Daily Eating Window and Obesity Markers in a Sample of Schoolchildren from Vienna: Insights from the EDDY Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Meal Timing Variables
2.3. Anthropometric and Body Composition Variables
2.4. Additional Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lobstein, T.A.; Powis, J.; Jackson-Leach, R. World Obesity Atlas 2024. 2024. Available online: https://www.worldobesity.org/ (accessed on 18 March 2025).
- Rubino, F.; Cummings, D.E.; Eckel, R.H.; Cohen, R.V.; Wilding, J.P.H.; Brown, W.A.; Stanford, F.C.; Batterham, R.L.; Farooqi, I.S.; Farpour-Lambert, N.J.; et al. Definition and diagnostic criteria of clinical obesity. Lancet Diabetes Endocrinol. 2025, 13, 221–262. [Google Scholar] [CrossRef] [PubMed]
- Chaix, A.; Manoogian, E.N.; Melkani, G.C.; Panda, S. Time-Restricted Eating to Prevent and Manage Chronic Metabolic Diseases. Annu. Rev. Nutr. 2019, 39, 291–315. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.; Vahlhaus, J.; Pivovarova-Ramich, O. Meal timing and its role in obesity and associated diseases. Front. Endocrinol. 2024, 15, 1359772. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, N.B.; Teixeira, G.P.; Rinaldi, A.E.M.; Azeredo, C.M.; Crispim, C.A. Late meal intake is associated with abdominal obesity and metabolic disorders related to metabolic syndrome: A chrononutrition approach using data from NHANES 2015–2018. Clin. Nutr. 2023, 42, 1798–1805. [Google Scholar] [CrossRef] [PubMed]
- Fiore, G.; Scapaticci, S.; Neri, C.R.; Azaryah, H.; Escudero-Marín, M.; Pascuzzi, M.C.; La Mendola, A.; Mameli, C.; Chiarelli, F.; Campoy, C.; et al. Chrononutrition and metabolic health in children and adolescents: A systematic review and meta-analysis. Nutr. Rev. 2023, 82, 1309–1354. [Google Scholar] [CrossRef]
- Townley, J.; Northstone, K.; Hinton, E.C.; Hamilton-Shield, J.; Searle, A.; Leary, S. Daily Duration of Eating for Children and Adolescents: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 993. [Google Scholar] [CrossRef]
- Santonja, I.; Bogl, L.H.; Degenfellner, J.; Klösch, G.; Seidel, S.; Schernhammer, E.; Papantoniou, K. Meal-timing patterns and chronic disease prevalence in two representative Austrian studies. Eur. J. Nutr. 2023, 62, 1879–1890. [Google Scholar] [CrossRef]
- Stadt Wien. Wirtschaft A und S. Bezirke in Zahlen—Statistiken. statistik.wien.gv.at. Wien. 2023. Available online: https://www.wien.gv.at/statistik/bezirke/index.html (accessed on 24 October 2024).
- Kromeyer-Hauschild, K.; Wabitsch, M.; Kunze, D.; Geller, F.; Geiß, H.C.; Hesse, V.; Von Hippel, A.; Jaeger, U.; Johnsen, D.; Korte, W.; et al. Perzentile fr den Body-Mass-Index fr das Kindes-und Jugendalter Unter Heranziehung Verschiedener Deutscher Stichproben. Monatsschr. Kinderheilkd 2001, 149, 807–818. [Google Scholar] [CrossRef]
- Reynolds, A.M.; Spaeth, A.M.; Hale, L.; Williamson, A.A.; LeBourgeois, M.K.; Wong, S.D.; Hartstein, L.E.; Levenson, J.C.; Kwon, M.; Hart, C.N.; et al. Pediatric sleep: Current knowledge, gaps, and opportunities for the future. Sleep 2023, 46, zsad060. [Google Scholar] [CrossRef]
- Intemann, T.; Bogl, L.H.; Hunsberger, M.; Lauria, F.; De Henauw, S.; Molnár, D.; Moreno, L.A.; Tornaritis, M.; Veidebaum, T.; Ahrens, W.; et al. A Late Meal Timing Pattern Is Associated with Insulin Resistance in European Children and Adolescents. Pediatr. Diabetes 2024, 2024, 6623357. [Google Scholar] [CrossRef]
