The Role of L-Glutamate as an Umami Substance for the Reduction of Salt Consumption: Lessons from Clinical Trials
Abstract
:1. Introduction
2. The Position of Saltiness and Umami Among the Elements of Pleasant Taste
3. Physiological Roles of Saltiness and Umami for Nutrition Intake
4. Various Cooking Methods to Support the Implementation of Reduced Salt Intake
5. Studies on the Application of Umami’s Physiological Effects for Salt Reduction
5.1. A Sensory Evaluation of Samples with Different Na and Glu Contents in a Clear Soup Such as Chicken Soup or Other Aqueous Solutions
5.2. Sensory Evaluation of a Menu with Different Na and Glu Contents in a Food-as-Set-Out and Sodium-Reduction Intervention Study
5.3. Association with Stress Conditions as a Quality of Life (QOL) Indicator During Salt-Reduction Implementation
6. Conclusions and Prospects for Applied Aspects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | American College of Cardiology |
AHA | American Heart Association |
BMI | Body mass index |
CDG | Calcium di-glutamate |
CgA | Chromogranin A |
ESH-ESC | European Society of Hypertension-European Society of Cardiology |
FAO | The Food and Agriculture Organization |
Glu | L-Glutamate |
JSH | Japanese Society of Hypertension |
MDG | Magnesium di-glutamate |
MPG | Mono potassium glutamate |
MSG | Monosodium glutamate |
NaCl | Sodium chloride |
NCDs | Non-communicable diseases |
QOL | Quality of life |
WHO | World Health Organization |
References
- Bansal, V.; Mishra, S.K. Reduced-sodium cheeses: Implications of reducing sodium chloride on cheese quality and safety. Compr. Rev. Food Sci. Food Saf. 2020, 19, 733–758. [Google Scholar] [CrossRef] [PubMed]
- Kiela, P.R.; Ghishan, F.K. Physiology of intestinal absorption and secretion. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Raimondo, J.V.; Burman, R.J.; Katz, A.K.; Akerman, C.J. Ion dynamics during seizures. Front. Cell. Neurosci. 2015, 9, 419. [Google Scholar] [CrossRef] [PubMed]
- Clausen, T. Na+-K+ pump regulation and skeletal muscle contractility. Physiol. Rev. 2003, 83, 1269–1324. [Google Scholar] [CrossRef]
- Adrogué, H.J.; Tucker, B.M.; Madias, N.E. Diagnosis and management of hyponatremia. J. Am. Med. Assoc. 2022, 328, 280–291. [Google Scholar] [CrossRef]
- Nigro, N.; Winzeler, B.; Suter-Widmer, I.; Schuetz, P.; Arici, B.; Bally, M.; Blum, C.; Bingisser, R.; Bock, A.; Huber, A.; et al. Symptoms and characteristics of individuals with profound hyponatremia: A prospective multicenter observational study. J. Am. Geriatr. Soc. 2015, 63, 470–475. [Google Scholar] [CrossRef]
- Palmer, B.P.; Gates, J.R.; Lader, M. Causes and management of hyponatremia. Ann. Pharmacother. 2003, 37, 1694–1702. [Google Scholar] [CrossRef]
- Hunter, R.W.; Dhaun, N.; Bailey, M.A. The impact of excessive salt intake on human health. Nat. Rev. Nephrol. 2022, 18, 321–335. [Google Scholar] [CrossRef]
- Middeke, M.; Lemmer, B.; Schaaf, B.; Eckes, L. Prevalence of hypertension-attributed symptoms in routine clinical practice: A general practitioners-based study. J. Hum. Hypertens. 2007, 22, 225–258. [Google Scholar] [CrossRef]
- Intersalt cooperative research group. Intersalt: An international study of electrolyte excretion and blood pressure. Results for 24-hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. Br. Med. J. 1988, 97, 319–328. [Google Scholar]
- Messerli, F.M.; Williams, B.W.; Ritz, E.R. Essential hypertension. Lancet 2007, 370, 591–603. [Google Scholar] [CrossRef]
- Strazzullo, P.; D’Elia, L.; Kandala, N.B.; Cappuccio, F.P. Salt intake, stroke, and cardiovascular disease: Meta-analysis of prospective studies. Br. Med. J. 2009, 339, b4567. [Google Scholar] [CrossRef] [PubMed]
