Host–Gut Microbiota Interactions: Exploring the Potential Role of Vitamin B1 and B2 in the Microbiota–Gut–Brain Axis and Anxiety, Stress, and Sleep Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Sample Collection and Processing
- (1)
- Vitamin B1 and B2 4 h urinary load test and assays
- (2)
- fecal sample collection and quantitative analysis of specific gut microorganisms
2.4. Scale
- (1)
- Self-Rating Anxiety Scale (SAS)
- (2)
- Perceived Stress Scale (PSS)
- (3)
- Pittsburgh Sleep Quality Index (PSQI)
- (4)
- Epworth Sleepiness Scale (ESS)
2.5. Statistical Analysis
2.6. Ethical Considerations
3. Results
3.1. Baseline Characteristics of Participants
3.2. Effects of Vitamin B1 and B2 Levels on Anxiety, Stress, and Sleep Quality
- (1)
- Statistically significant differences in anxiety and stress levels between male and female groups
- (2)
- Statistically significant differences in sleep quality and drowsiness scores by vitamin B1 level
- (3)
- Statistically significant differences in drowsiness scores between different vitamin B2 levels
- (4)
- Vitamin B1 levels were associated with stress, sleep quality, and drowsiness; vitamin B2 levels were associated with sleepiness
3.3. Association of Specific Gut Microbes with Anxiety, Stress, and Sleep Quality: Heat Map and Network Analysis
- (1)
- Distribution of specific gut microbial abundance
- (2)
- Correlation of specific gut microbes with host anxiety, stress, and sleep quality scores
- (3)
- Correlation of specific gut microbes with host sleep quality and sleepiness scores
- (4)
- Differences in gut microbiome composition between anxiety, stress, sleep quality, and sleepiness subgroups
3.4. Gut Microbiota Composition Across Vitamin B1 and Vitamin B2 Groups
3.5. Analysis of Mediating Effects of the Vitamin B1/B2 → Gut Microbes → Anxiety/Stress/Sleep Quality Pathway: Using a Path Analysis Framework
4. Discussion
4.1. Summary of Key Findings
4.2. Examining the Findings in the Context of the Existing Literature
4.3. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blampied, M.; Tylianakis, J.M.; Bell, C.; Gilbert, C.; Rucklidge, J.J. Efficacy and safety of a vitamin-mineral intervention for symptoms of anxiety and depression in adults: A randomised placebo-controlled trial “NoMAD”. J. Affect. Disord. 2023, 339, 954–964. [Google Scholar] [CrossRef] [PubMed]
- Santomauro, D.F.; Herrera, A.M.M.; Shadid, J.; Zheng, P.; Ashbaugh, C.; Pigott, D.M.; Abbafati, C.; Adolph, C.; Amlag, J.O.; Aravkin, A.Y. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cai, K.; Qi, J.; Wang, F.; Yang, R.; Wang, L.; Lyu, J.; Hu, J.; Wu, Y.; Cai, M. Exploring the moderated mediation of stress and media use: Social support’s impact on anxiety among older adults during the COVID-19 pandemic—Insights from a large-scale cross-sectional study in China. J. Affect. Disord. 2024, 367, 229–237. [Google Scholar] [CrossRef]
- Ellison, O.K.; Bullard, L.E.; Lee, G.K.; Vazou, S.; Pfeiffer, K.A.; Baez, S.E.; Pontifex, M.B. Examining efficacy and potential mechanisms of mindfulness-based cognitive therapy for anxiety and stress reduction among college students in a cluster-randomized controlled trial. Int. J. Clin. Health Psychol. 2024, 24, 100514. [Google Scholar] [CrossRef]
- Siegel, J.M. Sleep viewed as a state of adaptive inactivity. Nat. Rev. Neurosci. 2009, 10, 747–753. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.Y.; Wang, S.B.; Zhang, L.; Li, L.; Xu, D.D.; Ng, C.H.; Ungvari, G.S.; Cui, X.; Liu, Z.M. Prevalence of sleep disturbances in Chinese university students: A comprehensive meta-analysis. J. Sleep Res. 2018, 27, e12648. [Google Scholar] [CrossRef]
