Chronotype, Lifestyles, and Anthropometric and Biochemical Indices for Cardiovascular Risk Assessment Among Obese Individuals
Abstract
:1. Introduction
2. Methods
2.1. Study Design, Population, and Sample
2.2. Ethical Considerations
2.3. Data Collection
2.3.1. Clinical and Anthropometrical Assessment
2.3.2. Biochemical Assessment
2.3.3. Chronotypes
2.3.4. Physical Activity
2.3.5. Sleep Quality
2.3.6. Eating Speed
2.3.7. Skipping Breakfast
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.1.1. Breakfast Skipping, Chronotypes, Physical Activity, Sleep Quality, and Eating Speed by Sex
3.1.2. Anthropometric and Biochemical Parameters by Sex
3.2. Cardiovascular Anthropometric Health Risk Factors
3.3. Cardiovascular Biochemical-Based Health Risk Factors
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Obesity and Overweight. Fact Sheets. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 11 April 2025).
- Lopez-Jimenez, F.; Almahmeed, W.; Bays, H.; Cuevas, A.; Di Angelantonio, E.; le Roux, C.W.; Sattar, N.; Sun, M.C.; Wittert, G.; Pinto, F.J. Obesity and cardiovascular disease: Mechanistic insights and management strategies. A joint position paper by the World Heart Federation and World Obesity Federation. Eur. J. Prev. Cardiol. 2022, 29, 2218–2237. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, R.; Ramirez, B.; Jay, B. Strategies to Manage Obesity: Lifestyle. Methodist DeBakey Cardiovasc. J. 2025, 21, 53. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Guidelines on Physical Activity and Sedentary Behaviour; WHO: Geneva, Switzerland, 2020; Available online: https://www.who.int/publications/i/item/9789240015128 (accessed on 11 April 2025).
- Ehret, C.F. The sense of time: Evidence for its molecular basis in the eukaryotic gene-action system. Adv. Biol. Med. Phys. 1974, 15, 47–77. [Google Scholar]
- Malin, S.K.; Remchak, M.M.E.; Heiston, E.M.; Battillo, D.J.; Gow, A.J.; Shah, A.M.; Liu, Z. Intermediate versus morning chronotype has lower vascular insulin sensitivity in adults with obesity. Diabetes Obes. Metab. 2024, 26, 1582–1592. [Google Scholar] [CrossRef] [PubMed]
- Ofori-Asenso, R.; Owen, A.J.; Liew, D. Skipping breakfast and the risk of cardiovascular disease and death: A systematic review of prospective cohort studies in primary prevention settings. J. Cardiovasc. Dev. Dis. 2019, 6, 30. [Google Scholar] [CrossRef]
- Minari, T.P.; Manzano, C.F.; Yugar, L.B.T.; Sedenho-Prado, L.G.; de Azevedo Rubio, T.; Tácito, L.H.B.; Pires, A.C.; Vilela-Martin, J.F.; Cosenso-Martin, L.N.; Ludovico, N.D. The effect of breakfast skipping and sleep disorders on glycemic control, cardiovascular risk, and weight loss in type 2 diabetes. Clin. Nutr. ESPEN 2025, 65, 172–181. [Google Scholar] [CrossRef]
- Hong, S.; Lee, D.-B.; Yoon, D.-W.; Yoo, S.-L.; Kim, J. The Effect of Sleep Disruption on Cardiometabolic Health. Life 2025, 15, 60. [Google Scholar] [CrossRef]
- Barrea, L.; Vetrani, C.; Verde, L.; Napolitano, B.; Savastano, S.; Colao, A.; Muscogiuri, G. “Forever young at the table”: Metabolic effects of eating speed in obesity. J. Transl. Med. 2021, 19, 530. [Google Scholar] [CrossRef]
- Muscogiuri, G. The timing of energy intake. Proc. Nutr. Soc. 2024, 83, 28–34. [Google Scholar] [CrossRef]
- Wu, Y.; Li, D.; Vermund, S.H. Advantages and limitations of the body mass index (BMI) to assess adult obesity. Int. J. Environ. Res. Public Health 2024, 21, 757. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Krakauer, J.C. A new body shape index predicts mortality hazard independently of body mass index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.M.; Bredlau, C.; Bosy-Westphal, A.; Mueller, M.; Shen, W.; Gallagher, D.; Maeda, Y.; McDougall, A.; Peterson, C.M.; Ravussin, E. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity 2013, 21, 2264–2271. [Google Scholar] [CrossRef]
