, C.; Braegger, C. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Vitamins. Clin. Nutr. 2018, 37, 2366–2378. [Google Scholar] [CrossRef]
- Vogelsang, A.; van Lingen, R.A.; Slootstra, J.; Dikkeschei, B.D.; Kollen, B.J.; Schaafsma, A.; van Zoeren-Grobben, D. Antioxidant role of plasma carotenoids in bronchopulmonary dysplasia in preterm infants. Int. J. Vitam. Nutr. Res. 2009, 79, 288–296. [Google Scholar] [CrossRef]
- Lim, J.C.; Golden, J.M.; Ford, H.R. Pathogenesis of neonatal necrotizing enterocolitis. Pediatr. Surg. Int. 2015, 31, 509–518. [Google Scholar] [CrossRef]
- Masi, A.C.; Stewart, C.J. The role of the preterm intestinal microbiome in sepsis and necrotising enterocolitis. Early Hum. Dev. 2019, 138, 104854. [Google Scholar] [CrossRef]
- Stewart, C.J.; Marrs, E.C.; Nelson, A.; Lanyon, C.; Perry, J.D.; Embleton, N.D.; Cummings, S.P.; Berrington, J.E. Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis. PLoS ONE 2013, 8, e73465. [Google Scholar] [CrossRef]
- Calkins, K.L.; Venick, R.S.; Devaskar, S.U. Complications associated with parenteral nutrition in the neonate. Clin. Perinatol. 2014, 41, 331–345. [Google Scholar] [CrossRef]
- Morgan, J.; Young, L.; McGuire, W. Delayed introduction of progressive enteral feeds to prevent necrotising enterocolitis in very low birth weight infants. Cochrane Database Syst. Rev. 2014, 2014, Cd001970. [Google Scholar] [CrossRef] [PubMed]
- Dorling, J.; Hewer, O.; Hurd, M.; Bari, V.; Bosiak, B.; Bowler, U.; King, A.; Linsell, L.; Murray, D.; Omar, O.; et al. Two speeds of increasing milk feeds for very preterm or very low-birthweight infants: The SIFT RCT. Health Technol. Assess. 2020, 24, 1–94. [Google Scholar] [CrossRef] [PubMed]
- Montealegre-Pomar, A.D.P.; Bertolotto-Cepeda, A.M.; Romero-Marquez, Y.; Muñoz-Ramírez, K.J. Effectiveness and Safety of Fast Enteral Advancement in Preterm Infants Between 1000 and 2000 g of Birth Weight. JPEN J. Parenter. Enter. Nutr. 2021, 45, 578–586. [Google Scholar] [CrossRef]
- Lapidaire, W.; Lucas, A.; Clayden, J.D.; Clark, C.; Fewtrell, M.S. Human milk feeding and cognitive outcome in preterm infants: The role of infection and NEC reduction. Pediatr. Res. 2022, 91, 1207–1214. [Google Scholar] [CrossRef]
- de Jong, J.C.W.; Ijssennagger, N.; van Mil, S.W.C. Breast milk nutrients driving intestinal epithelial layer maturation via Wnt and Notch signaling: Implications for necrotizing enterocolitis. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166229. [Google Scholar] [CrossRef]
- Masi, A.C.; Embleton, N.D.; Lamb, C.A.; Young, G.; Granger, C.L.; Najera, J.; Smith, D.P.; Hoffman, K.L.; Petrosino, J.F.; Bode, L.; et al. Human milk oligosaccharide DSLNT and gut microbiome in preterm infants predicts necrotising enterocolitis. Gut 2021, 70, 2273–2282. [Google Scholar] [CrossRef]
- Lawson, M.A.E.; O’Neill, I.J.; Kujawska, M.; Gowrinadh Javvadi, S.; Wijeyesekera, A.; Flegg, Z.; Chalklen, L.; Hall, L.J. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J. 2020, 14, 635–648. [Google Scholar] [CrossRef]
- Asbury, M.R.; Shama, S.; Sa, J.Y.; Bando, N.; Butcher, J.; Comelli, E.M.; Copeland, J.K.; Forte, V.; Kiss, A.; Sherman, P.M.; et al. Human milk nutrient fortifiers alter the developing gastrointestinal microbiota of very-low-birth-weight infants. Cell Host Microbe 2022, 30, 1328–1339.e1325. [Google Scholar] [CrossRef]
- Saturio, S.; Nogacka, A.M.; Alvarado-Jasso, G.M.; Salazar, N.; de Los Reyes-Gavilán, C.G.; Gueimonde, M.; Arboleya, S. Role of Bifidobacteria on Infant Health. Microorganisms 2021, 9, 2415. [Google Scholar] [CrossRef]
- Murphy, K.; Ross, R.P.; Ryan, C.A.; Dempsey, E.M.; Stanton, C. Probiotics, Prebiotics, and Synbiotics for the Prevention of Necrotizing Enterocolitis. Front. Nutr. 2021, 8, 667188. [Google Scholar] [CrossRef]