- Chen, P.; Lam, M.I.; Si, T.L.; Zhang, L.; Balbuena, L.; Su, Z.; Cheung, T.; Ungvari, G.S.; Sha, S.; Xiang, Y.-T. The prevalence of poor sleep quality in the general population in China: A meta-analysis of epidemiological studies. Eur. Arch. Psychiatry Clin. Neurosci. 2024, 274, 1–14. [Google Scholar] [CrossRef]
- Qu, S.; Yu, Z.; Zhou, Y.; Wang, S.; Jia, M.; Chen, T.; Zhang, X. Gut microbiota modulates neurotransmitter and gut-brain signaling. Microbiol. Res. 2024, 287, 127858. [Google Scholar] [CrossRef] [PubMed]
- Dash, U.C.; Bhol, N.K.; Swain, S.K.; Samal, R.R.; Nayak, P.K.; Raina, V.; Panda, S.K.; Kerry, R.G.; Duttaroy, A.K.; Jena, A.B. Oxidative stress and inflammation in the pathogenesis of neurological disorders: Mechanisms and implications. Acta Pharm. Sin. B 2024, 15, 15–34. [Google Scholar] [CrossRef]
- Hines, M.R.; Gomez-Contreras, P.C.; Liman, S.; Wilson, A.M.; Lu, K.J.; O’Neill, J.A.; Fisher, J.S.; Fredericks, D.C.; Wagner, B.A.; Buettner, G.R.; et al. A reciprocal relationship between mitochondria and lipid peroxidation determines the chondrocyte intracellular redox environment. Redox Biol. 2024, 75, 103306. [Google Scholar] [CrossRef]
- Liu, Y.; Tong, J.; Chen, L.; Chen, W.; Yang, Y. Nutritional frailty and risk of depression and anxiety in middle-aged and older adults: A prospective cohort study of 176,987 UK Biobank participants. Clin. Nutr. ESPEN 2024, 63, 989. [Google Scholar] [CrossRef]
- Daneshzad, E.; Keshavarz, S.A.; Qorbani, M.; Larijani, B.; Azadbakht, L. Dietary total antioxidant capacity and its association with sleep, stress, anxiety, and depression score: A cross-sectional study among diabetic women. Clin. Nutr. ESPEN 2020, 37, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zeng, Q.; Zhu, C.; Yang, G.; Zhong, L. Association between joint physical activity and sleep duration and hypertension in US adults: Cross-sectional NHANES study. Sleep Health 2024, 10, 628–634. [Google Scholar] [CrossRef]
- Heidari, H.; Abbasi, K.; Feizi, A.; Kohan, S.; Amani, R. Effect of vitamin D supplementation on symptoms severity in vitamin D insufficient women with premenstrual syndrome: A randomized controlled trial. Clin. Nutr. ESPEN 2024, 59, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Zandifar, A.; Mousavi, S.; Schmidt, N.B.; Badrfam, R.; Seif, E.; Qorbani, M.; Mehrabani Natanzi, M. Efficacy of vitamins B1 and B6 as an adjunctive therapy to lithium in bipolar-I disorder: A double-blind, randomized, placebo-controlled, clinical trial. J. Affect. Disord. 2024, 345, 103–111. [Google Scholar] [CrossRef]
- Ghaleiha, A.; Davari, H.; Jahangard, L.; Haghighi, M.; Ahmadpanah, M.; Seifrabie, M.A.; Bajoghli, H.; Holsboer-Trachsler, E.; Brand, S. Adjuvant thiamine improved standard treatment in patients with major depressive disorder: Results from a randomized, double-blind, and placebo-controlled clinical trial. Eur. Arch. Psychiatry Clin. Neurosci. 2016, 266, 695–702. [Google Scholar] [CrossRef]
- Teixeira de Santana, P.; Marqueze, E.C. Effect of foods rich in tryptophan, melatonin and complex vitamins a, b, c, d and e associated with administration of melatonin on sleep quality of working women overweight night days. Sleep Med. 2024, 115, 53. [Google Scholar] [CrossRef]
- Mahdavifar, B.; Hosseinzadeh, M.; Salehi-Abargouei, A.; Mirzaei, M.; Vafa, M. Dietary intake of B vitamins and their association with depression, anxiety, and stress symptoms: A cross-sectional, population-based survey. J. Affect. Disord. 2021, 288, 92–98. [Google Scholar] [CrossRef]