- Dobiášová, M.; Frohlich, J. The plasma parameter log (TG/HDL-C) as an atherogenic index: Correlation with lipoprotein particle size and esterification rate inapob-lipoprotein-depleted plasma (FERHDL). Clin. Biochem. 2001, 34, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Simental-Mendía, L.E.; Rodríguez-Morán, M.; Guerrero-Romero, F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab. Syndr. Relat. Disord. 2008, 6, 299–304. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.; Treacher, D.F.; Turner, R. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Yusoff, F.M.; Kajikawa, M.; Yamaji, T.; Mizobuchi, A.; Kishimoto, S.; Maruhashi, T.; Higashi, Y. A Body Shape Index as a Simple Anthropometric Marker for the Risk of Cardiovascular Events. Curr. Cardiol. Rep. 2025, 27, 46. [Google Scholar] [CrossRef]
- He, X.; Zhu, J.; Liang, W.; Yang, X.; Ning, W.; Zhao, Z.; Chen, J.; He, Q. Association of body roundness index with cardiovascular disease in patients with cardiometabolic syndrome: A cross-sectional study based on NHANES 2009–2018. Front. Endocrinol. 2025, 16, 1524352. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Han, K.; Park, C.-Y. The triglyceride glucose index is a simple and low-cost marker associated with atherosclerotic cardiovascular disease: A population-based study. BMC Med. 2020, 18, 361. [Google Scholar] [CrossRef]
- Sajdeya, O.; Beran, A.; Mhanna, M.; Alharbi, A.; Burmeister, C.; Abuhelwa, Z.; Malhas, S.-E.; Khader, Y.; Sayeh, W.; Assaly, R.; et al. Triglyceride Glucose Index for the Prediction of Subclinical Atherosclerosis and Arterial Stiffness: A Meta-analysis of 37,780 Individuals. Curr. Probl. Cardiol. 2022, 47, 101390. [Google Scholar] [CrossRef]
- Iglesies-Grau, J.; Garcia-Alvarez, A.; Oliva, B.; Mendieta, G.; Garcia-Lunar, I.; Fuster, J.J.; Devesa, A.; Perez-Herreras, C.; Fernandez-Ortiz, A.; Brugada, R.; et al. Early insulin resistance in low-risk subjects with normal glycemia is associated with subclinical atherosclerosis. Eur. J. Prev. Cardiol. 2024, 31, zwae175.320. [Google Scholar] [CrossRef]
- Mansoori, A.; Allahyari, M.; Mirvahabi, M.S.; Tanbakuchi, D.; Ghoflchi, S.; Derakhshan-Nezhad, E.; Azarian, F.; Ferns, G.; Esmaily, H.; Ghayour-Mobarhan, M. Predictive properties of novel anthropometric and biochemical indexes for prediction of cardiovascular risk. Diabetol. Metab. Syndr. 2024, 16, 304. [Google Scholar] [CrossRef]
- Rubino, F.; Cummings, D.E.; Eckel, R.H.; Cohen, R.V.; Wilding, J.P.; Brown, W.A.; Stanford, F.C.; Batterham, R.L.; Farooqi, I.S.; Farpour-Lambert, N.J. Definition and diagnostic criteria of clinical obesity. Lancet Diabetes Endocrinol. 2025, 13, 221–262. [Google Scholar] [CrossRef] [PubMed]
- Goodyear, M.D.; Krleza-Jeric, K.; Lemmens, T. The declaration of Helsinki. BMJ 2007, 335, 624–625. [Google Scholar] [CrossRef] [PubMed]
- Norton, K.I. Standards for anthropometry assessment. In Kinanthropometry and Exercise Physiology; Routledge: London, UK, 2018; pp. 68–137. [Google Scholar]
- World Health Organization (WHO). A Healthy Lifestyle—WHO Recommendations. Available online: https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations (accessed on 11 April 2025).
- Bala, C.; Roman, G.; Hancu, N. Lancet Diabetes & Endocrinology Commission on diagnosis of clinical obesity-possible implications on clinical practice. Rom. J. Diabetes Nutr. Metab. Dis. 2025, 32, 1–4. [Google Scholar]
- Sweatt, K.; Garvey, W.T.; Martins, C. Strengths and Limitations of BMI in the Diagnosis of Obesity: What is the Path Forward? Curr. Obes. Rep. 2024, 13, 584–595. [Google Scholar] [CrossRef]