- van den Akker, C.H.P.; van Goudoever, J.B.; Shamir, R.; Domellöf, M.; Embleton, N.D.; Hojsak, I.; Lapillonne, A.; Mihatsch, W.A.; Berni Canani, R.; Bronsky, J.; et al. Probiotics and Preterm Infants: A Position Paper by the European Society for Paediatric Gastroenterology Hepatology and Nutrition Committee on Nutrition and the European Society for Paediatric Gastroenterology Hepatology and Nutrition Working Group for Probiotics and Prebiotics. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 664–680. [Google Scholar] [CrossRef]
- Chiang, M.C.; Chen, C.L.; Feng, Y.; Chen, C.C.; Lien, R.; Chiu, C.H. Lactobacillus rhamnosus sepsis associated with probiotic therapy in an extremely preterm infant: Pathogenesis and a review for clinicians. J. Microbiol. Immunol. Infect. 2021, 54, 575–580. [Google Scholar] [CrossRef]
- Mahboobipour, A.A.; Bitaraf, A.; Mohammadi, P.; Khosravifar, M.; Babaei, H.; Shahidolahi, A. Effects of synbiotics on necrotizing enterocolitis and full enteral feeding in very low birth weight infants: A double-blind, randomized controlled trial. Medicine 2024, 103, e39647. [Google Scholar] [CrossRef]
- Teresa, C.; Antonella, D.; de Ville de Goyet, J. New Nutritional and Therapeutical Strategies of NEC. Curr. Pediatr. Rev. 2019, 15, 92–105. [Google Scholar] [CrossRef]
- Gura, K.M.; Lee, S.; Valim, C.; Zhou, J.; Kim, S.; Modi, B.P.; Arsenault, D.A.; Strijbosch, R.A.; Lopes, S.; Duggan, C.; et al. Safety and efficacy of a fish-oil-based fat emulsion in the treatment of parenteral nutrition-associated liver disease. Pediatrics 2008, 121, e678–e686. [Google Scholar] [CrossRef]
- Diamond, I.R.; Sterescu, A.; Pencharz, P.B.; Kim, J.H.; Wales, P.W. Changing the paradigm: Omegaven for the treatment of liver failure in pediatric short bowel syndrome. J. Pediatr. Gastroenterol. Nutr. 2009, 48, 209–215. [Google Scholar] [CrossRef]
- Feferbaum, R.; Leone, C.; Siqueira, A.A.; Valenti, V.E.; Gallo, P.R.; Reis, A.O.; Lopes, A.C.; Nascimento, V.G.; de Oliveira, A.G.; de Carvalho, T.D.; et al. Rest energy expenditure is decreased during the acute as compared to the recovery phase of sepsis in newborns. Nutr. Metab. 2010, 7, 63. [Google Scholar] [CrossRef]
- Bjerkhaug, A.U.; Granslo, H.N.; Klingenberg, C. Metabolic responses in neonatal sepsis-A systematic review of human metabolomic studies. Acta Paediatr. 2021, 110, 2316–2325. [Google Scholar] [CrossRef]
- Chan, A.P.; Robinson, D.T.; Calkins, K.L. Hypertriglyceridemia in Preterm Infants. Neoreviews 2022, 23, e528–e540. [Google Scholar] [CrossRef]
- Shakeel, F.; Newkirk, M.; Sellers, A.; Shores, D.R. Postoperative Feeding Guidelines Improve Outcomes in Surgical Infants. JPEN J. Parenter. Enter. Nutr. 2020, 44, 1047–1056. [Google Scholar] [CrossRef]
- Moon, K.; Athalye-Jape, G.K.; Rao, U.; Rao, S.C. Early versus late parenteral nutrition for critically ill term and late preterm infants. Cochrane Database Syst. Rev. 2020, 4, Cd013141. [Google Scholar] [CrossRef]
- Weiss, S.L.; Peters, M.J.; Alhazzani, W.; Agus, M.S.D.; Flori, H.R.; Inwald, D.P.; Nadel, S.; Schlapbach, L.J.; Tasker, R.C.; Argent, A.C.; et al. Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatr. Crit. Care Med. 2020, 21, e52–e106. [Google Scholar] [CrossRef]
- Moltu, S.J.; Bronsky, J.; Embleton, N.; Gerasimidis, K.; Indrio, F.; Köglmeier, J.; de Koning, B.; Lapillonne, A.; Norsa, L.; Verduci, E.; et al. Nutritional Management of the Critically Ill Neonate: A Position Paper of the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2021, 73, 274–289. [Google Scholar] [CrossRef]
- Bohnhorst, B.; Müller, S.; Dördelmann, M.; Peter, C.S.; Petersen, C.; Poets, C.F. Early feeding after necrotizing enterocolitis in preterm infants. J. Pediatr. 2003, 143, 484–487. [Google Scholar] [CrossRef]
