Regulation of lncRNA NUTM2A-AS1 and CCR3 in the Clinical Response to a Plant-Based Diet in Rheumatoid Arthritis: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Recruitment
2.2. Anthropometric and Biochemical Evaluations
2.3. Dietary Intervention
2.4. Total RNA Isolation and cDNA Synthesis
2.5. Long Non-Coding RNA and Inflammatory Gene Analysis
2.5.1. Discovery Phase
2.5.2. Validation Phase
2.6. Statistical Analysis
3. Results
3.1. Main Clinical Features of Study Participants
3.2. Changes in Clinical and Biochemical Parameters Following the Plant-Based Diet
3.3. Discovery Phase of lncRNAs and Inflammatory Genes Regulated by Clinical Response to a Plant-Based Diet
3.4. Validation Phase of Consistent Expression Patterns of NUTM2A-AS1 and CCR3 in the Remaining Cohort
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RA | Rheumatoid arthritis |
DAS28-CRP | Disease Activity Score 28 using C-reactive protein |
DMARDs | Disease-modifying antirheumatic drugs |
BMI | Body mass index |
MASLD | Metabolic-dysfunction-associated steatotic liver disease |
CRP | C-reactive protein |
ESR | Erythrocyte sedimentation rate |
EDTA | Ethylenediaminetetraacetic acid |
TEE | Total energy expenditure |
cDNA | Complementary DNA |
lncRNA | Long non-coding RNA |
RT-qPCR | Quantitative real-time polymerase chain reaction |
RPLP0 | Ribosomal protein lateral stalk subunit P0 |
SD | Standard deviation |
IQR | Interquartile range |
SPSS | Statistical Package for the Social Sciences |
NUTM2A-AS1 | NUT family member 2A antisense RNA 1 |
CCR3 | C-C motif chemokine receptor 3 |
IL-6 | Interleukin 6 |
TNF-α | Tumor necrosis factor alpha |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
Th2 | T helper 2 |
MAFLD | Metabolic-associated fatty liver disease |
References
- Smolen, J.S.; Aletaha, D.; Barton, A.; Burmester, G.R.; Emery, P.; Firestein, G.S.; Kavanaugh, A.; McInnes, I.B.; Solomon, D.H.; Strand, V.; et al. Rheumatoid Arthritis. Nat. Rev. Dis. Primers 2018, 4, 18001. [Google Scholar] [CrossRef] [PubMed]
- Mueller, A.L.; Payandeh, Z.; Mohammadkhani, N.; Mubarak, S.M.H.; Zakeri, A.; Bahrami, A.A.; Brockmueller, A.; Shakibaei, M. Recent Advances in Understanding the Pathogenesis of Rheumatoid Arthritis: New Treatment Strategies. Cells 2021, 10, 3017. [Google Scholar] [CrossRef] [PubMed]
- Kent, G.; Kehoe, L.; Flynn, A.; Walton, J. Plant-Based Diets: A Review of the Definitions and Nutritional Role in the Adult Diet. Proc. Nutr. Soc. 2022, 81, 62–74. [Google Scholar] [CrossRef]
- Flores-Balderas, X.; Peña-Peña, M.; Rada, K.M.; Alvarez-Alvarez, Y.Q.; Guzmán-Martín, C.A.; Sánchez-Gloria, J.L.; Huang, F.; Ruiz-Ojeda, D.; Morán-Ramos, S.; Springall, R.; et al. Beneficial Effects of Plant-Based Diets on Skin Health and Inflammatory Skin Diseases. Nutrients 2023, 15, 2842. [Google Scholar] [CrossRef]
- Colao, A.; Vetrani, C.; Muscogiuri, G.; Barrea, L.; Tricopoulou, A.; Soldati, L.; Piscitelli, P. “Planeterranean” Diet: Extending Worldwide the Health Benefits of Mediterranean Diet Based on Nutritional Properties of Locally Available Foods. J. Transl. Med. 2022, 20, 232. [Google Scholar] [CrossRef]