- Nagayama, D.; Fujishiro, K.; Watanabe, Y.; Yamaguchi, T.; Suzuki, K.; Saiki, A.; Shirai, K. A body shape index (ABSI) as a variant of conicity index not affected by the obesity paradox: A cross-sectional study using arterial stiffness parameter. J. Pers. Med. 2022, 12, 2014. [Google Scholar] [CrossRef]
- Tao, L.; Miao, L.; Guo, Y.-J.; Liu, Y.-L.; Xiao, L.-H.; Yang, Z.-J. Associations of body roundness index with cardiovascular and all-cause mortality: NHANES 2001–2018. J. Hum. Hypertens. 2024, 38, 120–127. [Google Scholar] [CrossRef]
- Fernández-Macías, J.C.; Ochoa-Martínez, A.C.; Varela-Silva, J.A.; Pérez-Maldonado, I.N. Atherogenic index of plasma: Novel predictive biomarker for cardiovascular illnesses. Arch. Med. Res. 2019, 50, 285–294. [Google Scholar] [CrossRef]
- Avagimyan, A.; Pogosova, N.; Fogacci, F.; Aghajanova, E.; Djndoyan, Z.; Patoulias, D.; Sasso, L.L.; Bernardi, M.; Faggiano, A.; Mohammadifard, N. Triglyceride-glucose index (TyG) as a novel biomarker in the era of cardiometabolic medicine. Int. J. Cardiol. 2025, 418, 132663. [Google Scholar] [CrossRef]
- Iglesies-Grau, J.; Garcia-Alvarez, A.; Oliva, B.; Mendieta, G.; García-Lunar, I.; Fuster, J.J.; Devesa, A.; Pérez-Herreras, C.; Fernández-Ortiz, A.; Brugada, R. Early insulin resistance in normoglycemic low-risk individuals is associated with subclinical atherosclerosis. Cardiovasc. Diabetol. 2023, 22, 350. [Google Scholar] [CrossRef]
- Strisciuglio, T.; Izzo, R.; Barbato, E.; Di Gioia, G.; Colaiori, I.; Fiordelisi, A.; Morisco, C.; Bartunek, J.; Franco, D.; Ammirati, G. Insulin resistance predicts severity of coronary atherosclerotic disease in non-diabetic patients. J. Clin. Med. 2020, 9, 2144. [Google Scholar] [CrossRef] [PubMed]
- Horne, J.A.; Ostberg, O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int. J. Chronobiol. 1976, 4, 97–110. [Google Scholar] [PubMed]
- Adan, A.; Almirall, H. Horne & Östberg morningness-eveningness questionnaire: A reduced scale. Personal. Individ. Differ. 1991, 12, 241–253. [Google Scholar] [CrossRef]
- Loureiro, F.; Garcia-Marques, T. Morning or evening person? Which type are you? Self-assessment of chronotype. Personal. Individ. Differ. 2015, 86, 168–171. [Google Scholar] [CrossRef]
- Godin, G.; Shephard, R. A simple method to assess exercise behavior in the community. Can. J. Appl. Sport Sci. 1985, 10, 141–146. [Google Scholar] [PubMed]
- Godin, G. The Godin-Shephard leisure-time physical activity questionnaire. Health Fit. J. Can. 2011, 4, 18–22. [Google Scholar] [CrossRef]
- João, K.A.D.R.; Becker, N.B.; de Neves Jesus, S.; Martins, R.I.S. Validation of the Portuguese version of the Pittsburgh sleep quality index (PSQI-PT). Psychiatry Res. 2017, 247, 225–229. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F., III; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Hulley, S.B.; Cummings, S.R.; Browner, W.S.; Grady, D.; Newman, T.B. Designing Clinical Research: An Epidemiologic Approach; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Cabral, S.; Gavina, C.; Almeida, M.; Sousa, A.; Francisco, A.R.; Oliveira, E.I.; Domingues, K.; Branco, L.M.; Monteiro, S.; Alegria, S. Strategic Plan for Cardiovascular Health in Portugal–Portuguese Society of Cardiology (PESCP-SPC). Rev. Port. Cardiol. 2025, 44, 41–56. [Google Scholar] [CrossRef]
- Alves, C.; Cibelle, M.; Quitéria, R.; Mafalda, B. Prevalence of Cardiovascular Risk Factors in a Sample from the Portuguese Population—An Analysis of e_COR Study. In Proceedings of the EuroPRevent 2015, Lisbon, Portugal, 14–16 May 2015. [Google Scholar]
- Muscogiuri, G.; Verde, L.; Vetrani, C.; Barrea, L.; Savastano, S.; Colao, A. Obesity: A gender-view. J. Endocrinol. Investig. 2024, 47, 299–306. [Google Scholar] [CrossRef]