- Brotschi, B.; Baenziger, O.; Frey, B.; Bucher, H.U.; Ersch, J. Early enteral feeding in conservatively managed stage II necrotizing enterocolitis is associated with a reduced risk of catheter-related sepsis. J. Perinat. Med. 2009, 37, 701–705. [Google Scholar] [CrossRef]
- Patel, E.U.; Wilson, D.A.; Brennan, E.A.; Lesher, A.P.; Ryan, R.M. Earlier re-initiation of enteral feeding after necrotizing enterocolitis decreases recurrence or stricture: A systematic review and meta-analysis. J. Perinatol. 2020, 40, 1679–1687. [Google Scholar] [CrossRef]
- Greer, F.R.; McCormick, A. Bone growth with low bone mineral content in very low birth weight premature infants. Pediatr. Res. 1986, 20, 925–928. [Google Scholar] [CrossRef]
- Backström, M.C.; Kuusela, A.L.; Mäki, R. Metabolic bone disease of prematurity. Ann. Med. 1996, 28, 275–282. [Google Scholar] [CrossRef]
- Hosking, D.J. Calcium homeostasis in pregnancy. Clin. Endocrinol. 1996, 45, 1–6. [Google Scholar] [CrossRef]
- Koo, W.W.; Sherman, R.; Succop, P.; Krug-Wispe, S.; Tsang, R.C.; Steichen, J.J.; Crawford, A.H.; Oestreich, A.E. Fractures and rickets in very low birth weight infants: Conservative management and outcome. J. Pediatr. Orthop. 1989, 9, 326–330. [Google Scholar] [CrossRef]
- Lucas-Herald, A.; Butler, S.; Mactier, H.; McDevitt, H.; Young, D.; Ahmed, S.F. Prevalence and characteristics of rib fractures in ex-preterm infants. Pediatrics 2012, 130, 1116–1119. [Google Scholar] [CrossRef] [PubMed]
- Balasuriya, C.N.D.; Evensen, K.A.I.; Mosti, M.P.; Brubakk, A.M.; Jacobsen, G.W.; Indredavik, M.S.; Schei, B.; Stunes, A.K.; Syversen, U. Peak Bone Mass and Bone Microarchitecture in Adults Born with Low Birth Weight Preterm or at Term: A Cohort Study. J. Clin. Endocrinol. Metab. 2017, 102, 2491–2500. [Google Scholar] [CrossRef]
- Lü, K.L.; Xie, S.S.; Hu, Q.; Yang, Z.Y.; Fan, Q.L.; Liu, E.; Zhang, Y.P. Diagnostic markers of metabolic bone disease of prematurity in preterm infants. Bone 2023, 169, 116656. [Google Scholar] [CrossRef]
- Lee, B.; De Beritto, T. Metabolic Bone Disease of Prematurity. Neoreviews 2022, 23, e311–e318. [Google Scholar] [CrossRef]
- Faienza, M.F.; D’Amato, E.; Natale, M.P.; Grano, M.; Chiarito, M.; Brunetti, G.; D’Amato, G. Metabolic Bone Disease of Prematurity: Diagnosis and Management. Front. Pediatr. 2019, 7, 143. [Google Scholar] [CrossRef]
- Llorente-Pelayo, S.; Docio, P.; Lavín-Gómez, B.A.; García-Unzueta, M.T.; de Las Cuevas, I.; de la Rubia, L.; Cabero-Pérez, M.J.; González-Lamuño, D. Modified Serum ALP Values and Timing of Apparition of Knee Epiphyseal Ossification Centers in Preterm Infants with Cholestasis and Risk of Concomitant Metabolic Bone Disease of Prematurity. Nutrients 2020, 12, 3854. [Google Scholar] [CrossRef] [PubMed]
- Rayannavar, A.; Calabria, A.C. Screening for Metabolic Bone Disease of prematurity. Semin. Fetal Neonatal Med. 2020, 25, 101086. [Google Scholar] [CrossRef]
- Rigo, J.; De Curtis, M.; Pieltain, C.; Picaud, J.C.; Salle, B.L.; Senterre, J. Bone mineral metabolism in the micropremie. Clin. Perinatol. 2000, 27, 147–170. [Google Scholar] [CrossRef]
- Kovacs, C.S. Bone development and mineral homeostasis in the fetus and neonate: Roles of the calciotropic and phosphotropic hormones. Physiol. Rev. 2014, 94, 1143–1218. [Google Scholar] [CrossRef]
- Dror, D.K.; Allen, L.H. Overview of Nutrients in Human Milk. Adv. Nutr. 2018, 9, 278s–294s. [Google Scholar] [CrossRef]
- Mulla, S.; Stirling, S.; Cowey, S.; Close, R.; Pullan, S.; Howe, R.; Radbone, L.; Clarke, P. Severe hypercalcaemia and hypophosphataemia with an optimised preterm parenteral nutrition formulation in two epochs of differing phosphate supplementation. Arch. Dis. Child. Fetal Neonatal Ed. 2017, 102, F451–F455. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, S.A. Calcium and phosphorus needs of premature infants. Nutrition 1994, 10, 66–68. [Google Scholar] [PubMed]