- Kharitonova, T.; Shvarts, Y.G.; Verbovoy, A.F.; Orlova, N.S.; Puzyreva, V.P.; Strokov, I.A. Efficacy and safety of the combined metabolic medication, containing inosine, nicotinamide, riboflavin and succinic acid, for the treatment of diabetic neuropathy: A multicenter randomized, double-blind, placebo-controlled parallel group clinical trial (CYLINDER). BMJ Open Diabetes Res. Care 2022, 10, e002785. [Google Scholar] [CrossRef]
- Hossain, K.S.; Amarasena, S.; Mayengbam, S. B vitamins and their roles in gut health. Microorganisms 2022, 10, 1168. [Google Scholar] [CrossRef]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.-M. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef]
- Costliow, Z.; Degnan, P. Thiamine acquisition strategies impact metabolism and competition in the gut microbe Bacteroides thetaiotaomicron. mSystems 2017, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Mathis, D.; Shoelson, S.E. Immunometabolism: An emerging frontier. Nat. Rev. Immunol. 2011, 11, 81. [Google Scholar] [CrossRef] [PubMed]
- Magnúsdóttir, S.; Ravcheev, D.; de Crécy-Lagard, V.; Thiele, I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front. Genet. 2015, 6, 148. [Google Scholar] [CrossRef] [PubMed]
- Vuong, H.E.; Yano, J.M.; Fung, T.C.; Hsiao, E.Y. The microbiome and host behavior. Annu. Rev. Neurosci. 2017, 40, 21–49. [Google Scholar] [CrossRef]
- Schluter, J.; Peled, J.U.; Taylor, B.P.; Markey, K.A.; Smith, M.; Taur, Y.; Niehus, R.; Staffas, A.; Dai, A.; Fontana, E. The gut microbiota is associated with immune cell dynamics in humans. Nature 2020, 588, 303–307. [Google Scholar] [CrossRef]
- Shekarabi, A.; Qureishy, I.; Puglisi, C.H.; Dalseth, M.; Vuong, H.E. Host-microbe interactions: Communication in the microbiota-gut-brain axis. Curr. Opin. Microbiol. 2024, 80, 102494. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, L.; Chang, L.; Pu, Y.; Qu, Y.; Hashimoto, K. A key role of the subdiaphragmatic vagus nerve in the depression-like phenotype and abnormal composition of gut microbiota in mice after lipopolysaccharide administration. Transl. Psychiatry 2020, 10, 186. [Google Scholar] [CrossRef]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef]
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef]
- Chen, X.; Yu, Z.; Wang, W.; Wang, D. Applied Nutritional; People’s Health Publishing House: Beijing, China, 1984. [Google Scholar]
- Shi, H.P.; Chen, W.; Li, Z.N.; Yao, Y.; Ou, F.R. Clinical Nutrition; People’s Health Publishing House: Beijing, China, 2024. [Google Scholar]
- Lin, C.; Guo, L.; Lai, J.; Huang, J. Vitamin B1, B2, C urine load test for workers in high-temperature environments. J. Occup. Med. 1985, 12, 6–7. [Google Scholar]
- Wu, Z.; Pan, X.; Yuan, Y.; Lou, P.; Gordejeva, L.; Ni, S.; Zhu, X.; Liu, B.; Wu, L.; Li, L.; et al. An Evaluation Method of Human Gut Microbial Homeostasis by Testing Specific Fecal Microbiota. Engineering 2023, 29, 110–119. [Google Scholar] [CrossRef]
- Zung, W.W. A rating instrument for anxiety disorders. Psychosom. J. Consult. Liaison Psychiatry 1971, 12, 371–379. [Google Scholar] [CrossRef]
- Cohen, S.; Kamarck, T.; Mermelstein, R. Perceived stress scale. Meas. Stress Guide Health Soc. Sci. 1994, 10, 1–2. [Google Scholar]
- Buysse, D.J.; Reynolds, C.F., III; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Johns, M.W. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Ye, B. Analyses of Mediating Effects: The Development of Methods and Models. Adv. Psychol. Sci. 2014, 22, 731–744. [Google Scholar] [CrossRef]
