Effects of Dietary Carbohydrate Concentration and Glycemic Index on Blood Glucose Variability and Free Fatty Acids in Individuals with Type 1 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Intended D1 Results
3.3. Intended D2 Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chehregosha, H.; Khamseh, M.E.; Malek, M.; Hosseinpanah, F.; Ismail-Beigi, F. A View Beyond HbA1c: Role of Continuous Glucose Monitoring. Diabetes Ther. 2019, 10, 853–863. [Google Scholar] [CrossRef]
- American Diabetes Association. 5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes−2024. Diabetes Care 2024, 47 (Suppl. 1), S77–S110. [Google Scholar] [CrossRef]
- Annan, F.; Higgins, L.A.; Jelleryd, E.; Hannon, T.; Rose, S.; Salis, S.; Baptista, J.; Chinchilla, P.; Marcovecchio, M.L. ISPAD Clinical Practice Consensus Guidelines 2022: Nutritional management in children and adolescents with diabetes. Pediatr Diabetes 2022, 23, 1297–1321. [Google Scholar] [CrossRef]
- Harray, A.J.; Roberts, A.G.; Crosby, N.E.; Shoneye, C.; Bebbington, K. Experiences and Attitudes of Parents Reducing Carbohydrate Intake in the Management of Their Child’s Type 1 Diabetes: A Qualitative Study. Nutrients 2023, 15, 1666. [Google Scholar] [CrossRef]
- American Diabetes Association. Lifestyle management: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42 (Suppl. 1), S46–S60. [Google Scholar] [CrossRef]
- Smart, C.E.; Annan, F.; Higgins, L.A.; Jelleryd, E.; Lopez, M.; Acerini, C.L. ISPAD Clinical Practice Consensus Guidelines 2018: Nutritional management in children and adolescents with diabetes. Pediatr Diabetes 2018, 19 (Suppl. 27), 136–154. [Google Scholar] [CrossRef]
- Quarta, A.; Guarino, M.; Tripodi, R.; Giannini, C.; Chiarelli, F.; Blasetti, A. Diet and Glycemic Index in Children with Type 1 Diabetes. Nutrients 2023, 15, 3507. [Google Scholar] [CrossRef]
- Elsayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. Glycemic Targets: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46, S97–S110. [Google Scholar] [CrossRef]
- Gilbertson, H.R.; Brand-Miller, J.C.; Thorburn, A.W.; Evans, S.; Chondros, P.; Werther, G.A. The effect of flexible low glycemic diets on glycemic control in children with type 1 diabetes. Diabetes Care 2001, 24, 1137–1143. [Google Scholar] [CrossRef]
- Abu-Qamar, M.Z. Use of nutrition therapy in the management of diabetes mellitus. Nurs. Stand. 2019, 34, 61–66. [Google Scholar] [CrossRef]
- American Diabetes Association. Facilitating behavior change and well-being to improve health outcomes: Standards of medical care in diabetes—2021. Diabetes Care 2021, 44 (Suppl. 1), S53–S72. [Google Scholar] [CrossRef]
- Nielsen, J.V.; Gando, C.; Joensson, E.; Paulsson, C. Low carbohydrate diet in type 1 diabetes, long-term improvement and adherence: A clinical audit. Diabetol. Metab. Syndr. 2012, 4, 23. [Google Scholar] [CrossRef]
- Feinman, R.D.; Pogozelski, W.K.; Astrup, A.; Bernstein, R.K.; Fine, E.J.; Westman, E.C.; Accurso, A.; Frassetto, L.; Gower, B.A.; McFarlane, S.I.; et al. Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition 2015, 31, 1–13. [Google Scholar] [CrossRef]