- Huseinovic, E.; Winkvist, A.; Freisling, H.; Slimani, N.; Boeing, H.; Buckland, G.; Schwingshackl, L.; Olsen, A.; Tjønneland, A.; Stepien, M.; et al. Timing of eating across ten European countries—Results from the European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study. Public Health Nutr. 2018, 22, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lozano, N.; Tvarijonaviciute, A.; Ríos, R.; Barón, I.; Scheer, F.A.J.L.; Garaulet, M. Late Eating Is Associated with Obesity, Inflammatory Markers and Circadian-Related Disturbances in School-Aged Children. Nutrients 2020, 12, 2881. [Google Scholar] [CrossRef] [PubMed]
- Monzani, A.; Ricotti, R.; Caputo, M.; Solito, A.; Archero, F.; Bellone, S.; Prodam, F. A Systematic Review of the Association of Skipping Breakfast with Weight and Cardiometabolic Risk Factors in Children and Adolescents. What Should We Better Investigate in the Future? Nutrients 2019, 11, 387. [Google Scholar] [CrossRef] [PubMed]
- Ardeshirlarijani, E.; Namazi, N.; Jabbari, M.; Zeinali, M.; Gerami, H.; Jalili, R.B.; Larijani, B.; Azadbakht, L. The link between breakfast skipping and overweigh/obesity in children and adolescents: A meta-analysis of observational studies. J. Diabetes Metab. Disord. 2019, 18, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, I.; Haberzettl, C.; Rieder, C. Ernährungsverhalten und Einstellung zum Essen der ÖsterreicherInnen. J. Ernährungsmedizin 2000, 5, 2–7. [Google Scholar]
- Bakhsh, J.; Salvy, S.-J.; Vidmar, A.P. Intermittent fasting as a treatment for obesity in young people: A scoping review. npj Metab. Health Dis. 2024, 2, 39. [Google Scholar] [CrossRef]
- Tucker, J.M.; Siegel, R.; Murray, P.J.; Han, J.C.; Boyer, K.; Reed, N.; Allenby, T.; Novick, M. Acceptability of Time-Limited Eating in Pediatric Weight Management. Front. Endocrinol. 2022, 13, 811489. [Google Scholar] [CrossRef]
- Saltaouras, G.; Kyrkili, A.; Bathrellou, E.; Georgoulis, M.; Yannakoulia, M.; Bountziouka, V.; Smrke, U.; Dimitrakopoulos, G.; Kontogianni, M.D. Associations between Meal Patterns and Risk of Overweight/Obesity in Children and Adolescents in Western Countries: A Systematic Review of Longitudinal Studies and Randomised Controlled Trials. Children 2024, 11, 1100. [Google Scholar] [CrossRef]
- Zou, M.; Northstone, K.; Perry, R.; Johnson, L.; Leary, S. The association between later eating rhythm and adiposity in children and adolescents: A systematic review and meta-analysis. Nutr. Rev. 2022, 80, 1459–1479. [Google Scholar] [CrossRef]
- Felső, R.; Lohner, S.; Hollódy, K.; Erhardt, É.; Molnár, D. Relationship between sleep duration and childhood obesity: Systematic review including the potential underlying mechanisms. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 751–761. [Google Scholar] [CrossRef]
- Thumann, B.F.; Buck, C.; De Henauw, S.; Hadjigeorgiou, C.; Hebestreit, A.; Lauria, F.; Lissner, L.; Molnár, D.; Moreno, L.A.; Veidebaum, T.; et al. Cross-sectional associations between objectively measured sleep characteristics and body mass index in European children and adolescents. Sleep Med. 2021, 84, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Dutil, C.; Podinic, I.; Sadler, C.M.; da Costa, B.G.; Janssen, I.; Ross-White, A.; Saunders, T.J.; Tomasone, J.R.; Chaput, J.-P. Sleep timing and health indicators in children and adolescents: A systematic review. Health Promot. Chronic Dis. Prev. Can. 2022, 42, 150–169. [Google Scholar] [CrossRef] [PubMed]