- Ferdinand, K.C.; Nasser, S.A. Management of essential hypertension. Cardiol. Clin. 2017, 35, 231–246. [Google Scholar] [CrossRef] [PubMed]
- Cogswell, M.E.; Mugavero, K.; Bowman, B.A.; Frieden, T.R. Dietary sodium and cardiovascular disease risk—Measurement matters. N. Engl. J. Med. 2016, 375, 580–586. [Google Scholar] [CrossRef]
- Bibbins-Domingo, K.; Chertow, G.M.; Coxson, P.G.; Moran, A.; Lightwood, J.M.; Pletcher, M.J.; Goldma, L. Projected effect of dietary salt reductions on future cardiovascular disease. N. Engl. J. Med. 2010, 362, 590–599. [Google Scholar] [CrossRef]
- Brown, I.J.; Tzoulaki, I.; Candeias, V.; Elliott, P. Salt intakes around the world: Implications for public health. Int. J. Epidemiol. 2009, 38, 791–813. [Google Scholar] [CrossRef]
- Xie, X.; Atkins, E.; Lv, J.; Bennett, A.; Neal, B.; Ninomiya, T.; Woodward, M.; MacMahon, S.; Turnbull, F.; Hillis, G.S.; et al. Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: Updated systematic review and meta-analysis. Lancet 2016, 387, 435–443. [Google Scholar] [CrossRef]
- D’Elia, L.; Rossi, G.; Ippolito, R.; Cappuccio, F.P.; Strazzullo, P. Habitual salt intake and risk of gastric cancer: A meta-analysis of prospective studies. Clin. Nutr. 2012, 31, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Kawano, Y. Salt, hypertension, and cardiovascular diseases. J. Korean Soc. Hypertens. 2012, 18, 53–62. [Google Scholar] [CrossRef]
- WHO. Guideline. Sodium Intake for Adults and Children; World Health Organization (WHO): Geneva, Switzerland, 2012.
- Nishida, C.; Uauy, R.; Kumanyika, S.; Shetty, P. The Joint WHO/FAO Expert Consultation on diet, nutrition and the prevention of chronic diseases: Process, product and policy implications. Public Health Nutr. 2004, 7, 245–250. [Google Scholar] [CrossRef]
- Joint WHO/FAO Expert Consultation. Diet, Nutrition and the Prevention of Chronic Diseases; WHO Technical Report Series 916; World Health Organization (WHO): Geneva, Switzerland, 2002.
- WHO. Noncommunicable Diseases Global Monitoring Framework: Indicator Definitions and Specifications; World Health Organization (WHO): Geneva, Switzerland, 2014.
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/ American Heart Association task force on clinical practice guidelines. Hypertension 2018, 71, e13–e115. [Google Scholar] [PubMed]
- Burnier, M.; Oparil, S.; Narkiewicz, K.; Kjeldsen, S.E. New 2017 American Heart Association and American College of Cardiology guideline for hypertension in the adults: Major paradigm shifts, but will they help to fight against the hypertension disease burden? Blood Press. 2018, 27, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Rosei, E.A.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH guidelines for the management of arterial hypertension: The task force for the management of arterial hypertension of the European society of cardiology (ESC) and the European society of hypertension (ESH). Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redon, J.; Zanchetti, A.; Böhm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.; et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: The task force for the management of arterial hypertension of the European society of hypertension (ESH) and of the European society of cardiology (ESC). Eur. Heart J. 2013, 34, 2159–2219. [Google Scholar]
- Umemura, S.; Arima, H.; Arima, S.; Asayama, K.; Dohi, Y.; Hirooka, Y.; Horio, T.; Hoshide, S.; Ikeda, S.; Ishimitsu, T.; et al. The Japanese Society of Hypertension guidelines for the management of hypertension (JSH2019). Hypertens. Res. 2019, 42, 1235–1481. [Google Scholar]