- Krebs, J.D.; Parry Strong, A.; Cresswell, P.; Reynolds, A.N.; Hanna, A.; Haeusler, S. A randomised trial of the feasibility of a low carbohydrate diet vs standard carbohydrate counting in adults with type 1 diabetes taking body weight into account. Asia Pac. J. Clin. Nutr. 2016, 25, 78–84. [Google Scholar] [CrossRef]
- Turton, J.L.; Raab, R.; Rooney, K.B. Low-carbohydrate diets for type 1 diabetes mellitus: A systematic review. PLoS ONE 2018, 13, e0194987. [Google Scholar] [CrossRef]
- Lejk, A.; Chrzanowski, J.; Cies’lak, A.; Fendler, W.; Mys’liwiec, M. Reduced Carbohydrate Diet Influence on Postprandial Glycemia—Results of a Short, CGM-Based, Interventional Study in Adolescents with Type 1 Diabetes. Nutrients 2022, 14, 4689. [Google Scholar] [CrossRef]
- Pedersen, E.; Lange, K.; Clifton, P. Effect of carbohydrate restriction in the first meal after an overnight fast on glycemic control in people with type 2 diabetes: A randomized trial. Am. J. Clin. Nutr. 2016, 104, 1285–1291. [Google Scholar] [CrossRef]
- Risérusa, U.; Willet, W.C.; Hu, F.B. Dietary fats and prevention of type 2 diabetes. Prog. Lipid Res. 2009, 48, 44–51. [Google Scholar] [CrossRef]
- Borai, A.; Livingstone, C.; Ferns, G.A.A. The biochemical assessment of insulin resistance. Ann. Clin. Biochem. 2007, 44 Pt 4, 324–342. [Google Scholar] [CrossRef]
- Pambianco, G.; Costacou, T.; Orchard, T.J. The prediction of major outcomes of type 1 diabetes: A 12-year prospective evaluation of three separate definitions of the metabolic syndrome and their components and estimated glucose disposal rate: The Pittsburgh Epidemiology of Diabetes Complications Study experience. Diabetes Care 2007, 30, 1248–1254. [Google Scholar] [CrossRef]
- Rebrin, K.; Steil, G.M.; Mittelman, S.D.; Bergman, R.N. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J. Clin. Investig. 1996, 98, 741–749. [Google Scholar] [CrossRef]
- Savage, D.B.; Petersen, K.F.; Shulman, G.I. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol. Rev. 2007, 87, 507–520. [Google Scholar] [CrossRef]
- Bajaj, M.; Suraamornkul, S.; Kashyap, S.; Cusi, K.; Mandarino, L.; DeFronzo, R.A. Sustained reduction in plasma free fatty acid concentration improves insulin action without altering plasma adipocytokine levels in subjects with strong family history of type 2 diabetes. J. Clin. Endocrinol. Metab. 2004, 89, 4649–4655. [Google Scholar] [CrossRef]
- Ludwig, D.S. The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 2002, 287, 2414–2423. [Google Scholar] [CrossRef]
- Wang, Q.; Xia, W.; Zhao, Z.; Zhang, H. Effects comparison between low glycemic index diets and high glycemic index diets on HbA1c and fructosamine for patients with diabetes: A systematic review and meta-analysis. Prim. Care Diabetes 2015, 9, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Juraschek, S.P.; Steffes, M.W.; Miller, E.R., 3rd; Selvin, E. Alternative markers of hyperglycemia and risk of diabetes. Diabetes Care 2012, 35, 2265–2270. [Google Scholar] [CrossRef]