- Karastergiou, K.; Smith, S.R.; Greenberg, A.S.; Fried, S.K. Sex differences in human adipose tissues–the biology of pear shape. Biol. Sex Differ. 2012, 3, 13. [Google Scholar] [CrossRef]
- Holven, K.B.; Roeters van Lennep, J. Sex differences in lipids: A life course approach. Atherosclerosis 2023, 384, 117270. [Google Scholar] [CrossRef]
- Langlois, M.R.; Nordestgaard, B.G.; Langsted, A.; Chapman, M.J.; Aakre, K.M.; Baum, H.; Borén, J.; Bruckert, E.; Catapano, A.; Cobbaert, C.; et al. Quantifying atherogenic lipoproteins for lipid-lowering strategies: Consensus-based recommendations from EAS and EFLM. Clin. Chem. Lab. Med. 2020, 58, 496–517. [Google Scholar] [CrossRef]
- Tramunt, B.; Smati, S.; Grandgeorge, N.; Lenfant, F.; Arnal, J.-F.; Montagner, A.; Gourdy, P. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 2020, 63, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, B.; Ge, Y.; Shi, H.; Song, S.; Xue, W.; Li, J.; Fu, K.; Chen, X.; Teng, W.; et al. Association between skipping breakfast and risk of cardiovascular disease and all cause mortality: A meta-analysis. Clin. Nutr. 2020, 39, 2982–2988. [Google Scholar] [CrossRef] [PubMed]
- Cahill, L.E.; Chiuve, S.E.; Mekary, R.A.; Jensen, M.K.; Flint, A.J.; Hu, F.B.; Rimm, E.B. Prospective Study of Breakfast Eating and Incident Coronary Heart Disease in a Cohort of Male US Health Professionals. Circulation 2013, 128, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Rong, S.; Snetselaar Linda, G.; Xu, G.; Sun, Y.; Liu, B.; Wallace Robert, B.; Bao, W. Association of Skipping Breakfast with Cardiovascular and All-Cause Mortality. JACC 2019, 73, 2025–2032. [Google Scholar] [CrossRef]
- Nakajima, K.; Higuchi, R.; Mizusawa, K. Unexpectedly High Prevalence of Breakfast Skipping in Low Body-Weight Middle-Aged Men: Results of the Kanagawa Investigation of Total Checkup Data from the National Data Base-7 (KITCHEN-7). Nutrients 2020, 13, 102. [Google Scholar] [CrossRef]
- Ma, X.; Chen, Q.; Pu, Y.; Guo, M.; Jiang, Z.; Huang, W.; Long, Y.; Xu, Y. Skipping breakfast is associated with overweight and obesity: A systematic review and meta-analysis. Obes. Res. Clin. Pract. 2020, 14, 1–8. [Google Scholar] [CrossRef]
- Bohan Brown, M.M.; Milanes, J.E.; Allison, D.B.; Brown, A.W. Eating versus skipping breakfast has no discernible effect on obesity-related anthropometric outcomes: A systematic review and meta-analysis. F1000Research 2020, 9, 140. [Google Scholar] [CrossRef]
- Oshita, K.; Ishihara, Y.; Seike, K.; Myotsuzono, R. Associations of body composition with physical activity, nutritional intake status, and chronotype among female university students in Japan. J. Physiol. Anthr. 2024, 43, 13. [Google Scholar] [CrossRef]
- Reis, C.; Paiva, T. Delayed sleep-wake phase disorder in a clinical population: Gender and sub-population diferences. Sleep Sci. 2019, 12, 203–213. [Google Scholar] [CrossRef]
- De Amicis, R.; Foppiani, A.; Leone, A.; Galasso, L.; Montaruli, A.; Roveda, E.; Castelli, L.; Esposito, F.; Bertoli, S.; Battezzati, A. 616-P: Glucose Metabolism—Does Chronotype Matter? Diabetes 2023, 72, 616-P. [Google Scholar] [CrossRef]
- Remchak, M.-M.E.; Heiston, E.M.; Ballantyne, A.; Dotson, B.L.; Stewart, N.R.; Spaeth, A.M.; Malin, S.K. Insulin sensitivity and metabolic flexibility parallel plasma TCA levels in early chronotype with metabolic syndrome. J. Clin. Endocrinol. Metab. 2022, 107, e3487–e3496. [Google Scholar] [CrossRef] [PubMed]
- Gast, K.B.; Tjeerdema, N.; Stijnen, T.; Smit, J.W.; Dekkers, O.M. Insulin resistance and risk of incident cardiovascular events in adults without diabetes: Meta-analysis. PLoS ONE 2012, 7, e52036. [Google Scholar] [CrossRef] [PubMed]
- Reis, C.; Dias, S.; Rodrigues, A.M.; Sousa, R.D.; Gregório, M.J.; Branco, J.; Canhão, H.; Paiva, T. Sleep duration, lifestyles and chronic diseases: A cross-sectional population-based study. Sleep Sci. 2018, 11, 217–230. [Google Scholar] [CrossRef]