- Isenberg-Grzeda, E.; Kutner, H.E.; Nicolson, S.E. Wernicke-Korsakoff-syndrome: Under-recognized and under-treated. Psychosomatics 2012, 53, 507–516. [Google Scholar] [CrossRef]
- Sriram, K.; Manzanares, W.; Joseph, K. Thiamine in nutrition therapy. Nutr. Clin. Pract. 2012, 27, 41–50. [Google Scholar] [CrossRef]
- Lee, D.; Kim, K.; Lee, Y.; Oh, K.; Jung, S.J. The relationship between thiamine intake and long sleep duration: Results from the korea national health and nutrition examination survey. J. Prev. Med. Public Health 2022, 55, 520. [Google Scholar] [CrossRef]
- Kumar, A.; Rinwa, P.; Kaur, G.; Machawal, L. Stress: Neurobiology, consequences and management. J. Pharm. Bioallied Sci. 2013, 5, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Bist, R. Alteration in cholinesterases, γ-aminobutyric acid and serotonin level with respect to thiamine deficiency in Swiss mice. Turk. J. Biochem. 2019, 44, 218–223. [Google Scholar] [CrossRef]
- Suwannasom, N.; Kao, I.; Pruss, A.; Georgieva, R.; Baumler, H. Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int. J. Mol. Sci. 2020, 21, 950. [Google Scholar] [CrossRef]
- Ashoori, M.; Saedisomeolia, A. Riboflavin (vitamin B(2)) and oxidative stress: A review. Br. J. Nutr. 2014, 111, 1985–1991. [Google Scholar] [CrossRef]
- Everson, C.A.; Laatsch, C.D.; Hogg, N. Antioxidant defense responses to sleep loss and sleep recovery. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2005, 288, R374–R383. [Google Scholar] [CrossRef] [PubMed]
- Everson, C.A.; Toth, L.A. Systemic bacterial invasion induced by sleep deprivation. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2000, 278, R905–R916. [Google Scholar] [CrossRef]
- Arts, B.; Kraneveld, A.; Garssen, J.; Verster, J. 0427 The Association Between Dietary Vitamin B2 Intake, Sleep Quality, And Daytime Alertness. Sleep 2018, 41, A162. [Google Scholar] [CrossRef]
- Daviu, N.; Bruchas, M.R.; Moghaddam, B.; Sandi, C.; Beyeler, A. Neurobiological links between stress and anxiety. Neurobiol. Stress 2019, 11, 100191. [Google Scholar] [CrossRef]
- Slater, G.; Steier, J. Excessive daytime sleepiness in sleep disorders. J. Thorac. Dis. 2012, 4, 608. [Google Scholar] [CrossRef]
- Graeff, F.G.; Guimarães, F.S.; De Andrade, T.G.; Deakin, J.F. Role of 5-HT in stress, anxiety, and depression. Pharmacol. Biochem. Behav. 1996, 54, 129–141. [Google Scholar] [CrossRef]
- Kahn, R.S.; Kalus, O.; Wetzler, S.; Van Praag, H.M. The role of serotonin in the regulation of anxiety. In Role of Serotonin in Psychiatric Disorders; Routledge: Abingdon, UK, 2023; pp. 129–160. [Google Scholar]
- Barrett, E.; Ross, R.; O’Toole, P.W.; Fitzgerald, G.F.; Stanton, C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 2012, 113, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.M.; De Souza, R.; Kendall, C.W.; Emam, A.; Jenkins, D.J. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006, 40, 235–243. [Google Scholar] [CrossRef]
- Martin-Gallausiaux, C.; Marinelli, L.; Blottière, H.M.; Larraufie, P.; Lapaque, N. SCFA: Mechanisms and functional importance in the gut. Proc. Nutr. Soc. 2021, 80, 37–49. [Google Scholar] [CrossRef]
- O’Riordan, K.J.; Collins, M.K.; Moloney, G.M.; Knox, E.G.; Aburto, M.R.; Fülling, C.; Morley, S.J.; Clarke, G.; Schellekens, H.; Cryan, J.F. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Mol. Cell. Endocrinol. 2022, 546, 111572. [Google Scholar] [CrossRef]
- Braniste, V.; Al-Asmakh, M.; Kowal, C.; Anuar, F.; Abbaspour, A.; Tóth, M.; Korecka, A.; Bakocevic, N.; Ng, L.G.; Kundu, P. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 2014, 6, 263ra158. [Google Scholar] [CrossRef] [PubMed]