- Chinoy, A.; Mughal, M.Z.; Padidela, R. Metabolic bone disease of prematurity: Causes, recognition, prevention, treatment and long-term consequences. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F560–f566. [Google Scholar] [CrossRef]
- Natarajan, C.K.; Sankar, M.J.; Agarwal, R.; Pratap, O.T.; Jain, V.; Gupta, N.; Gupta, A.K.; Deorari, A.K.; Paul, V.K.; Sreenivas, V. Trial of daily vitamin D supplementation in preterm infants. Pediatrics 2014, 133, e628–e634. [Google Scholar] [CrossRef]
- Clyman, R.I. Mechanisms regulating the ductus arteriosus. Biol. Neonate 2006, 89, 330–335. [Google Scholar] [CrossRef]
- Noori, S.; McCoy, M.; Friedlich, P.; Bright, B.; Gottipati, V.; Seri, I.; Sekar, K. Failure of ductus arteriosus closure is associated with increased mortality in preterm infants. Pediatrics 2009, 123, e138–e144. [Google Scholar] [CrossRef]
- Johnston, P.G.; Gillam-Krakauer, M.; Fuller, M.P.; Reese, J. Evidence-based use of indomethacin and ibuprofen in the neonatal intensive care unit. Clin. Perinatol. 2012, 39, 111–136. [Google Scholar] [CrossRef]
- Wadhawan, R.; Oh, W.; Vohr, B.R.; Saha, S.; Das, A.; Bell, E.F.; Laptook, A.; Shankaran, S.; Stoll, B.J.; Walsh, M.C.; et al. Spontaneous intestinal perforation in extremely low birth weight infants: Association with indometacin therapy and effects on neurodevelopmental outcomes at 18–22 months corrected age. Arch. Dis. Child. Fetal Neonatal Ed. 2013, 98, F127–F132. [Google Scholar] [CrossRef]
- Stephens, B.E.; Gargus, R.A.; Walden, R.V.; Mance, M.; Nye, J.; McKinley, L.; Tucker, R.; Vohr, B.R. Fluid regimens in the first week of life may increase risk of patent ductus arteriosus in extremely low birth weight infants. J. Perinatol. 2008, 28, 123–128. [Google Scholar] [CrossRef]
- Mirza, H.; Garcia, J.; Bell, C.; Jones, K.; Flynn, V.; Pepe, J.; Oh, W. Fluid Intake in the First Week of Life and the Duration of Hemodynamically Significant Patent Ductus Arteriosus in Extremely Preterm Infants. Am. J. Perinatol. 2023, 40, 1345–1350. [Google Scholar] [CrossRef]
- Rallis, D.; Balomenou, F.; Drougia, A.; Benekos, T.; Vlahos, A.; Tzoufi, M.; Giapros, V. Association of fluid overload with patent ductus arteriosus during the first postnatal day. Minerva Pediatr. 2024, 76, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Hansson, L.; Lind, T.; Wiklund, U.; Öhlund, I.; Rydberg, A. Fluid restriction negatively affects energy intake and growth in very low birthweight infants with haemodynamically significant patent ductus arteriosus. Acta Paediatr. 2019, 108, 1985–1992. [Google Scholar] [CrossRef]
- MacLellan, A.; Cameron, A.J.; Cooper, C.; Mitra, S. Fluid restriction for treatment of symptomatic patent ductus arteriosus in preterm infants. Cochrane Database Syst. Rev. 2024, 12, CD015424. [Google Scholar] [CrossRef]
- Stewart, A.L.; Brion, L.P. Routine use of diuretics in very-low birth-weight infants in the absence of supporting evidence. J. Perinatol. 2011, 31, 633–634. [Google Scholar] [CrossRef]
- Leidig, E. Doppler analysis of superior mesenteric artery blood flow in preterm infants. Arch. Dis. Child. 1989, 64, 476–480. [Google Scholar] [CrossRef]
- Gladman, G.; Sims, D.G.; Chiswick, M.L. Gastrointestinal blood flow velocity after the first feed. Arch. Dis. Child. 1991, 66, 17–20. [Google Scholar] [CrossRef]
- Fang, S.; Kempley, S.T.; Gamsu, H.R. Prediction of early tolerance to enteral feeding in preterm infants by measurement of superior mesenteric artery blood flow velocity. Arch. Dis. Child. Fetal Neonatal Ed. 2001, 85, F42–F45. [Google Scholar] [CrossRef]