- WHO Regional Office for Europe. Childhood Obesity Surveillance Initiative (COSI)—Bericht Österreich 2020; Bundesministerium für Soziales, Gesundheit, Pflege und Konsumentenschutz Österreich: Vienna, Austria, 2023. [Google Scholar]
- Ramírez-Contreras, C.; Farran-Codina, A.; Zerón-Rugerio, M.F.; Izquierdo-Pulido, M. Relative Validity and Reliability of the Remind App as an Image-Based Method to Assess Dietary Intake and Meal Timing in Young Adults. Nutrients 2023, 15, 1824. [Google Scholar] [CrossRef] [PubMed]
- Chakradeo, P.; Rasmussen, H.E.; Swanson, G.R.; Swanson, B.; Fogg, L.F.; Bishehsari, F.; Burgess, H.J.; Keshavarzian, A. Psychometric Testing of a Food Timing Questionnaire and Food Timing Screener. Curr. Dev. Nutr. 2021, 6, nzab148. [Google Scholar] [CrossRef]
Tertile 1—SEW (≤11:05 h) | Tertile 2—MEW (11:05 to 12:05 h) | Tertile 3—LEW (≥12:05 h) | p Ɨ | |
---|---|---|---|---|
n | 46 (33.3) | 46 (33.3) | 46 (33.3) | |
School 1 | 17 (37.0) | 19 (41.3) | 12 (26.1) | 0.542 |
School 2 | 18 (39.1) | 16 (34.8) | 18 (39.1) | |
School 3 | 11 (23.9) | 11 (23.9) | 16 (34.8) | |
Sex | ||||
Girls | 19 (41.3) | 19 (41.3) | 17 (37.0) | 0.886 |
Boys | 27 (58.7) | 27 (58.7) | 29 (63.0) | |
Age | 7.8 (7.2–9.0) | 8.2 (7.5–9.1) | 7.8 (7.3–9.6) | 0.050 |
Weight status | ||||
Normal weight | 31 (67.4) | 35 (76.1) | 35 (76.1) | 0.880 |
Overweight | 7 (15.2) | 5 (10.9) | 5 (10.9) | |
Obesity | 8 (17.4) | 6 (13.0) | 6 (13.0) | |
BMI-SDS | 0.54 (−1.06–2.58) | 0.38 (−0.98–2.83) | −0.04 (−1.29–2.32) a | 0.017 |
BMI | 16.8 (14.1–24.9) | 16.9 (14.7–26.3) | 16.0 (13.8–23.4) a | 0.007 |
Waist-to-height ratio | 0.46 (0.41–0.56) | 0.44 (0.39–0.57) | 0.44 (0.39–0.53) | 0.098 |
Fat mass index | 3.99 (2.71–9.18) | 3.84 (2.65–9.74) | 3.27 (2.27–8.57) a | 0.005 |
FFM/height2 | 13.03 (11.35–15.04) | 13.00 (11.41–15.81) | 12.60 (11.11–15.15) | 0.092 |
Meal timing variables | ||||
First meal (hh:mm) | 8:05 (7:00–10:00) | 7:00 (6:30–8:00) a | 7:00 (6:00–7:30) a | <0.001 |
Last meal (hh:mm) | 18:00 (17:30–20:00) | 19:00 (18:00–20.00) a | 19:45 (19:00–21:00) a | <0.001 |
Eating window (hh:mm/day) | 10:30 (8:30–11:00) | 11:40 (11:15–12:00) a | 12:45 (12:15–13:45) a | <0.001 |
Pre-bed fasting | ||||
≤1 h | 5 (10.9) | 6 (13.0) | 16 (34.8) | 0.001 |
1–2 h | 21 (45.7) | 26 (56.5) | 25 (54.4) | |
2–3 h | 14 (30.4) | 14 (30.4) | 4 (8.7) | |
≥3 h | 6 (13.0) | 0 (0) | 1 (2.2) | |
Number meals/day | 4 (2–5) | 4 (3–5) a | 4 (3–6) | 0.047 |
Breakfast 1 | ||||
Regular | 16 (34.8) | 29 (63.0) | 26 (56.5) | 0.005 |
Irregular | 30 (65.2) | 17 (37.0) | 20 (43.5) | |
Sleep (hh:mm/day) 2 | 10:00 (8:42–11:00) | 9:47 (8:45–10:42) | 9:40 (9:00–10:30) | 0.240 |
Parental weight status | ||||
Mother’s BMI, (kg/m2) 3 | 24.2 (20.0–36.1) | 25.7 (19.8–35.9) | 24.7 (20.1–38.7) | 0.785 |
Father’s BMI, (kg/m2) 3 | 27.8 (21.8–36.5) | 26.9 (21.3–34.7) | 27.5 (20.8–34.7) | 0.629 |
Parental background 4 | ||||
One parent from Austria | 9 (20.0) | 3 (7.7) | 6 (13.6) | 0.097 |
Both parents from Austria | 12 (26.7) | 12 (30.8) | 5 (11.4) | |