- Erny, D.; Hrabě de Angelis, A.L.; Jaitin, D.; Wieghofer, P.; Staszewski, O.; David, E.; Keren-Shaul, H.; Mahlakoiv, T.; Jakobshagen, K.; Buch, T. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 2015, 18, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Martin-Gallausiaux, C.; Larraufie, P.; Jarry, A.; Béguet-Crespel, F.; Marinelli, L.; Ledue, F.; Reimann, F.; Blottière, H.M.; Lapaque, N. Butyrate produced by commensal bacteria down-regulates indolamine 2, 3-dioxygenase 1 (IDO-1) expression via a dual mechanism in human intestinal epithelial cells. Front. Immunol. 2018, 9, 2838. [Google Scholar] [CrossRef]
- Reichardt, N.; Duncan, S.H.; Young, P.; Belenguer, A.; McWilliam Leitch, C.; Scott, K.P.; Flint, H.J.; Louis, P. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014, 8, 1323–1335. [Google Scholar] [CrossRef]
- Backhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-bacterial mutualism in the human intestine. Science 2005, 307, 1915–1920. [Google Scholar] [CrossRef]
- Gill, S.R.; Pop, M.; DeBoy, R.T.; Eckburg, P.B.; Turnbaugh, P.J.; Samuel, B.S.; Gordon, J.I.; Relman, D.A.; Fraser-Liggett, C.M.; Nelson, K.E. Metagenomic analysis of the human distal gut microbiome. Science 2006, 312, 1355–1359. [Google Scholar] [CrossRef]
- Silva, A.; Barbosa, F.; Duarte, R.; Vieira, L.; Arantes, R.; Nicoli, J. Effect of Bifidobacterium longum ingestion on experimental salmonellosis in mice. J. Appl. Microbiol. 2004, 97, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.A.; Torres, A.G. Host-microbe communication within the GI tract. In GI Microbiota and Regulation of the Immune System; Springer: New York, NY, USA, 2008; pp. 93–101. [Google Scholar] [CrossRef]
- Scaldaferri, F.; Pizzoferrato, M.; Gerardi, V.; Lopetuso, L.; Gasbarrini, A. The gut barrier: New acquisitions and therapeutic approaches. J. Clin. Gastroenterol. 2012, 46, S12–S17. [Google Scholar] [CrossRef]
- Galley, J.D.; Nelson, M.C.; Yu, Z.; Dowd, S.E.; Walter, J.; Kumar, P.S.; Lyte, M.; Bailey, M.T. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol. 2014, 14, 189. [Google Scholar] [CrossRef] [PubMed]
- Claesson, M.J.; Jeffery, I.B.; Conde, S.; Power, S.E.; O’connor, E.M.; Cusack, S.; Harris, H.M.; Coakley, M.; Lakshminarayanan, B.; O’sullivan, O. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012, 488, 178–184. [Google Scholar] [CrossRef]
- Lopetuso, L.R.; Scaldaferri, F.; Petito, V.; Gasbarrini, A. Commensal Clostridia: Leading players in the maintenance of gut homeostasis. Gut Pathog. 2013, 5, 23. [Google Scholar] [CrossRef]
- Wexler, H.M. Bacteroides: The good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 2007, 20, 593–621. [Google Scholar] [CrossRef]
- Charlet, R.; Bortolus, C.; Sendid, B.; Jawhara, S. Bacteroides thetaiotaomicron and Lactobacillus johnsonii modulate intestinal inflammation and eliminate fungi via enzymatic hydrolysis of the fungal cell wall. Sci. Rep. 2020, 10, 11510. [Google Scholar] [CrossRef]
- Baldelli, V.; Scaldaferri, F.; Putignani, L.; Del Chierico, F. The role of Enterobacteriaceae in gut microbiota dysbiosis in inflammatory bowel diseases. Microorganisms 2021, 9, 697. [Google Scholar] [CrossRef] [PubMed]
- Turroni, F.; Duranti, S.; Bottacini, F.; Guglielmetti, S.; Van Sinderen, D.; Ventura, M. Bifidobacterium bifidum as an example of a specialized human gut commensal. Front. Microbiol. 2014, 5, 437. [Google Scholar] [CrossRef]