- Robel-Tillig, E.; Knüpfer, M.; Pulzer, F.; Vogtmann, C. Blood flow parameters of the superior mesenteric artery as an early predictor of intestinal dysmotility in preterm infants. Pediatr. Radiol. 2004, 34, 958–962. [Google Scholar] [CrossRef]
- Dave, V.; Brion, L.P.; Campbell, D.E.; Scheiner, M.; Raab, C.; Nafday, S.M. Splanchnic tissue oxygenation, but not brain tissue oxygenation, increases after feeds in stable preterm neonates tolerating full bolus orogastric feeding. J. Perinatol. 2009, 29, 213–218. [Google Scholar] [CrossRef]
- Corvaglia, L.; Martini, S.; Battistini, B.; Rucci, P.; Aceti, A.; Faldella, G. Bolus vs. continuous feeding: Effects on splanchnic and cerebral tissue oxygenation in healthy preterm infants. Pediatr. Res. 2014, 76, 81–85. [Google Scholar] [CrossRef]
- Havranek, T.; Rahimi, M.; Hall, H.; Armbrecht, E. Feeding preterm neonates with patent ductus arteriosus (PDA): Intestinal blood flow characteristics and clinical outcomes. J. Matern. Fetal Neonatal Med. 2015, 28, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Corvaglia, L.; Fantini, M.P.; Aceti, A.; Gibertoni, D.; Rucci, P.; Baronciani, D.; Faldella, G. Predictors of full enteral feeding achievement in very low birth weight infants. PLoS ONE 2014, 9, e92235. [Google Scholar] [CrossRef]
- Martini, S.; Corvaglia, L.; Aceti, A.; Vitali, F.; Faldella, G.; Galletti, S. Effect of Patent Ductus Arteriosus on Splanchnic Oxygenation at Enteral Feeding Introduction in Very Preterm Infants. J. Pediatr. Gastroenterol. Nutr. 2019, 69, 493–497. [Google Scholar] [CrossRef]
- Clyman, R.; Wickremasinghe, A.; Jhaveri, N.; Hassinger, D.C.; Attridge, J.T.; Sanocka, U.; Polin, R.; Gillam-Krakauer, M.; Reese, J.; Mammel, M.; et al. Enteral feeding during indomethacin and ibuprofen treatment of a patent ductus arteriosus. J. Pediatr. 2013, 163, 406–411. [Google Scholar] [CrossRef]
- Louis, D.; Torgalkar, R.; Shah, J.; Shah, P.S.; Jain, A. Enteral feeding during indomethacin treatment for patent ductus arteriosus: Association with gastrointestinal outcomes. J. Perinatol. 2016, 36, 544–548. [Google Scholar] [CrossRef]
- Holmström, G.; Hellström, A.; Gränse, L.; Saric, M.; Sunnqvist, B.; Wallin, A.; Tornqvist, K.; Larsson, E. New modifications of Swedish ROP guidelines based on 10-year data from the SWEDROP register. Br. J. Ophthalmol. 2020, 104, 943–949. [Google Scholar] [CrossRef]
- Hartnett, M.E.; Penn, J.S. Mechanisms and management of retinopathy of prematurity. N. Engl. J. Med. 2012, 367, 2515–2526. [Google Scholar] [CrossRef]
- Hellström, A.; Smith, L.E.H.; Dammann, O. Retinopathy of prematurity. Lancet 2013, 382, 1445–1457. [Google Scholar] [CrossRef]
- Alajbegovic-Halimic, J.; Zvizdic, D.; Alimanovic-Halilovic, E.; Dodik, I.; Duvnjak, S. Risk Factors for Retinopathy of Prematurity in Premature Born Children. Med. Arch. 2015, 69, 409–413. [Google Scholar] [CrossRef]
- VanderVeen, D.K.; Martin, C.R.; Mehendale, R.; Allred, E.N.; Dammann, O.; Leviton, A. Early nutrition and weight gain in preterm newborns and the risk of retinopathy of prematurity. PLoS ONE 2013, 8, e64325. [Google Scholar] [CrossRef]
- Athikarisamy, S.; Desai, S.; Patole, S.; Rao, S.; Simmer, K.; Lam, G.C. The Use of Postnatal Weight Gain Algorithms to Predict Severe or Type 1 Retinopathy of Prematurity: A Systematic Review and Meta-analysis. JAMA Netw. Open 2021, 4, e2135879. [Google Scholar] [CrossRef] [PubMed]
- Hellstrom, A.; Perruzzi, C.; Ju, M.; Engstrom, E.; Hard, A.L.; Liu, J.L.; Albertsson-Wikland, K.; Carlsson, B.; Niklasson, A.; Sjodell, L.; et al. Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: Direct correlation with clinical retinopathy of prematurity. Proc. Natl. Acad. Sci. USA 2001, 98, 5804–5808. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.E. IGF-1 and retinopathy of prematurity in the preterm infant. Biol. Neonate 2005, 88, 237–244. [Google Scholar] [CrossRef]