- Powles, J.; Fahimi, S.; Micha, R.; Khatibzadeh, S.; Shi, P.; Ezzati, M.; E Engell, R.; Lim, S.S.; Danaei, G.; Mozaffarian, D.; et al. Global, regional and national sodium intakes in 1990 and 2010: A systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 2013, 3, e003733. [Google Scholar] [CrossRef]
- He, F.J.; MacGregor, G.M. Salt reduction lowers cardiovascular risk: Meta-analysis of outcome trials. Lancet 2011, 378, 380–382. [Google Scholar] [CrossRef]
- Crichton, M.; Craven, D.; Mackay, H.; Marx, W.; de van der Schueren, M.; Marshall, S. A systematic review, meta-analysis and meta-regression of the prevalence of protein-energy malnutrition: Associations with geographical region and sex. Age Ageing 2019, 48, 38–48. [Google Scholar] [CrossRef]
- Ohta, Y.; Tsuchihashi, T.; Onaka, U.; Eto, K.; Tominaga, M.; Ueno, M. Long-term compliance with salt restriction in Japanese hypertension patients. Hypertens. Res. 2005, 28, 953–957. [Google Scholar] [CrossRef]
- Ohta, Y.; Tsuchihashi, T.; Ueno, M.; Kajioka, T.; Onaka, U.; Eto, K. Relationship between the awareness of salt restriction and the actual salt intake in hypertensive patients. Hypertens. Res. 2004, 27, 243–246. [Google Scholar] [CrossRef]
- Morris, C.D. Effect of dietary sodium restriction on overall nutrient intake. Am. J. Clin. Nutr. 1997, 65, 687S–691S. [Google Scholar] [CrossRef] [PubMed]
- Ritthausen, K.H. Über die Eiweissstoffe und deren wichtigste Zersetzungsprodukte. J. Prakt. Chem. 1866, 99, 406–434. [Google Scholar]
- Reeds, P.J. Dispensable and indispensable amino acids for humans. J. Nutr. 2000, 130, 1835S–1840S. [Google Scholar] [CrossRef]
- Ikeda, K. New seasonings. J. Tokyo Chem. Soc 1909, 30, 820–836. [Google Scholar] [CrossRef] [PubMed]
- Joint WHO/FAO Expert Committee on Food Additives. WHO Technical Report Series 928; World Health Organization (WHO): Geneva, Switzerland, 2004.
- Burger, K.S.; Berner, L.B. A functional neuroimaging review of obesity, appetitive hormones and ingestive behavior. Physiol. Behav. 2014, 136, 121–127. [Google Scholar] [CrossRef]
- Sasaki, A. What Is the Connection Between Umami and Deliciousness? Umami: The Science and Lore of Healthy Eating; Academy of Nutrition and Dietetics: Chicago, IL, USA, 2017; p. 7. [Google Scholar]
- Yu, Z.; Kang, Y.; Liu, P.; Ou, H.; Zhang, W.; He, X. The influence of food names with different levels of concreteness on evaluations of food deliciousness and healthiness. Foods 2024, 13, 2559. [Google Scholar] [CrossRef] [PubMed]
- Multhauf, R.P. Neptune’s Gift—A History of Common Salt; Johns Hopkins University Press: Baltimore, MD, USA, 1978. [Google Scholar]
- Kurlansky, M. Salt: A World History; Walker & Company: New York, NY, USA, 2002. [Google Scholar]
- Ninomiya, K. Science of umami taste: Adaptation to gastronomic culture. Flavour 2015, 4, 1–5. [Google Scholar] [CrossRef]
- Blachier, F.; Boutry, C.; Bos, C.; Tome, D. Metabolism and functions of L-glutamate in the epithelial cells of the small and large intestines. Am. J. Clin. Nutr. 2009, 90, 814S–821S. [Google Scholar] [CrossRef]
- Loï, C.; Cynober, L. Glutamate: A safe nutrient, not just a simple additive. Ann. Nutr. Metab. 2022, 78, 133–146. [Google Scholar] [CrossRef]
- Blachier, F.; Guihot-Joubrel, G.; Vaugelade, P.; Le Boucher, J.; Bernard, F.; Duee, P.; Cynober, L. Portal hyperglutamatemia after dietary supplementation with monosodium glutamate in pigs. Digestion 1999, 60, 349–357. [Google Scholar] [CrossRef]
- Morita, R.; Ohta, M.; Hayabuchi, H.; Fujitani, S.; Matsumoto, H.; Tsuchihashi, T. Quantitative verification of the effect of using an umami substance (L-glutamate) to reduce salt intake. Hypertens. Res. 2020, 43, 579–581. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, K. Natural occurrence. Food Rev. Int. 1998, 14, 177–211. [Google Scholar] [CrossRef]