- Cátia, R. Sleep Patterns in Portugal: European and International Comparisons. Ph.D. Thesis, University of Lisbon, Lisbon, Portugal, 2020. [Google Scholar]
- Eid, S.W.; Brown, R.F.; Maloney, S.K.; Birmingham, C.L. Can the relationship between overweight/obesity and sleep quality be explained by affect and behaviour? Eat. Weight Disord. 2022, 27, 2821–2834. [Google Scholar] [CrossRef]
- Kohanmoo, A.; Kazemi, A.; Zare, M.; Akhlaghi, M. Gender-specific link between sleep quality and body composition components: A cross-sectional study on the elderly. Sci. Rep. 2024, 14, 8113. [Google Scholar] [CrossRef]
- Shin, H.-Y.; Kang, G.; Kim, S.-W.; Kim, J.-M.; Yoon, J.-S.; Shin, I.-S. Associations between sleep duration and abnormal serum lipid levels: Data from the Korean National Health and Nutrition Examination Survey (KNHANES). Sleep Med. 2016, 24, 119–123. [Google Scholar] [CrossRef]
- Kruisbrink, M.; Robertson, W.; Ji, C.; Miller, M.A.; Geleijnse, J.M.; Cappuccio, F.P. Association of sleep duration and quality with blood lipids: A systematic review and meta-analysis of prospective studies. BMJ Open 2017, 7, e018585. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Santos-Lozano, A.; Barrán, A.T.; Fernández-Navarro, P.; Castillo-García, A.; Ruilope, L.M.; Ríos Insua, D.; Ordovas, J.M.; Ley, V.; Lucia, A. Joint association of physical activity and body mass index with cardiovascular risk: A nationwide population-based cross-sectional study. Eur. J. Prev. Cardiol. 2022, 29, e50–e52. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Chen, S.; Liu, S.; Li, Y.; Wu, S.; Wang, Y. Physical activity, cardiovascular disease, and mortality across obesity levels. EPMA J. 2025, 16, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.; Loprinzi, P. The Dose-Response Association Between Reported Moderate to Vigorous Intensity Physical Activity and Atherogenic Index of Plasma: NHANES, 1999–2006. J. Phys. Act. Health 2019, 16, 368–370. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Fang, Z. Evaluating the impact of exercise on intermediate disease markers in overweight and obese individuals through a network meta-analysis of randomized controlled trials. Sci. Rep. 2024, 14, 12137. [Google Scholar] [CrossRef] [PubMed]
- Boyne, C.A.; Johnson, T.M.; Toth, L.P.; Richardson, M.R.; Churilla, J.R. Sedentary Time and Prescription Medication Use Among US Adults: 2017–2018 National Health and Nutrition Examination Survey. J. Phys. Act. Health 2023, 20, 921–925. [Google Scholar] [CrossRef]
- Van Hoang, D.; Fukunaga, A.; Nguyen, C.Q.; Pham, T.T.P.; Shrestha, R.M.; Phan, D.C.; Le, H.X.; Do, H.T.; Hachiya, M.; Mizoue, T. Eating speed and abdominal adiposity in middle-aged adults: A cross-sectional study in Vietnam. BMC Public Health 2023, 23, 443. [Google Scholar] [CrossRef]
- Ohkuma, T.; Hirakawa, Y.; Nakamura, U.; Kiyohara, Y.; Kitazono, T.; Ninomiya, T. Association between eating rate and obesity: A systematic review and meta-analysis. Int. J. Obes. 2015, 39, 1589–1596. [Google Scholar] [CrossRef]
- Kolay, E.; Bykowska-Derda, A.; Abdulsamad, S.; Kaluzna, M.; Samarzewska, K.; Ruchala, M.; Czlapka-Matyasik, M. Self-Reported Eating Speed Is Associated with Indicators of Obesity in Adults: A Systematic Review and Meta-Analysis. Healthcare 2021, 9, 1559. [Google Scholar] [CrossRef]
- Garcidueñas-Fimbres, T.E.; Paz-Graniel, I.; Nishi, S.K.; Salas-Salvadó, J.; Babio, N. Eating Speed, Eating Frequency, and Their Relationships with Diet Quality, Adiposity, and Metabolic Syndrome, or Its Components. Nutrients 2021, 13, 1687. [Google Scholar] [CrossRef]
Total (n = 286) | Females (n = 224) | Males (n = 62) | p * | |