- Mandala, V.K.; Urakurva, A.K.; Gangadhari, S.; Kotha, R.S. The Effects of Early Enteral and Parental Nutrition on Retinopathy of Prematurity: A Systematic Review. Cureus 2023, 15, e49029. [Google Scholar] [CrossRef] [PubMed]
- Akın, M.Ş.; Yiğit, Ş. The effects of early nutritional contents in premature infants on the development and severity of retinopathy: A retrospective case-control study. Trends Pediatr. 2023, 4, 238–246. [Google Scholar] [CrossRef]
- Porcelli, P.J.; Weaver, R.G., Jr. The influence of early postnatal nutrition on retinopathy of prematurity in extremely low birth weight infants. Early Hum. Dev. 2010, 86, 391–396. [Google Scholar] [CrossRef]
- Can, E.; Bülbül, A.; Uslu, S.; Bolat, F.; Cömert, S.; Nuhoğlu, A. Early Aggressive Parenteral Nutrition Induced High Insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 (IGFBP3) Levels Can Prevent Risk of Retinopathy of Prematurity. Iran. J. Pediatr. 2013, 23, 403–410. [Google Scholar]
- Stoltz Sjöström, E.; Lundgren, P.; Öhlund, I.; Holmström, G.; Hellström, A.; Domellöf, M. Low energy intake during the first 4 weeks of life increases the risk for severe retinopathy of prematurity in extremely preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2016, 101, F108–F113. [Google Scholar] [CrossRef]
- Drenckpohl, D.; McConnell, C.; Gaffney, S.; Niehaus, M.; Macwan, K.S. Randomized trial of very low birth weight infants receiving higher rates of infusion of intravenous fat emulsions during the first week of life. Pediatrics 2008, 122, 743–751. [Google Scholar] [CrossRef]
- Kim, K.; Kim, N.J.; Kim, S.Y. Safety and Efficacy of Early High Parenteral Lipid Supplementation in Preterm Infants: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 1535. [Google Scholar] [CrossRef]
- Rath, C.P.; Shivamallappa, M.; Muthusamy, S.; Rao, S.C.; Patole, S. Outcomes of very preterm infants with neonatal hyperglycaemia: A systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 107, 269–280. [Google Scholar] [CrossRef]
- Kim, N.H.; Jung, H.H.; Cha, D.R.; Choi, D.S. Expression of vascular endothelial growth factor in response to high glucose in rat mesangial cells. J. Endocrinol. 2000, 165, 617–624. [Google Scholar] [CrossRef]
- Fu, Z.; Löfqvist, C.A.; Liegl, R.; Wang, Z.; Sun, Y.; Gong, Y.; Liu, C.H.; Meng, S.S.; Burnim, S.B.; Arellano, I.; et al. Photoreceptor glucose metabolism determines normal retinal vascular growth. EMBO Mol. Med. 2018, 10, 76–90. [Google Scholar] [CrossRef]
- Cakir, B.; Hellström, W.; Tomita, Y.; Fu, Z.; Liegl, R.; Winberg, A.; Hansen-Pupp, I.; Ley, D.; Hellström, A.; Löfqvist, C.; et al. IGF1, serum glucose, and retinopathy of prematurity in extremely preterm infants. JCI Insight 2020, 5, e140363. [Google Scholar] [CrossRef]
- Lei, C.; Duan, J.; Ge, G.; Zhang, M. Association between neonatal hyperglycemia and retinopathy of prematurity: A meta-analysis. Eur. J. Pediatr. 2021, 180, 3433–3442. [Google Scholar] [CrossRef]
- Kermorvant-Duchemin, E.; Le Meur, G.; Plaisant, F.; Marchand-Martin, L.; Flamant, C.; Porcher, R.; Lapillonne, A.; Chemtob, S.; Claris, O.; Ancel, P.Y.; et al. Thresholds of glycemia, insulin therapy, and risk for severe retinopathy in premature infants: A cohort study. PLoS Med. 2020, 17, e1003477. [Google Scholar] [CrossRef]
- Connor, W.E.; Neuringer, M.; Reisbick, S. Essential fatty acids: The importance of n-3 fatty acids in the retina and brain. Nutr. Rev. 1992, 50, 21–29. [Google Scholar] [CrossRef]
- Crawford, M.A.; Sinclair, A.J.; Hall, B.; Ogundipe, E.; Wang, Y.; Bitsanis, D.; Djahanbakhch, O.B.; Harbige, L.; Ghebremeskel, K.; Golfetto, I.; et al. The imperative of arachidonic acid in early human development. Prog. Lipid Res. 2023, 91, 101222. [Google Scholar] [CrossRef]