- Alwarith, J.; Kahleova, H.; Rembert, E.; Yonas, W.; Dort, S.; Calcagno, M.; Burgess, N.; Crosby, L.; Barnard, N.D. Nutrition Interventions in Rheumatoid Arthritis: The Potential Use of Plant-Based Diets. A Review. Front. Nutr. 2019, 6, 435408. [Google Scholar] [CrossRef]
- Hartmann, A.M.; Kandil, F.I.; Steckhan, N.; Häupl, T.; Kessler, C.S.; Michalsen, A.; Koppold-Liebscher, D.A. Rheumatoid Arthritis Benefits from Fasting and Plant-Based Diet: An Exploratory Randomized Controlled Trial (NUTRIFAST). Ann. Rheum. Dis. 2022, 81, 558–559. [Google Scholar] [CrossRef]
- Hartmann, A.M.; Dell’oro, M.; Kessler, C.S.; Schumann, D.; Steckhan, N.; Jeitler, M.; Fischer, J.M.; Spoo, M.; Kriegel, M.A.; Schneider, J.G.; et al. Efficacy of Therapeutic Fasting and Plant-Based Diet in Patients with Rheumatoid Arthritis (NutriFast): Study Protocol for a Randomised Controlled Clinical Trial. BMJ Open 2021, 11, e047758. [Google Scholar] [CrossRef]
- Wu, T.; Du, Y. LncRNAs: From Basic Research to Medical Application. Int. J. Biol. Sci. 2017, 13, 295–307. [Google Scholar] [CrossRef]
- Huang, W.; Li, X.; Huang, C.; Tang, Y.; Zhou, Q.; Chen, W. LncRNAs and Rheumatoid Arthritis: From Identifying Mechanisms to Clinical Investigation. Front. Immunol. 2021, 12, 807738. [Google Scholar] [CrossRef]
- Yang, J.; Li, Z.; Wang, L.; Yun, X.; Zeng, Y.; Ng, J.P.L.; Lo, H.; Wang, Y.; Zhang, K.; Law, B.Y.K.; et al. The Role of Non-Coding RNAs (MiRNA and LncRNA) in the Clinical Management of Rheumatoid Arthritis. Pharmacol. Res. 2022, 186, 106549. [Google Scholar] [CrossRef] [PubMed]
- Padyukov, L. Genetics of Rheumatoid Arthritis. Semin. Immunopathol. 2022, 44, 47. [Google Scholar] [CrossRef]
- Cassotta, M.; Forbes-Hernandez, T.Y.; Cianciosi, D.; Zabaleta, M.E.; Cano, S.S.; Dominguez, I.; Bullon, B.; Regolo, L.; Alvarez-Suarez, J.M.; Giampieri, F.; et al. Nutrition and Rheumatoid Arthritis in the ‘Omics’ Era. Nutrients 2021, 13, 763. [Google Scholar] [CrossRef]
- Pavlidou, E.; Papadopoulou, S.K.; Seroglou, K.; Giaginis, C. Revised Harris–Benedict Equation: New Human Resting Metabolic Rate Equation. Metabolites 2023, 13, 189. [Google Scholar] [CrossRef]
- Alavian, S.E.; Salehipour, M.; Bostanabad, S.Z.; Tafvizi, F.; Heiat, M. Investigating the Effect of Curcumin on Long Noncoding RNAs NUTM2A-AS1 and HCG18 Expression Changes in Hepatocellular Carcinoma (HCC): Curcumin on Hepatocellular Carcinoma (HCC). Iran. J. Pharm. Sci. 2023, 19, 314–324. [Google Scholar] [CrossRef]
- Long, J.; Liu, L.; Yang, X.; Zhou, X.; Lu, X.; Qin, L. LncRNA NUTM2A-AS1 Aggravates the Progression of Hepatocellular Carcinoma by Activating the MiR-186-5p/KLF7-Mediated Wnt/Beta-Catenin Pathway. Hum. Cell 2023, 36, 312–328. [Google Scholar] [CrossRef]
- Geng, N.; Yun, D.; Liu, D.; Liu, P. LncRNA NUTM2A-AS1 Alleviated Osteoarthritis by Regulating MiR-183-5p/TGFA Pathway. Ann. Rheum. Dis. 2022, 81, 1161. [Google Scholar] [CrossRef]
- Zeng, Y.; Yang, Z.; Yang, Y.; Wang, P. LncRNA NUTM2A-AS1 Silencing Inhibits Glioma via MiR-376a-3p/YAP1 Axis. Cell Div. 2024, 19, 17. [Google Scholar] [CrossRef]
- Xiang, T.; Li, Y.; Liu, G.; Li, X. NR1D1-Transactivated LncRNA NUTM2A-AS1 Promotes Chemoresistance and Immune Evasion in Neuroblastoma via Inhibiting B7-H3 Degradation. J. Cell Mol. Med. 2024, 28, e18360. [Google Scholar] [CrossRef]