---|---|---|---|---|
n (%) | n (%) | n (%) | ||
Breakfast Skippers | 57 (20) | 42 (19) | 15 (24) | 0.370 |
Chronotypes | 0.324 | |||
MT | 95 (33) | 73 (33) | 22 (36) | |
IT | 132 (46) | 108 (49) | 24 (39) | |
ET | 54 (19) | 39 (18) | 15 (25) | |
Physical Activity | 0.895 | |||
Active | 20 (7) | 15 (7) | 5 (8) | |
Moderately Active | 52 (18) | 40 (18) | 12 (20) | |
Sedentary | 208 (73) | 164 (75) | 44 (72) | |
Sleep Quality | <0.001 | |||
Good Sleep Quality | 83 (29) | 54 (25) | 29 (48) | |
Bad Sleep Quality | 196 (69) | 164 (75) | 32 (52) | |
Eating Speed | 0.004 | |||
Slow | 25 (9) | 23 (10) | 2 (3) | |
Moderate | 98 (34) | 85 (38) | 13 (21) | |
Fast | 162 (57) | 116 (52) | 46 (75) |
Total (n = 286) | Females (n = 224) | Males (n = 62) | p * | |
---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | ||
Anthropometric | ||||
Weight (kg) | 115.1 (21.0) | 110.2 (17.5) | 133.9 (22.4) | <0.001 |
Height (cm) | 164 (9) | 161 (6) | 176 (9) | <0.001 |
BMI (kg/m2) | 42.5 (6.2) | 42.3 (6.1) | 43.6 (6.3) | 0.284 |
BFM (%) | 48.5 (5.8) | 49.9 (4.6) | 43.7 (6.8) | <0.001 |
SMM (%) | 33.3 (7.6) | 27.8 (2.2) | 32.7 (3.5) | <0.001 |
WC (cm) | 122 (15) | 119 (13) | 135 (14) | <0.001 |
HC (cm) | 130 (13) | 132 (12) | 126 (12) | <0.001 |
Waist/hip ratio | 0.94 (0.10) | 0.90 (0.07) | 1.08 (0.08) | <0.001 |
Waist/height ratio | 0.75 (0.08) | 0.74 (0.08) | 0.77 (0.08) | 0.008 |
Hip/height ratio | 0.80 (0.09) | 0.82 (0.08) | 0.72 (0.07) | <0.001 |
ABSI | 0.079 (0.006) | 0.077 (0.006) | 0.083 (0.004) | <0.001 |
BRI | 9.28 (2.56) | 9.08 (2.59) | 9.98 (2.39) | 0.007 |
Biochemical | ||||
Total Cholesterol (mg/dL) | 186 (38) | 190 (37) | 172 (34) | <0.001 |
HDL-c (mg/dL) | 51 (12) | 53 (12) | 43 (9) | <0.001 |
LDL-c (mg/dL) | 107 (33) | 110 (33) | 97 (28) | 0.002 |
Triglyceride (mg/dL) | 138 (77) | 132 (70) | 160 (98) | 0.015 |
Glucose (mg/dL) | 98 (23) | 96 (23) | 106 (22) | <0.001 |
Insulin (µU/mL) | 41 (56) | 36 (46) | 58 (79) | 0.002 |
AIP | 0.39 (0.24) | 0.36 (0.23) | 0.52 (0.25) | 0.007 |
TyG | 8.67 (0.57) | 8.62 (0.54) | 8.86 (0.62) | 0.007 |
Homa-IR | 11.3 (20.7) | 9.9 (18.5) | 16.3 (26.7) | <0.001 |
Variables | rMEQ Score | Godin Score | PSQI Score | Eating Speed | ||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | rs | p | |
SMM | −0.126 | 0.040 | −0.032 | 0.604 | −0.171 | 0.006 | 0.160 | 0.009 |
BFM | −0.029 | 0.635 | −0.048 | 0.435 | 0.151 | 0.013 | −0.116 | 0.055 |
WC | −0.058 | 0.337 | −0.054 | 0.366 | −0.070 | 0.247 | 0.123 | 0.038 |
HC | −0.076 | 0.203 | −0.068 | 0.257 | 0.086 | 0.155 | 0.011 | 0.854 |
WHR | 0.000 | 0.999 | −0.033 | 0.581 | −0.159 | 0.008 | 0.113 | 0.057 |
WHtR | −0.008 | 0.888 | −0.034 | 0.567 | 0.006 | 0.921 | 0.046 | 0.442 |
HHtR | −0.012 | 0.835 | −0.035 | 0.565 | 0.155 | 0.010 | −0.085 | 0.154 |
ABSI | 0.079 | 0.186 | 0.005 | 0.940 | −0.074 | 0.219 | 0.054 | 0.362 |
BRI | −0.007 | 0.910 | −0.033 | 0.581 | 0.005 | 0.929 | 0.046 | 0.443 |
SMM | BFM | WC | HC | WHR | WHtR | HHtR | ABSI | BRI | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | ηp2 | p | β | ηp2 | p | β | ηp2 | p | β | ηp2 | p | β | ηp2 | p | β | ηp2 | p | β | ηp2 | p | β | ηp2 | p | β | ηp2 | p | |
Corrected model | 0.537 | <0.001 | 0.245 | <0.001 | 0.224 | <0.001 | 0.103 | 0.002 | 0.523 | <0.001 | 0.087 | 0.009 | 0.288 | <0.001 | 0.235 | <0.001 | 0.088 | 0.009 | |||||||||
Sex (Ref.: Female) | 0.494 | <0.001 | 0.209 | <0.001 | 0.197 | <0.001 | 0.050 | <0.001 | 0.503 | <0.001 | 0.031 | 0.005 | 0.251 | <0.001 | 0.161 | <0.001 | 0.031 | 0.005 | |||||||||
Male | 11.00 | −6.367 | 14.95 | −6.572 | 0.175 | 0.033 | −0.105 | 0.006 | 0.867 | ||||||||||||||||||
Age | −0.097 | 0.031 | 0.005 | −0.036 | 0.004 | 0.336 | −0.097 | 0.004 | 0.291 | −0.142 | 0.010 | 0.106 | 0.000 | 0.001 | 0.615 | 0.000 | 0.000 | 0.811 | 0.000 | 0.002 | 0.521 | 0.000 | 0.011 | 0.088 | −0.004 | 0.000 | 0.786 |