- Skondra, D.; Rodriguez, S.H.; Sharma, A.; Gilbert, J.; Andrews, B.; Claud, E.C. The early gut microbiome could protect against severe retinopathy of prematurity. J. Aapos 2020, 24, 236–238. [Google Scholar] [CrossRef]
- Bharwani, S.K.; Green, B.F.; Pezzullo, J.C.; Bharwani, S.S.; Bharwani, S.S.; Dhanireddy, R. Systematic review and meta-analysis of human milk intake and retinopathy of prematurity: A significant update. J. Perinatol. 2016, 36, 913–920. [Google Scholar] [CrossRef]
- Miller, J.; Tonkin, E.; Damarell, R.A.; McPhee, A.J.; Suganuma, M.; Suganuma, H.; Middleton, P.F.; Makrides, M.; Collins, C.T. A Systematic Review and Meta-Analysis of Human Milk Feeding and Morbidity in Very Low Birth Weight Infants. Nutrients 2018, 10, 707. [Google Scholar] [CrossRef]
- Ledo, A.; Arduini, A.; Asensi, M.A.; Sastre, J.; Escrig, R.; Brugada, M.; Aguar, M.; Saenz, P.; Vento, M. Human milk enhances antioxidant defenses against hydroxyl radical aggression in preterm infants. Am. J. Clin. Nutr. 2009, 89, 210–215. [Google Scholar] [CrossRef]
- Hopperton, K.E.; Pitino, M.A.; Walton, K.; Kiss, A.; Unger, S.L.; O’Connor, D.L.; Bazinet, R.P. Docosahexaenoic acid and arachidonic acid levels are correlated in human milk: Implications for new European infant formula regulations. Lipids 2022, 57, 197–202. [Google Scholar] [CrossRef]
- Cagliari, P.Z.; Hoeller, V.R.F.; Kanzler, É.L.R.; Carraro, M.C.M.; Corrêa, Z.G.D.; Blazius, G.; Marghetti, P.G.; Lenz, G.B.; Mastroeni, S.; Mastroeni, M.F. Oral DHA supplementation and retinopathy of prematurity: The Joinville DHA Clinical Trial. Br. J. Nutr. 2024, 132, 341–350. [Google Scholar] [CrossRef]
- Bernabe-García, M.; Villegas-Silva, R.; Villavicencio-Torres, A.; Calder, P.C.; Rodríguez-Cruz, M.; Maldonado-Hernández, J.; Macías-Loaiza, D.; López-Alarcón, M.; Inda-Icaza, P.; Cruz-Reynoso, L. Enteral Docosahexaenoic Acid and Retinopathy of Prematurity: A Randomized Clinical Trial. JPEN J. Parenter. Enteral Nutr. 2019, 43, 874–882. [Google Scholar] [CrossRef]
- Löfqvist, C.A.; Najm, S.; Hellgren, G.; Engström, E.; Sävman, K.; Nilsson, A.K.; Andersson, M.X.; Hård, A.L.; Smith, L.E.H.; Hellström, A. Association of Retinopathy of Prematurity with Low Levels of Arachidonic Acid: A Secondary Analysis of a Randomized Clinical Trial. JAMA Ophthalmol. 2018, 136, 271–277. [Google Scholar] [CrossRef]
- Hellström, A.; Pivodic, A.; Gränse, L.; Lundgren, P.; Sjöbom, U.; Nilsson, A.K.; Söderling, H.; Hård, A.L.; Smith, L.E.H.; Löfqvist, C.A. Association of Docosahexaenoic Acid and Arachidonic Acid Serum Levels with Retinopathy of Prematurity in Preterm Infants. JAMA Netw. Open 2021, 4, e2128771. [Google Scholar] [CrossRef]
- Hellström, A.; Nilsson, A.K.; Wackernagel, D.; Pivodic, A.; Vanpee, M.; Sjöbom, U.; Hellgren, G.; Hallberg, B.; Domellöf, M.; Klevebro, S.; et al. Effect of Enteral Lipid Supplement on Severe Retinopathy of Prematurity: A Randomized Clinical Trial. JAMA Pediatr. 2021, 175, 359–367. [Google Scholar] [CrossRef]
- Romero-Maldonado, S.; Montoya-Estrada, A.; Reyes-Muñoz, E.; Guzmán-Grenfell, A.M.; Torres-Ramos, Y.D.; Sánchez-Mendez, M.D.; Tolentino-Dolores, M.; Salgado-Valladares, M.B.; Belmont-Gómez, A.; Najéra, N.; et al. Efficacy of water-based vitamin E solution versus placebo in the prevention of retinopathy of prematurity in very low birth weight infants: A randomized clinical trial. Medicine 2021, 100, e26765. [Google Scholar] [CrossRef]
- Brion, L.P.; Bell, E.F.; Raghuveer, T.S. Vitamin E supplementation for prevention of morbidity and mortality in preterm infants. Cochrane Database Syst. Rev. 2003, 2010, Cd003665. [Google Scholar] [CrossRef]