- Bjørklund, S.S.; Aure, M.R.; Häkkinen, J.; Vallon-Christersson, J.; Kumar, S.; Evensen, K.B.; Fleischer, T.; Tost, J.; Bathen, T.F.; Borgen, E.; et al. Subtype and Cell Type Specific Expression of LncRNAs Provide Insight into Breast Cancer. Commun. Biol. 2022, 5, 834. [Google Scholar] [CrossRef]
- Agirre, X.; Meydan, C.; Jiang, Y.; Garate, L.; Doane, A.S.; Li, Z.; Verma, A.; Paiva, B.; Martín-Subero, J.I.; Elemento, O.; et al. Long Non-Coding RNAs Discriminate the Stages and Gene Regulatory States of Human Humoral Immune Response. Nat. Commun. 2019, 10, 821. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, H.; Chang, X.; Shen, J.; Zheng, W.; Xu, Y.; Wang, J.; Gao, W.; He, S. Upregulated Expression of CCR3 in Rheumatoid Arthritis and CCR3-Dependent Activation of Fibroblast-like Synoviocytes. Cell Biol. Toxicol. 2017, 33, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, K.; Isozaki, T.; Tsubokura, Y.; Fukuse, S.; Kasama, T. Eotaxin-1/CCL11 Is Involved in Cell Migration in Rheumatoid Arthritis. Sci. Rep. 2021, 11, 7937. [Google Scholar] [CrossRef] [PubMed]
- Nissinen, R.; Leirisalo-Repo, M.; Tiittanen, M.; Julkunen, H.; Hirvonen, H.; Palosuo, T.; Vaarala, O. CCR3, CCR5, Interleukin 4, and Interferon-Gamma Expression on Synovial and Peripheral T Cells and Monocytes in Patients with Rheumatoid Arthritis. J. Rheumatol. 2003, 30, 1928–1934. [Google Scholar]
- Szekanecz, Z.; Kim, J.; Koch, A.E. Chemokines and Chemokine Receptors in Rheumatoid Arthritis. Semin. Immunol. 2003, 15, 15–21. [Google Scholar] [CrossRef]
- Song, D.J.; Shim, M.H.; Lee, N.; Yoo, Y.; Choung, J.T. CCR3 Monoclonal Antibody Inhibits Eosinophilic Inflammation and Mucosal Injury in a Mouse Model of Eosinophilic Gastroenteritis. Allergy Asthma Immunol. Res. 2017, 9, 360–367. [Google Scholar] [CrossRef]
- Hernanz Grimalt, A. Estudio del Eje CCL11/CCR3 en la Lesión Aterosclerótica de Ratones ApoE-/- Inducida por Dieta Hipercolesterolémica; Universitat Politècnica de València: Valencia, Spain, 2022. [Google Scholar]
- Sun, G.; Wang, Y.; Yang, L.; Zhang, Z.; Zhao, Y.; Shen, Z.; Han, X.; Du, X.; Jin, H.; Li, C.; et al. Rebalancing Liver-Infiltrating CCR3+ and CD206+ Monocytes Improves Diet-Induced NAFLD. Cell Rep. 2023, 42, 112753. [Google Scholar] [CrossRef]
- Nair, M.P.; Kandaswami, C.; Mahajan, S.; Nair, H.N.; Chawda, R.; Shanahan, T.; Schwartz, S.A. Grape Seed Extract Proanthocyanidins Downregulate HIV-1 Entry Coreceptors, CCR2b, CCR3 and CCR5 Gene Expression by Normal Peripheral Blood Mononuclear Cells. Biol. Res. 2002, 35, 421–431. [Google Scholar] [CrossRef]
- Link, V.M.; Subramanian, P.; Cheung, F.; Han, K.L.; Stacy, A.; Chi, L.; Sellers, B.A.; Koroleva, G.; Courville, A.B.; Mistry, S.; et al. Differential Peripheral Immune Signatures Elicited by Vegan versus Ketogenic Diets in Humans. Nat. Med. 2024, 30, 560–572. [Google Scholar] [CrossRef]
Patients with RA (n = 21) | |
---|---|
Age in years | 56 (48.5-64) |
Female sex, n (%) | 20 (95) |
BMI (kg/m2) | 29.50 (25.8–33.05) |
Disease duration (years) | 8 (4.5–10.5) |
DAS28-CRP | 4.04 (3.33–4.72) |
Hypertension n (%) | 9 (43) |
Dyslipidemia n (%) | 4 (19) |
Type 2 diabetes mellitus n (%) | 4 (19) |
MASLD n (%) | 4 (19) |
Metabolic syndrome n (%) | 2 (10) |