Marital status (Ref.: Other *) | 0.003 | 0.674 | 0.020 | 0.077 | 0.005 | 0.510 | 0.012 | 0.206 | 0.008 | 0.352 | 0.012 | 0.219 | 0.018 | 0.094 | 0.019 | 0.083 | 0.011 | 0.234 | |||||||||
Single | 0.946 | 0.003 | 0.392 | 1.876 | 0.009 | 0.128 | 0.670 | 0.000 | 0.823 | 4.243 | 0.009 | 0.137 | −0.024 | 0.007 | 0.168 | 0.005 | 0.000 | 0.786 | 0.027 | 0.009 | 0.137 | −0.003 | 0.019 | 0.029 | 0.113 | 0.000 | 0.814 |
Married | 0.674 | 0.002 | 0.439 | −0.109 | 0.000 | 0.911 | −1.522 | 0.002 | 0.519 | 0.819 | 0.001 | 0.716 | −0.017 | 0.006 | 0.201 | −0.015 | 0.004 | 0.305 | −0.001 | 0.000 | 0.942 | −0.002 | 0.014 | 0.062 | −0.388 | 0.004 | 0.304 |
Education (Ref.: High) | 0.006 | 0.458 | 0.004 | 0.579 | 0.016 | 0.126 | 0.001 | 0.868 | 0.018 | 0.097 | 0.047 | 0.002 | 0.019 | 0.089 | 0.015 | 0.142 | 0.048 | 0.002 | |||||||||
Basic | −0.901 | 0.005 | 0.284 | 0.769 | 0.003 | 0.411 | 3.919 | 0.012 | 0.086 | 0.848 | 0.001 | 0.695 | 0.025 | 0.014 | 0.062 | 0.045 | 0.040 | 0.001 | 0.029 | 0.017 | 0.036 | 0.002 | 0.015 | 0.053 | 1.206 | 0.042 | 0.001 |
Middle | −0.930 | 0.005 | 0.242 | 0.010 | 0.000 | 0.991 | 0.487 | 0.000 | 0.820 | −0.074 | 0.000 | 0.971 | 0.004 | 0.000 | 0.744 | 0.012 | 0.004 | 0.336 | 0.010 | 0.002 | 0.429 | 0.001 | 0.003 | 0.368 | 0.348 | 0.004 | 0.311 |
Skipping breakfast (Ref.: No) | 0.006 | 0.213 | 0.007 | 0.178 | 0.008 | 0.149 | 0.003 | 0.407 | 0.032 | 0.004 | 0.006 | 0.226 | 0.004 | 0.287 | 0.017 | 0.037 | 0.006 | 0.235 | |||||||||
Yes | −0.949 | 1.140 | −2.970 | 1.626 | −0.035 | −0.015 | 0.013 | −0.002 | −0.391 | ||||||||||||||||||
Chronotype score | −0.387 | 0.017 | 0.036 | 0.167 | 0.003 | 0.414 | 0.667 | 0.007 | 0.181 | −0.582 | 0.006 | 0.221 | −0.001 | 0.001 | 0.637 | −0.004 | 0.007 | 0.179 | −0.004 | 0.006 | 0.237 | 0.000 | 0.001 | 0.628 | −0.106 | 0.007 | 0.184 |
Chronotypes (Ref.: MT) | 0.018 | 0.097 | 0.003 | 0.661 | 0.005 | 0.538 | 0.008 | 0.349 | 0.003 | 0.713 | 0.004 | 0.595 | 0.008 | 0.342 | 0.002 | 0.739 | 0.004 | 0.604 | |||||||||
IT | −2.048 | 0.016 | 0.045 | 0.575 | 0.001 | 0.612 | −2.837 | 0.004 | 0.303 | −2.286 | 0.003 | 0.384 | −0.007 | 0.001 | 0.678 | −0.013 | 0.003 | 0.419 | −0.010 | 0.001 | 0.557 | 0.001 | 0.001 | 0.541 | −0.362 | 0.003 | 0.412 |
ET | −4.378 | 0.017 | 0.035 | 1.956 | 0.003 | 0.397 | −6.082 | 0.005 | 0.278 | −7.368 | 0.007 | 0.169 | 0.002 | 0.000 | 0.948 | −0.034 | 0.004 | 0.310 | −0.042 | 0.006 | 0.212 | 0.002 | 0.002 | 0.438 | −0.901 | 0.004 | 0.315 |
Variables | rMEQ Score | Godin Score | PSQI Score | Eating Speed | ||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | rs | p | |
TC | −0.038 | 0.530 | −0.036 | 0.552 | 0.169 | 0.005 | −0.023 | 0.701 |
TG | −0.080 | 0.190 | 0.051 | 0.406 | 0.007 | 0.913 | 0.085 | 0.159 |
HDL-c | 0.060 | 0.324 | 0.020 | 0.737 | 0.158 | 0.010 | −0.034 | 0.574 |
LDL-c | −0.029 | 0.629 | −0.072 | 0.240 | 0.132 | 0.030 | −0.066 | 0.279 |
TyG | −0.078 | 0.197 | 0.046 | 0.452 | 0.010 | 0.874 | 0.074 | 0.224 |
AIP | −0.095 | 0.120 | 0.021 | 0.725 | −0.054 | 0.376 | 0.085 | 0.160 |
Glucose | −0.022 | 0.722 | 0.022 | 0.720 | −0.027 | 0.659 | 0.010 | 0.864 |
Insulin | −0.168 | 0.006 | 0.112 | 0.066 | −0.079 | 0.197 | 0.076 | 0.210 |
HOMA-IR | −0.156 | 0.011 | 0.109 | 0.076 | −0.074 | 0.230 | 0.081 | 0.184 |
TC | TG | HDL-c | LDL-c | TyG | AIP | Glucose | Insulin | HOMA-IR | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | ηp2 | p | β | ηp2 | p | β | ηp2 | p | β | ηp2 | p | β | ηp2 | p | β | ηp2 | p | β | ηp2 | p | β | ηp2 | p | β | ηp2 | p | |
Corrected model | 0.073 | 0.020 | 0.072 | 0.022 | 0.183 | <0.001 | 0.062 | 0.053 | 0.105 | <0.001 | 0.129 | <0.001 | 0.137 | <0.001 | 0.109 | <0.001 | 0.107 | <0.001 | |||||||||