- O’callaghan, A.; Van Sinderen, D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 2016, 7, 925. [Google Scholar] [CrossRef]
- Williams, E.; Powers, H.; Rumsey, R. Morphological changes in the rat small intestine in response to riboflavin depletion. Br. J. Nutr. 1995, 73, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Flint, H.J.; Duncan, S.H.; Louis, P. The impact of nutrition on intestinal bacterial communities. Curr. Opin. Microbiol. 2017, 38, 59–65. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Overall (N = 76) |
---|---|
Sociodemographic | |
N | 76 |
Age, y | 19.5 ± 1.2 |
Sex, n(%) | |
Female | 36(47.4%) |
Male | 40(52.6%) |
Education level, n(%) | |
First year | 48(63.1%) |
Third year | 28(36.8%) |
Lifestyle | |
BMI, kg/m2 | 21.3 ± 3.1 |
Daily physical activity practician, n(%) | |
Mild level | 64(84.2%) |
Middle level | 11(14.5%) |
Severe level | 1(1.3%) |
Smoking, no, n(%) | 69(90.7%) |
Drinking, no, n(%) | 70(92.1%) |
Nutritional status | |
Vitamin B1 in urine, ug | 269.2 ± 382.8 |
Vitamin B2 in urine, ug | 321.3 ± 365.5 |
Psychological status | |
Anxiety score (SAS) | 42.5 ± 9.9 |
Stress score (PSS) | 19.6 ± 4.9 |
Sleep quality index (PSQI) | 9.2 ± 4.8 |
Sleepiness score (ESS) | 10.2 ± 5.7 |
Variable | t-Value | df | p-Value | Mean Difference | 95%CI |
---|---|---|---|---|---|
Vitamin B2 | −0.36 | 74 | 0.723 | −13.74 | −90.77–63.29 |
SAS | −3.78 | 74 | <0.05 * | −8.08 | −12.36–−3.79 |
PSS | −3.33 | 74 | <0.05 * | −3.52 | −5.62–−1.43 |
PSQI | −0.42 | 74 | 0.674 | −0.48 | −2.72–1.76 |
ESS | −0.48 | 74 | 0.631 | −0.63 | −3.23–1.97 |
Variable | df | H | p-Value |
---|---|---|---|
SAS | 2 | 0.451 | 0.978 |
PSS | 2 | 8.569 | 0.075 |
PSQI | 2 | 34.087 | <0.05 * |
ESS | 2 | 37.667 | <0.05 * |
Variable | Sum of Squares | Mean Squares | F | p-Value |
---|---|---|---|---|
SAS | 64.749 | 21.583 | 0.215 | 0.886 |
PSS | 85.038 | 28.346 | 1.190 | 0.320 |
PSQI | 177.761 | 59.254 | 2.641 | 0.056 |
ESS | 311.028 | 103.676 | 3.561 | 0.018 * |
Variable | Vitamin B1 | Vitamin B2 | SAS | PSS | PSQI | ESS |
---|---|---|---|---|---|---|
Vitamin B1 | 1.000 | |||||
Vitamin B2 | 0.282 * | 1.000 | ||||
SAS | 0.002 | −0.001 | 1.000 | |||
PSS | 0.341 * | 0.149 | 0.357 * | 1.000 | ||
PSQI | −0.592 * | −0.223 | 0.191 | −0.104 | 1.000 | |
ESS | −0.654 * | −0.235 * | 0.060 | −0.203 | 0.847 * | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Y.; Wu, M.; Su, B.; Lin, H.; Li, Q.; He, Y.; Zhong, T.; Xiao, Y.; Yu, X. Host–Gut Microbiota Interactions: Exploring the Potential Role of Vitamin B1 and B2 in the Microbiota–Gut–Brain Axis and Anxiety, Stress, and Sleep Quality. Nutrients 2025, 17, 1894. https://doi.org/10.3390/nu17111894
Tao Y, Wu M, Su B, Lin H, Li Q, He Y, Zhong T, Xiao Y, Yu X. Host–Gut Microbiota Interactions: Exploring the Potential Role of Vitamin B1 and B2 in the Microbiota–Gut–Brain Axis and Anxiety, Stress, and Sleep Quality. Nutrients. 2025; 17(11):1894. https://doi.org/10.3390/nu17111894
Chicago/Turabian StyleTao, Yingxuan, Murong Wu, Boyao Su, Heng Lin, Qianzi Li, Yuhong He, Tian Zhong, Ying Xiao, and Xi Yu. 2025. "Host–Gut Microbiota Interactions: Exploring the Potential Role of Vitamin B1 and B2 in the Microbiota–Gut–Brain Axis and Anxiety, Stress, and Sleep Quality" Nutrients 17, no. 11: 1894. https://doi.org/10.3390/nu17111894
APA StyleTao, Y., Wu, M., Su, B., Lin, H., Li, Q., He, Y., Zhong, T., Xiao, Y., & Yu, X. (2025). Host–Gut Microbiota Interactions: Exploring the Potential Role of Vitamin B1 and B2 in the Microbiota–Gut–Brain Axis and Anxiety, Stress, and Sleep Quality. Nutrients, 17(11), 1894. https://doi.org/10.3390/nu17111894