No parent from Austria | 24 (53.3) | 24 (61.5) | 33 (75.0) |
Outcome (SEW as Ref.) | Crude β (95% CI) | p | Adjusted β (95% CI) | p |
---|---|---|---|---|
BMI-SDS | ||||
MEW | −0.20 (−0.69–0.29) | 0.429 | −0.06 (−0.60–0.47) | 0.816 |
LEW | −0.56 (−1.05 to −0.07) | 0.026 | −0.66 (−1.17 to −0.14) | 0.013 |
Fat mass index | ||||
MEW | −0.19 (−1.14–0.75) | 0.687 | 0.03 (−0.99–1.04) | 0.959 |
LEW | −0.79 (−1.74–0.16) | 0.104 | −1.06 (−2.04 to −0.09) | 0.032 |
Waist-to-height ratio | ||||
MEW | −0.01 (−0.03–0.01) | 0.332 | −0.01 (−0.03–0.02) | 0.582 |
LEW | −0.02 (−0.04–0.00) | 0.092 | −0.02 (−0.04–0.00) | 0.057 |
Tertile 1—SEW | Tertile 2—MEW | Tertile 3—LEW | F-Value, (p-Value) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline | Last Follow-Up | Baseline | Last Follow-Up | Baseline | Last Follow-Up | Time | School Group | Tertiles of EW | Interaction Ɨ | |
BMI-SDS | 0.05 (0.819) | 3.21 (0.044) | 4.24 (0.017) | 0.63 (0.813) | ||||||
School 1 | 0.71 (0.07–1.35) | 0.63 (0.003–1.26) | 0.35 (−0.24–0.94) | 0.36 (−0.28–1.01) | −0.61 (−1.34–0.12) | −0.65 (−1.40–0.10) | ||||
School 2 | 0.64 (0.001–1.28) | 0.53 (−0.08–1.14) | 0.46 (−0.25–1.17) | 0.27 (−0.45–0.99) | 0.40 (−0.27–1.07) | 0.38 (−0.22–0.97) | ||||
School 3 | 0.87 (0.07–1.68) | 0.74 (−0.01–1.49) | 1.29 (0.44–2.15) | 1.30 (0.36–2.25) | 0.38 (0.44–2.15) | 0.33 (−0.40–1.07) | ||||
Fat mass index | 1.07 (0.304) | 5.51 (0.005) | 2.60 (0.078) | 1.20 (0.291) | ||||||
School 1 | 5.01 (3.81–6.22) | 4.52 (3.16–5.88) | 4.77 (3.67–5.88) | 4.52 (3.15–5.88) | 3.08 (1.71–4.44) | 2.39 (0.77–4.01) | ||||
School 2 | 4.97 (3.77–6.17) | 4.16 (2.84–5.48) | 4.63 (3.30–5.97) | 3.62 (2.07–5.18) | 4.68 (3.43–5.92) | 4.19 (2.90–5.49) | ||||
School 3 | 6.25 (4.75–7.76) | 5.11 (3.47–6.74) | 6.71 (5.11–8.31) | 6.86 (4.84–8.89) | 5.18 (3.99–6.37) | 4.88 (3.34–6.43) | ||||
Waist-to-height ratio | 0.13 (0.715) | 4.26 (0.016) | 3.50 (0.033) | 1.33 (0.209) | ||||||
School 1 | 0.48 (0.45–0.51) | 0.47 (0.44–0.51) | 0.46 (0.43–0.48) | 0.47 (0.44–0.51) | 0.44 (0.41–0.47) | 0.41 (0.36–0.45) | ||||
School 2 | 0.46 (0.44–0.49) | 0.48 (0.45–0.52) | 0.46 (0.43–0.49) | 0.46 (0.42–0.50) | 0.45 (0.42–0.48) | 0.46 (0.43–0.50) | ||||
School 3 | 0.48 (0.45–0.52) | 0.51 (0.47–0.56) | 0.50 (0.47–0.54) | 0.51 (0.36–0.57) | 0.47 (0.45–0.50) | 0.47 (0.43–0.52) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moliterno, P.; Donhauser, V.; Widhalm, K. Daily Eating Window and Obesity Markers in a Sample of Schoolchildren from Vienna: Insights from the EDDY Study. Nutrients 2025, 17, 1661. https://doi.org/10.3390/nu17101661
Moliterno P, Donhauser V, Widhalm K. Daily Eating Window and Obesity Markers in a Sample of Schoolchildren from Vienna: Insights from the EDDY Study. Nutrients. 2025; 17(10):1661. https://doi.org/10.3390/nu17101661
Chicago/Turabian StyleMoliterno, Paula, Victoria Donhauser, and Kurt Widhalm. 2025. "Daily Eating Window and Obesity Markers in a Sample of Schoolchildren from Vienna: Insights from the EDDY Study" Nutrients 17, no. 10: 1661. https://doi.org/10.3390/nu17101661
APA StyleMoliterno, P., Donhauser, V., & Widhalm, K. (2025). Daily Eating Window and Obesity Markers in a Sample of Schoolchildren from Vienna: Insights from the EDDY Study. Nutrients, 17(10), 1661. https://doi.org/10.3390/nu17101661