Sex (Ref.: Female) | 0.040 | 0.001 | 0.022 | 0.016 | 0.124 | <0.001 | 0.030 | 0.005 | 0.035 | 0.002 | 0.075 | <0.001 | 0.052 | <0.001 | 0.037 | 0.002 | 0.047 | <0.001 | |||||||||
Male | −17.96 | 27.39 | −9.874 | −13.573 | 0.250 | 0.155 | 8.913 | 9.057 | 2.680 | ||||||||||||||||||
Age | 0.525 | 0.021 | 0.021 | −0.889 | 0.000 | 0.821 | 0.202 | 0.014 | 0.160 | 0.302 | 0.003 | 0.647 | 0.007 | 0.007 | 0.422 | 0.000 | 0.004 | 0.597 | 0.385 | 0.032 | 0.016 | −0.232 | 0.005 | 0.543 | −0.029 | 0.010 | 0.281 |
Skipping breakfast (Ref.: No) | 0.000 | 0.897 | 0.001 | 0.677 | 0.010 | 0.103 | 0.001 | 0.583 | 0.000 | 0.767 | 0.002 | 0.527 | 0.002 | 0.467 | 0.005 | 0.276 | 0.005 | 0.274 | |||||||||
Yes | −0.779 | −5.180 | −2.946 | 3.203 | −0.027 | 0.024 | −1.910 | −3.454 | −0.908 | ||||||||||||||||||
Chronotype score | −0.402 | 0.000 | 0.784 | −0.889 | 0.000 | 0.768 | 0.706 | 0.010 | 0.107 | −0.929 | 0.002 | 0.467 | −0.041 | 0.014 | 0.057 | −0.012 | 0.007 | 0.182 | −2.080 | 0.040 | 0.001 | −1.507 | 0.015 | 0.050 * | −0.492 | 0.023 | 0.015 |
Chronotypes (Ref.: MT) | 0.004 | 0.591 | 0.000 | 0.981 | 0.014 | 0.160 | 0.003 | 0.647 | 0.007 | 0.422 | 0.004 | 0.597 | 0.032 | 0.016 | 0.005 | 0.543 | 0.010 | 0.281 | |||||||||
IT | 7.255 | 0.003 | 0.371 | 3.013 | 0.000 | 0.857 | 4.263 | 0.012 | 0.079 | 2.390 | 0.000 | 0.735 | −0.123 | 0.004 | 0.307 | −0.043 | 0.003 | 0.395 | −8.604 | 0.023 | 0.015 | −4.067 | 0.004 | 0.339 | −1.513 | 0.007 | 0.175 |
ET | 7.391 | 0.001 | 0.657 | 6.675 | 0.000 | 0.846 | 9.326 | 0.014 | 0.061 | −3.270 | 0.000 | 0.822 | −0.323 | 0.007 | 0.190 | −0.105 | 0.004 | 0.310 | −20.97 | 0.031 | 0.004 | −9.613 | 0.005 | 0.272 | −3.642 | 0.010 | 0.112 |
Godin score | −0.225 | 0.001 | 0.662 | −2.561 | 0.022 | 0.016 | 0.055 | 0.000 | 0.722 | 0.232 | 0.001 | 0.605 | −0.019 | 0.024 | 0.012 | −0.009 | 0.027 | 0.008 | −0.085 | 0.001 | 0.704 | −0.073 | 0.000 | 0.786 | −0.022 | 0.000 | 0.750 |
Godin categories (Ref.: Active) | 0.001 | 0.850 | 0.039 | 0.006 | 0.005 | 0.598 | 0.009 | 0.306 | 0.041 | 0.005 | 0.039 | 0.006 | 0.004 | 0.604 | 0.006 | 0.439 | 0.006 | 0.455 | |||||||||
Moderately active | −6.942 | 0.001 | 0.570 | −33.59 | 0.007 | 0.183 | 3.257 | 0.003 | 0.372 | −3.481 | 0.000 | 0.744 | −0.337 | 0.013 | 0.063 | −0.138 | 0.013 | 0.069 | −5.303 | 0.004 | 0.319 | −2.559 | 0.001 | 0.690 | −0.988 | 0.001 | 0.556 |
Sedentary | −9.106 | 0.001 | 0.616 | −103.1 | 0.029 | 0.006 | 2.592 | 0.001 | 0.633 | 8.926 | 0.001 | 0.574 | −0.825 | 0.035 | 0.002 | −0.338 | 0.034 | 0.003 | −7.092 | 0.003 | 0.370 | −9.612 | 0.004 | 0.314 | −2.758 | 0.005 | 0.270 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabaça Alexandre, M.; Poínhos, R.; CRI-O Group; Oliveira, B.M.P.M.; Correia, F. Chronotype, Lifestyles, and Anthropometric and Biochemical Indices for Cardiovascular Risk Assessment Among Obese Individuals. Nutrients 2025, 17, 1858. https://doi.org/10.3390/nu17111858
Rabaça Alexandre M, Poínhos R, CRI-O Group, Oliveira BMPM, Correia F. Chronotype, Lifestyles, and Anthropometric and Biochemical Indices for Cardiovascular Risk Assessment Among Obese Individuals. Nutrients. 2025; 17(11):1858. https://doi.org/10.3390/nu17111858
Chicago/Turabian StyleRabaça Alexandre, Margarida, Rui Poínhos, CRI-O Group, Bruno M. P. M. Oliveira, and Flora Correia. 2025. "Chronotype, Lifestyles, and Anthropometric and Biochemical Indices for Cardiovascular Risk Assessment Among Obese Individuals" Nutrients 17, no. 11: 1858. https://doi.org/10.3390/nu17111858
APA StyleRabaça Alexandre, M., Poínhos, R., CRI-O Group, Oliveira, B. M. P. M., & Correia, F. (2025). Chronotype, Lifestyles, and Anthropometric and Biochemical Indices for Cardiovascular Risk Assessment Among Obese Individuals. Nutrients, 17(11), 1858. https://doi.org/10.3390/nu17111858