- Nisak, M.Y.B.; Ruzita, A.T.; Norimah, A.K.; Gilbertson, H.; Azmi, K.N. Improvement of dietary quality with the aid of a low glycemic index diet in asian patients with type 2 diabetes mellitus. J. Am. Coll. Nutr. 2010, 29, 161–170. [Google Scholar] [CrossRef]
- Zafar, M.I.; Mills, K.E.; Zheng, J.; Peng, M.M.; Ye, X.; Chen, L.L. Low glycaemic index diets as an intervention for obesity: A systematic review and meta-analysis. Obes. Rev. 2019, 20, 290–315. [Google Scholar] [CrossRef]
- Chiavaroli, L.; Lee, D.; Ahmed, A.; Cheung, A.; Khan, T.A.; Blanco, S.; Mirrahimi, A.; Jenkins, D.J.; Livesey, G.; Wolever, T.M.; et al. Effect of low glycaemic index or load dietary patterns on glycaemic control and cardiometabolic risk factors in diabetes: Systematic review and meta-analysis of randomised controlled trials. BMJ 2021, 374, n1651. [Google Scholar] [CrossRef] [PubMed]
- Goff, L.M.; Cowland, D.E.; Hooper, L.; Frost, G.S. Low glycaemic index diets and blood lipids: A systematic review and meta-analysis of randomised controlled trials. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Camps, S.G.; Kaur, B.; Lim, J.; Loo, Y.T.; Pang, E.; Ng, T.; Henry, C.J. Improved glycemic control and variability: Application of healthy ingredients in asian staples. Nutrients 2021, 13, 3102. [Google Scholar] [CrossRef]
- Chang, C.R.; Francois, M.E.; Little, J.P. Restricting carbohydrates at breakfast is sufficient to reduce 24-hour exposure to postprandial hyperglycemia and improve glycemic variability. Am. J. Clin. Nutr. 2019, 109, 1302–1309. [Google Scholar] [CrossRef]
- Kristensen, K.B.; Ranjan, A.G.; McCarthy, O.M.; Bracken, R.M.; Nørgaard, K.; Schmidt, S. Sensor-Based Glucose Metrics during Different Diet Compositions in Type 1 Diabetes—A Randomized One-Week Crossover Trial. Nutrients 2024, 16, 199. [Google Scholar] [CrossRef]
Variables | |
---|---|
Male, n (%) | 9 (52.9) |
Female, n (%) | 8 (47.1) |
Age (years) | 29.7 ± 10.0 |
Diabetes duration (years) | 11.8 ± 7.7 |
Hemoglobin A1c (%) | 7.0 ± 0.9 |
Systolic blood pressure (mmHg) | 114.7 ± 11.5 |
Diastolic blood pressure (mmHg) | 72.4 ± 8.0 |
Smoking, n (%) | 4 (23.5) |
Alcohol use, n (%) | 9 (52.9) |
Body weight (kg) | 72.5 ± 17.6 |
BMI (kg/m2) | 24.2 ± 3.8 |
Body fat mass (kg) | 15.5 ± 8.5 |
Body fat percentage (%) | 21.2 ± 9.4 |
Lean body mass (kg) | 57.0 ± 15.4 |
Measured Parameter | Male | Female | p | Post Hoc Comparisons | ||
---|---|---|---|---|---|---|
Mean ± SD | Min–Max | Mean ± SD | Min–Max | |||
Body weight at baseline (kg) | 79.4 ± 15.1 | 54.5–96.0 | 62.7 ± 17.0 | 40.0–93.5 | Group: F = 10.750, p = 0.003 | D1–D2: p = 0.008 |
Body weight after D1 + D2 (kg) | 79.4 ± 14.9 | 55.9–96.6 | 61.8 ± 16.6 | 39.5–92.0 | Gender: F = 4.980, p = 0.042 | D2–D3: p < 0.001 * |
Body weight after D3 + D4 (kg) | 78.6 ± 15.0 | 54.9–96.6 | 61.3 ± 16.5 | 39.4–91.7 | Group*Gender: F = 2.170, p = 0.16 | |
BMI at baseline (kg/m2) | 24.7 ± 3.4 | 17.6–28.7 | 23.4 ± 4.4 | 16.4–28.9 | Group: F = 2.327, p = 0.12 | |