- Jinap, S.; Hajeb, P. Glutamate. its applications in food and contribution to health. Appetite 2010, 55, 1–10. [Google Scholar] [CrossRef]
- Sugimoto, M.; Murakami, K.; Fujitani, S.; Matsumoto, H.; Sasaki, S. Dietary free glutamate comes from a variety of food products in the United States. Nutr. Res. 2019, 67, 67–77. [Google Scholar] [CrossRef]
- Yoshida, Y. Umami taste and traditional seasonings. Food Rev. Int. 1998, 14, 213–246. [Google Scholar] [CrossRef]
- Zanfirescu, A.; Ungurianu, A.; Tsatsakis, A.M.; Nițulescu, G.M.; Kouretas, D.; Veskoukis, A.; Tsoukalas, D.; Engin, A.B.; Aschner, M.; Margină, D. A review of the alleged health hazards of monosodium glutamate. Compr. Rev. Food Sci. F 2019, 18, 1111–1134. [Google Scholar] [CrossRef]
- Zhang, Z.; Adelman, A.S.; Rai, D.; Boettcher, J.; Lonnerdal, B. Amino acid profiles in term and preterm human milk through lactation: A systematic review. Nutrients 2013, 5, 4800–4821. [Google Scholar] [CrossRef]
- Agostoni, C.; Carratu, B.; Boniglia, C.; Riva, E.; Sanzini, E. Free amino acid content in standard infant formulas: Comparison with human milk. J. Am. Coll. Nutr. 2000, 19, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Van Sadelhoff, J.H.J.; Van de Heijning, B.J.M.; Stahl, B.; Amodio, S.; Rings, E.H.H.M.; Mearin, M.L.; Garssen, J.; Hartog, A. Longitudinal variation of amino acid levels in human milk and their associations with infant gender. Nutrients 2018, 10, 1233. [Google Scholar] [CrossRef]
- Bellisle, F. Glutamate and the UMAMI taste: Sensory, metabolic, nutritional and behavioural considerations. a review of the literature published in the last 10 years. Neurosci. Biobehav. Rev. 1999, 23, 423–438. [Google Scholar] [CrossRef]
- Hartley, I.; Costanzo, A.; Liem, D.G.; Keast, R. Glutamate-sodium discrimination status in adults is associated with salt recognition threshold and habitual intake of discretionary food and meat: A cross-sectional study. Int. J. Environ. Res. Public Health 2022, 19, 11101. [Google Scholar] [CrossRef] [PubMed]
- Sclafani, A.; Ackroff, K. Role of gut nutrient sensing in stimulating appetite and conditioning food preferences. Am. J. Physiol.-Reg. I 2012, 302, R1119–R1133. [Google Scholar] [CrossRef] [PubMed]
- Iwatsuki, K.; Liu, H.-X.; Grónder, A.; Singer, M.A.; Lane, T.F.; Grosschedl, R.; Mistretta, C.M.; Margolskee, R.F. Wnt signaling interacts with Shh to regulate taste papilla development. Proc. Natl. Acad. Sci. USA 2007, 104, 2253–2258. [Google Scholar] [CrossRef]
- Delay, E.R.; Roper, S.D. Umami taste signaling from the taste bud to cortex. In Umami, Taste for Health; San Gabriel, A., Rains, T.M., Beauchamp, G., Eds.; Springer: Cham, Switzerland, 2023; pp. 43–72. [Google Scholar]
- Sasano, T.; Satoh-Kuriwada, S.; Shoji, N.; Iikubo, M.; Kawai, M.; Uneyama, H.; Sakamoto, M. Important role of umami taste sensitivity in oral and overall health. Curr. Pharm. Des. 2014, 20, 2750–2754. [Google Scholar] [CrossRef]
- Zolotarev, V.; Khropycheva, R.; Uneyama, H.; Torii, K. Effect of free dietary glutamate on gastric secretion in dogs. Ann. N. Y. Acad. Sci. 2009, 1170, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Boutry, C.; Matsumoto, H.; Airinei, G.; Benamouzig, R.; Tomé, D.; Blachier, F.; Bos, C. Monosodium glutamate raises antral distension and plasma amino acid after a standard meal in humans. Am. J. Physiol. Liver Physiol. 2011, 300, G137–G145. [Google Scholar] [CrossRef]
- Rao, E.S.; Lalmuanpuia, C. Salt reduction strategies in foods. Int. J. Chem. Stud. 2020, 8, 2458–2468. [Google Scholar] [CrossRef]