- Manapurath, R.M.; Kumar, M.; Pathak, B.G.; Chowdhury, R.; Sinha, B.; Choudhary, T.; Chandola, N.; Mazumdar, S.; Taneja, S.; Bhandari, N.; et al. Enteral Low-Dose Vitamin A Supplementation in Preterm or Low Birth Weight Infants to Prevent Morbidity and Mortality: A Systematic Review and Meta-analysis. Pediatrics 2022, 150, e2022057092L. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Yang, X.; Zhao, J.; He, J.; Xu, X.; Li, J.; Shi, J.; Mu, D. Early Vitamin A Supplementation for Prevention of Short-Term Morbidity and Mortality in Very-Low-Birth-Weight Infants: A Systematic Review and Meta-Analysis. Front. Pediatr. 2022, 10, 788409. [Google Scholar] [CrossRef] [PubMed]
- Staub, E.; Evers, K.; Askie, L.M. Enteral zinc supplementation for prevention of morbidity and mortality in preterm neonates. Cochrane Database Syst. Rev. 2021, 3, Cd012797. [Google Scholar] [CrossRef]
- Pivodic, A.; Holmström, G.; Smith, L.E.H.; Hård, A.-L.; Löfqvist, C.; Al-Hawasi, A.; Larsson, E.; Lundgren, P.; Gränse, L.; Tornqvist, K.; et al. Prognostic Value of Parenteral Nutrition Duration on Risk of Retinopathy of Prematurity: Development and Validation of the Revised DIGIROP Clinical Decision Support Tool. JAMA Ophthalmol. 2023, 141, 716–724. [Google Scholar] [CrossRef]
- Zamir, I.; Tornevi, A.; Abrahamsson, T.; Ahlsson, F.; Engström, E.; Hallberg, B.; Hansen-Pupp, I.; Sjöström, E.S.; Domellöf, M. Hyperglycemia in Extremely Preterm Infants-Insulin Treatment, Mortality and Nutrient Intakes. J. Pediatr. 2018, 200, 104–110.e101. [Google Scholar] [CrossRef]
- Vayalthrikkovil, S.; Bashir, R.A.; Rabi, Y.; Amin, H.; Spence, J.M.; Robertson, H.L.; Lodha, A. Parenteral Fish-Oil Lipid Emulsions in the Prevention of Severe Retinopathy of Prematurity: A Systematic Review and Meta-Analysis. Am. J. Perinatol. 2017, 34, 705–715. [Google Scholar] [CrossRef]
- Pawlik, D.; Lauterbach, R.; Walczak, M.; Hurkała, J.; Sherman, M.P. Fish-oil fat emulsion supplementation reduces the risk of retinopathy in very low birth weight infants: A prospective, randomized study. JPEN J. Parenter. Enter. Nutr. 2014, 38, 711–716. [Google Scholar] [CrossRef]
- Najm, S.; Löfqvist, C.; Hellgren, G.; Engström, E.; Lundgren, P.; Hård, A.L.; Lapillonne, A.; Sävman, K.; Nilsson, A.K.; Andersson, M.X.; et al. Effects of a lipid emulsion containing fish oil on polyunsaturated fatty acid profiles, growth and morbidities in extremely premature infants: A randomized controlled trial. Clin. Nutr. ESPEN 2017, 20, 17–23. [Google Scholar] [CrossRef]
- Kapoor, V.; Malviya, M.N.; Soll, R. Lipid emulsions for parenterally fed preterm infants. Cochrane Database Syst. Rev. 2019, 6, Cd013163. [Google Scholar] [CrossRef]
- Kim, E.S.; Lee, L.J.; Romero, T.; Calkins, K.L. Outcomes in preterm infants who received a lipid emulsion with fish oil: An observational study. JPEN J. Parenter. Enter. Nutr. 2023, 47, 354–363. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-Y.; Lai, M.-Y.; Lee, C.-H.; Chiang, M.-C. Nutritional Management for Preterm Infants with Common Comorbidities: A Narrative Review. Nutrients 2025, 17, 1959. https://doi.org/10.3390/nu17121959
Chen C-Y, Lai M-Y, Lee C-H, Chiang M-C. Nutritional Management for Preterm Infants with Common Comorbidities: A Narrative Review. Nutrients. 2025; 17(12):1959. https://doi.org/10.3390/nu17121959
Chicago/Turabian StyleChen, Cheng-Yen, Mei-Yin Lai, Cheng-Han Lee, and Ming-Chou Chiang. 2025. "Nutritional Management for Preterm Infants with Common Comorbidities: A Narrative Review" Nutrients 17, no. 12: 1959. https://doi.org/10.3390/nu17121959
APA StyleChen, C.-Y., Lai, M.-Y., Lee, C.-H., & Chiang, M.-C. (2025). Nutritional Management for Preterm Infants with Common Comorbidities: A Narrative Review. Nutrients, 17(12), 1959. https://doi.org/10.3390/nu17121959