BMI after D1 + D2 (kg/m2) | 24.7 ± 3.3 | 18.0–28.8 | 23.1 ± 4.2 | 16.2–28.4 | Gender: F = 0.560, p = 0.47 | |
BMI after D3 + D4 (kg/m2) | 24.5 ± 3.3 | 17.9–28.8 | 23.2 ± 4.6 | 16.2–28.9 | Group*Gender: F = 1.426, p = 0.26 | |
Body fat percentage at baseline (%) | 16.6 ± 6.2 | 7.7–24.1 | 27.7 ± 9.8 | 12.5–42.0 | Group: F = 1.111, p = 0.34 | |
Body fat percentage after D1 + D2 (%) | 16.8 ± 7.1 | 5.8–24.8 | 27.1 ± 9.8 | 12.6–42.7 | Gender: F = 7.050, p = 0.018 | |
Body fat percentage after D3 + D4 (%) | 16.5 ± 6.4 | 5.8–25.3 | 26.6 ± 10.0 | 11.0–42.5 | Group*Gender: F = 0.777, p = 0.47 | |
Body fat mass at baseline (kg) | 13.3 ± 5.8 | 5.3–20.7 | 18.7 ± 11.1 | 5.0–39.3 | Group: F = 2.048, p = 0.15 | |
Body fat mass after D1 + D2 (kg) | 13.6 ± 6.9 | 4.7–23.4 | 18.1 ± 11.1 | 5.0–39.3 | Gender: F = 1.281, p = 0.28 | |
Body fat mass after D3 + D4 (kg) | 13.2 ± 6.2 | 5.4–21.5 | 17.6 ± 11.1 | 4.3–39.0 | Group*Gender: F = 1.770, p = 0.19 | |
Lean body mass at baseline (kg) | 66.1 ± 13.0 | 44.1–87.7 | 44.0 ± 6.3 | 35.0–54.2 | Group: F = 1.270, p = 0.30 | |
Lean body mass after D1 + D2 (kg) | 65.8 ± 12.5 | 45.5–88.5 | 43.7 ± 6.2 | 34.5–52.7 | Gender: F = 17.660, p = 0.001 | |
Lean body mass after D3 + D4 (kg) | 65.5 ± 12.7 | 44.5–87.2 | 43.7 ± 6.2 | 35.1–52.7 | Group*Gender: F = 0.179, p = 0.84 |
Variable | Baseline | Post-Diet 1 | Post-Diet 2 | Post-Diet 3 | Post-Diet 4 | p | Pairwise Comparisons |
---|---|---|---|---|---|---|---|
Fructosamine (μmol/L) mean ± SD (min–max) | 0.4 ± 0.1 (0.3–0.4) | NA | 0.3 ± 0.0 (0.3–0.4) | NA | 0.3 ± 0.0 (0.3–0.4) | F = 2.622, p = 0.108 | |
Triglycerides (mg/dL) mean ± SD (min–max) | 73.6 ± 31.3 (29–143) | 134.3 ± 91.9 (32–334) | 109.4 ± 65.7 (39–282) | 118.8 ± 53.5 (38–243) | 97.5 ± 61.0 (36–278) | F = 6.696, p = 0.002 * | D1-D2: p = 0.049 * D1-D4: p = 0.006 * |
Presence of ketone bodies (%) | 29.41 | 5.88 | 11.77 | NA | NA | z = 0.600, p = 0.545 | |
Ketone bodies (mg/dL) mean ± SD (min–max) | 15.88 ± 38.29 (0–150) | 0.88 ± 3.64 (0–15) | 1.76 ± 4.98 (0–15) | NA | NA | t = 0.588, p = 0.561 | |
Free fatty acids (nmol/mg) mean ± SD (min–max) | 1.19 ± 0.21 (0.90–1.70) | 1.60 ± 0.57 (0.80–2.99) | 1.36 ± 0.53 (0.88–2.16) | 1.41 ± 0.42 (0.83–2.16) | 1.23 ± 0.53 (0.72–2.95) | X2 = 11.88, p = 0.018 | D1-D4: p = 0.014 * |
Average blood glucose (mg/dL) mean ± SD (min–max) | NA | 135.2 ± 23.0 (88–168) | 138.2±31.1 (88–189) | 141.4±26.5 (101–192) | 146.8 ± 30.3 (85–213) | F = 1.329, p = 0.276 | |
GV (%) | NA | 34.2 ± 9.8 (14.9–52.7) | 34.4 ± 8.8 (13.6–49.6) | 36.3 ± 9.5 (20.0–57.4) | 36.8 ± 8.2 (15.3–46.7) | F = 0.646, p = 0.589 | |
TIR (%), mean ± SD (min–max) | NA | 71.7 ± 14.2 (47.7–100.0) | 70.2 ± 16.8 (42.3–97.9) | 69.8 ± 15.4 (39.4–95.8) | 66.8 ± 14.5 (38.1–95.6) | F = 0.683, p = 0.567 | |
TBR (%), mean ± SD, median (min–max) | NA | 5.8 ± 6.5 3.75 (0–22.7) | 4.7 ± 3.7 4.3 (0–14.56) | 5.7 ± 3.8 5.46 (0–12.02) | 5.3 ± 3.8 4.15 (0–11.45) | X2 = 0.479, p = 0.923 | |
TAR (%), mean ± SD, median (min–max) | NA | 10.2 ± 6.5 10.2 (0–20) | 11.2 ± 9.2 7.4 (0–28.8) | 11.9 ± 8.0 10.8 (0–27.2) | 13.5 ± 7.9 11.9 (0–28.7) | F = 1.172, p = 0.330 | |