Pericarditis n (%) | 1 (5) |
Classification | Medication | n (%) |
---|---|---|
Disease-Modifying antirheumatic drugs (DMARDs) | Methotrexate | 20 (95.2%) |
Sulfasalazine | 12 (57.1%) | |
Hydroxychloroquine | 6 (28.6%) | |
Leflunomide | 6 (28.6% | |
Supplements | Folic acid | 17 (81.0%) |
Calcium | 13 (61.9%) | |
Glucocorticoids | Prednisone | 6 (28.6%) |
Analgesics/anti-inflammatory | Paracetamol | 6 (28.6%) |
Hypertension (HAS) | Losartan | 4 (19.0%) |
Diabetes | Metformin | 9 (42.9%) |
Pregabalin | 7 (33.3%) |
Baseline | 14 Days | p | |
---|---|---|---|
Weight (kg) | 65.50 (60.75–83.05) | 64.70 (59.25–83.65) | 0.02 |
Waist-to-hip radio | 0.88 (0.84–0.94) | 0.89 (0.84–0.92) | 0.387 |
BMI (kg/m2) | 29.50 (25.8–33.05) | 29.2 (25.15–32.75) | 0. 001 |
% Body fat | 44.4 (37.1–48.05) | 45 (37.25–49.4) | 0.736 |
%Visceral fat | 10 (7.5–12) | 10 (7–12.5) | 0.052 |
Serum glucose (mg/dL) | 92 (82.5–104) | 87 (80–99) | 0.025 |
Serum uric acid (mg/dL) | 4.91 (3.9–5.81) | 4.98 (4.19–5.61) | 0.575 |
Total cholesterol (mg/dL) | 180 (144–211) | 155 (141–199) | 0.005 |
HDL-C (mg/dL) | 47.5 (41.65–60.4) | 46.5 (41.1–56.8) | 0.487 |
Triglycerides (mg/dL) | 134 (106–174) | 130 (107.5–176) | 0.214 |
CRP (mg/L) | 5.61 (3.38–8.96) | 4.78 (2.35–7.4) | 0.035 |
ESR (mm/h) | 17 (7.5–33.5) | 15 (8–25) | 0.061 |
Swollen joints | 5.00 (3–8) | 3 (1.5–4.5) | 0.005 |
Painful joints | 7 (2.5–8) | 3 (1–3.5) | <0.0001 |
DAS28-CRP | 4.04 (3.33–4.72) | 3.43 (2.92–3.6) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña-Peña, M.; González-Ramírez, J.; Bermúdez-Benítez, E.; Sánchez-Gloria, J.L.; Amezcua-Guerra, L.M.; Tavera-Alonso, C.; Guzmán-Martín, C.A.; Jacobo-Albavera, L.; Silveira-Torre, L.H.; Martínez-Martínez, L.A.; et al. Regulation of lncRNA NUTM2A-AS1 and CCR3 in the Clinical Response to a Plant-Based Diet in Rheumatoid Arthritis: A Pilot Study. Nutrients 2025, 17, 1752. https://doi.org/10.3390/nu17111752
Peña-Peña M, González-Ramírez J, Bermúdez-Benítez E, Sánchez-Gloria JL, Amezcua-Guerra LM, Tavera-Alonso C, Guzmán-Martín CA, Jacobo-Albavera L, Silveira-Torre LH, Martínez-Martínez LA, et al. Regulation of lncRNA NUTM2A-AS1 and CCR3 in the Clinical Response to a Plant-Based Diet in Rheumatoid Arthritis: A Pilot Study. Nutrients. 2025; 17(11):1752. https://doi.org/10.3390/nu17111752
Chicago/Turabian StylePeña-Peña, Mario, Javier González-Ramírez, Elyzabeth Bermúdez-Benítez, José L. Sánchez-Gloria, Luis M. Amezcua-Guerra, Claudia Tavera-Alonso, Carlos A. Guzmán-Martín, Leonor Jacobo-Albavera, Luis H. Silveira-Torre, Laura A. Martínez-Martínez, and et al. 2025. "Regulation of lncRNA NUTM2A-AS1 and CCR3 in the Clinical Response to a Plant-Based Diet in Rheumatoid Arthritis: A Pilot Study" Nutrients 17, no. 11: 1752. https://doi.org/10.3390/nu17111752
APA StylePeña-Peña, M., González-Ramírez, J., Bermúdez-Benítez, E., Sánchez-Gloria, J. L., Amezcua-Guerra, L. M., Tavera-Alonso, C., Guzmán-Martín, C. A., Jacobo-Albavera, L., Silveira-Torre, L. H., Martínez-Martínez, L. A., & Sánchez-Muñoz, F. (2025). Regulation of lncRNA NUTM2A-AS1 and CCR3 in the Clinical Response to a Plant-Based Diet in Rheumatoid Arthritis: A Pilot Study. Nutrients, 17(11), 1752. https://doi.org/10.3390/nu17111752