- Committee on Strategies to Reduce Sodium Intake Food and Nutrition Board. Use of other flavors or flavoring techniques to reduce the need for added salt. In Strategies to Reduce Sodium Intake in the United States; Henney, J.E., Taylor, C.L., Boon, C.B., Eds.; The National Academic Press: Washington, DC, USA, 2010. [Google Scholar]
- Prabhavathi, S.N.; Prakash, J. Efficacy of monosodium glutamate as a flavor potentiator in salt reduction: A review. J. Nutr. Food Process. 2019, 2, 1–4. [Google Scholar]
- Nomura, S.; Tanaka, S.; Eguchi, A.; Kawashima, T.; Nakamura, H.; Lwin, K.S.; Yamasaki, L.; Yoneoka, D.; Tanoe, Y.; Adachi, M.; et al. Salt intake reduction using umami substance-incorporated food: A secondary analysis of NHANES 2017-2018 data. Public Health Nutr. 2023, 26, 488–495. [Google Scholar] [CrossRef]
- Tanaka, S.; Yoneoka, D.; Ishizuka, A.; Adachi, M.; Hayabuchi, H.; Nishimura, T.; Takemi, Y.; Uneyama, H.; Shibuya, K.; Nomura, S. Modelling salt intake reduction with umami substance’s incorporation into Japanese foods: A cross-sectional study. BMC Public Health 2023, 23, 516. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Takahashi, C. Interactions of monosodium glutamate and sodium chloride on saltiness and palatability of a clear soup. J. Food Sci. 1984, 49, 82–85. [Google Scholar] [CrossRef]
- Roininen, K.; Lahteenmaki, L.; Tuorila, H. Effect of umami taste on pleasantness of low-salt soups during repeated testing. Physiol. Behav. 1996, 60, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Ball, P.; Woodward, D.; Beard, T.; Shoobridge, A.; Ferrier, M. Calcium diglutamate improves taste characteristics of lower-salt soup. Eur. J. Clin. Nutr. 2002, 56, 519–523. [Google Scholar] [CrossRef]
- Carter, B.E.; Monsivais, P.; Drewnowski, A. The sensory optimum of chicken broths supplemented with calcium di-glutamate: A possibility for reducing sodium while maintaining taste. Food Qual. Prefer. 2011, 22, 699–703. [Google Scholar] [CrossRef]
- Hayabuchi, H.; Morita, R.; Ohta, M.; Nanri, A.; Matsumoto, H.; Fujitani, S.; Yoshida, S.; Ito, S.; Sakima, A.; Takase, H.; et al. Validation of preferred salt concentration in soup based on a randomized blinded experiment in multiple regions in Japan-influence of umami (L-glutamate) on saltiness and palatability of low-salt solutions. Hypertens. Res. 2020, 43, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Ishida, M.; Tezuka, H.; Hasegawa, T.; Cao, L.; Imada, T.; Kimura, E.; Matsumoto, H.; Kawano, R.; Arai, H. Sensory evaluation of a low-salt menu created with umami, similar to savory, substance. J. Jpn. Soc. Nutr. Food Sci. 2011, 64, 305–311. [Google Scholar] [CrossRef]
- Kawano, R.; Ishida, M.; Kimura, E.; Matsumoto, H.; Arai, H. Pilot intervention study of a low-salt diet with Monomagnesium di-L-glutamate as an umami seasoning in psychiatric inpatients. Psychogeriatrics 2015, 15, 38–42. [Google Scholar] [CrossRef]
- Iwamoto, T.; Wakita, A.; Shikanai, S.; Matsumoto, H.; Hirota, M.; Uneyama, H.; Hien, V.T.T.; Yamamoto, S. Stress condition on a restricted sodium diet using umami substance (L-Glutamate) in a pilot randomized cross-over study. Foods 2021, 10, 1739. [Google Scholar] [CrossRef]
- Hien, V.T.T.; Tuyen, L.D.; Wakita, A.; Shikanai, S.; Hang, L.T.; Anh, N.T.D.; Nguyet, N.T.A.; Iwamoto, T.; Matsumoto, H.; Uneyama, H.; et al. Dietary free L-glutamate contributes to maintaining a low sodium intake among Vietnamese. Front. Nutr. 2024, 11, 1352832. [Google Scholar] [CrossRef]
Authors | Title | Study Design | Participants | Sample Size, Age | Outcome |
---|---|---|---|---|---|
Yamaguchi et al. [70] | Interactions of monosodium glutamate and sodium chloride on saltiness and palatability of a clear soup. | Sensory evaluation, soup | Healthy adults | N = 40 (females and males), 20–40 years | Sodium reduction, palatability |
Roininen et al. [71] | Effect of umami taste on pleasantness of low-salt soups during repeated testing. | Sensory evaluation, soup | Volunteers (students and university staff members) | N = 44 (35 females, 9 males), 27 years | Sodium reduction, pleasantness |
Ball et al. [72] | Calcium diglutamate improves taste characteristics of lower-salt soup. | Sensory evaluation, soup | Young adults (almost university students) | N = 120 (67% females, 33% males), 22 years | Sodium reduction, richness |
Carter et al. [73] | The sensory optimum of chicken broths supplemented with calcium di-glutamate: a possibility for reducing sodium while maintaining taste. | Sensory evaluation, soup | Normal weight adults | N = 34 (females and males), 20–35 years | Sodium reduction, pleasant |
Morita et al. [48] | Quantitative verification of the effect of using an umami substance (L-glutamate) to reduce salt intake. | Sensory evaluation, solution | Healthy adults | N = 11 (females), 30.5 ± 3.7 years | Sodium reduction, palatability |
Hayabuchi et al. [74] | Validation of preferred salt concentration in soup based on a randomized blinded experiment in multiple regions in Japan influence of umami (L-glutamate) on saltiness and palatability of low-salt solutions. | Sensory evaluation, solution (multicenter trial) | Healthy adults | N = 584 (515 females, 69 males), Age: 19–29, n = 257 30–59, n = 72 60–69, n = 100 >70, n = 153 | Sodium reduction, palatability |
Ishida et al. [75] | Sensory evaluation of a low-salt menu created with umami, similar to savory, substance. | Sensory evaluation, hospital meals | Healthy adults | N = 34 (20 females, 14 males), 41.9 ± 15.2 years | Sodium reduction, palatability |
Kawano et al. [76] | Pilot intervention study of a low-salt diet with Monomagnesium di-L-glutamate as an umami seasoning in psychiatric inpatients. | Intervention study | Psychiatric inpatients | N = 15 (11 females, 4 males), 52.9 ± 15.3 years | Sodium reduction, energy intake |
Iwamoto et al. [77] | Stress condition on a restricted sodium diet using umami substance (L-Glutamate) in a pilot randomized cross-over study. | Intervention study | Volunteers (students and university staff members) | N = 31 (females), 18–35 years | Sodium reduction, stress marker |
Hien et al. [78] | Dietary free L-glutamate contributes to maintaining a low sodium intake among Vietnamese. | Intervention study | Prehypertension and urinary Na ≥ 4000 mg/day | N = 42 (females), 61.8 ± 15.3 * years | Sodium reduction, stress marker |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumoto, H.; Miyamoto, L.; Matsumoto, T.; Blachier, F. The Role of L-Glutamate as an Umami Substance for the Reduction of Salt Consumption: Lessons from Clinical Trials. Nutrients 2025, 17, 1684. https://doi.org/10.3390/nu17101684
Matsumoto H, Miyamoto L, Matsumoto T, Blachier F. The Role of L-Glutamate as an Umami Substance for the Reduction of Salt Consumption: Lessons from Clinical Trials. Nutrients. 2025; 17(10):1684. https://doi.org/10.3390/nu17101684
Chicago/Turabian StyleMatsumoto, Hideki, Licht Miyamoto, Takaki Matsumoto, and Francois Blachier. 2025. "The Role of L-Glutamate as an Umami Substance for the Reduction of Salt Consumption: Lessons from Clinical Trials" Nutrients 17, no. 10: 1684. https://doi.org/10.3390/nu17101684
APA StyleMatsumoto, H., Miyamoto, L., Matsumoto, T., & Blachier, F. (2025). The Role of L-Glutamate as an Umami Substance for the Reduction of Salt Consumption: Lessons from Clinical Trials. Nutrients, 17(10), 1684. https://doi.org/10.3390/nu17101684