Blood glucose AUC (mg/dL), mean ± SD, median (min–max) | NA | 83,236.56 ± 305 9.84 (24,176–135,046) | 86,380.94 ± 377 9.28 (14,298–147,814) | 88,088.06 ± 3091 0.42 (45,182–142,304) | 89,496.81 ± 323 5.43 (13,187–152,728) | F = 0.359, p = 0.783 |
Mean ± SD | Median (Min–Max) | Test Statistics | |
---|---|---|---|
D1D2_AG | 136.68 ± 25.71 | 141.0 (91.5–172.0) | t = −1.476 p = 0.16 |
D3D4_AG | 144.12 ± 25.19 | 145.0 (93.0–198.5) | |
D1D3_AG | 138.29 ± 22.62 | 138.5 (98.0–175.5) | t = −1.018 p = 0.32 |
D2D4_AG | 142.50 ± 26.70 | 141.5 (86.5–189.5) | |
D1D2_GV | 34.27 ± 8.00 | 36.67 (14.84–44.80) | t = −1.235 p = 0.24 |
D3D4_GV | 36.52 ± 7.78 | 38.32 (17.66–49.73) | |
D1D3_GV | 35.22 ± 8.11 | 35.31 (18.07–48.84) | W = −0.024 p = 0.98 |
D2D4_GV | 35.56 ± 7.31 | 37.63 (14.44–43.36) | |
D1D2_TIR | 70.97 ± 13.29 | 74.00 (50.82–98.06) | t = 1.409 p = 0.18 |
D3D4_TIR | 68.3 ± 12.56 | 67.96 (41.17–95.72) | |
D1D3_TIR | 70.78 ± 13.00 | 73.39 (49.47–97.03) | t = 1.138 p = 0.27 |
D2D4_TIR | 68.48 ± 13.02 | 70.64 (47.35–96.76) | |
D1D2_TBR | 4.27 ± 3.23 | 3.11 (0.00–11.38) | t = 0.751 p = 0.46 |
D3D4_TBR | 3.66 ± 1.75 | 3.81 (0.49–6.16) | |
D1D3_TBR | 4.01 ± 2.76 | 2.66 (0.94–8.83) | W = −0.024 p = 0.98 |
D2D4_TBR | 3.92 ± 2.30 | 3.87 (0.46–9.21) | |
D1D2_TAR | 10.67 ± 7.16 | 10.08 (0.00–21.76) | t = −1.700 p = 0.11 |
D3D4_TAR | 12.72 ± 6.63 | 12.33 (0.00–25.74) | |
D1D3_TAR | 11.03 ± 6.71 | 10.49 (0.00–21.28) | t = −1.066 p = 0.30 |
D2D4_TAR | 12.36 ± 7.16 | 10.42 (0.00–23.94) | |
D1D2_TG | 121.82 ± 75.76 | 94.5 (35.5–292.5) | W = −1.279 p = 0.20 |
D3D4_TG | 108.12 ± 53.51 | 99.0 (37.0–260.5) | |
D1D3_TG | 126.53 ± 70.90 | 110.0 (35.0–273.0) | W = −2.296 p = 0.022 |
D2D4_TG | 103.41 ± 61.44 | 78.0 (37.5–280.0) | |
D1D2_FFA | 1.48 ± 0.51 | 1.43 (0.86–2.90) | W = −1.894 p = 0.06 |
D3D24_FFA | 1.32 ± 0.40 | 1.27 (0.78–2.56) | |
D1D3_FFA | 1.51 ± 0.45 | 1.54 (0.82–2.58) | W = −1.870 p = 0.06 |
D2D4_FFA | 1.29 ± 0.49 | 1.13 (0.82–2.88) |
Morning Preprandial Insulin Dose (IU) (Min–Max) | Noon Preprandial Insulin Dose (IU) (Min–Max) | Evening Preprandial Insulin Dose (IU) (Min–Max) | Basal Insulin Dose (IU) (Min–Max) | |
---|---|---|---|---|
Diets with low GI (D1 and D3) | 8.1 ± 5.4 (2–19) | 8.4 ± 4.4 (4–18) | 8.9 ± 4.0 (5–18) | 18.1 ± 6.2 (10–33) |
Diets with high GI (D2 and D4) | 9.6 ± 5.4 (4–20) | 9.9 ± 4.5 (5–20) | 10.3 ± 4.4 (6–21) | 18.6 ± 6.6 (10–35) |
Test statistics, p value | t = −5.258, p < 0.001 * | t = −4.557, p < 0.001 * | t = −3.748, p = 0.002 * | t = −2.256, p = 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seckiner, S.; Bas, M.; Simsir, I.Y.; Ozgur, S.; Akcay, Y.; Aslan, C.G.; Kucukerdonmez, O.; Cetinkalp, S. Effects of Dietary Carbohydrate Concentration and Glycemic Index on Blood Glucose Variability and Free Fatty Acids in Individuals with Type 1 Diabetes. Nutrients 2024, 16, 1383. https://doi.org/10.3390/nu16091383
Seckiner S, Bas M, Simsir IY, Ozgur S, Akcay Y, Aslan CG, Kucukerdonmez O, Cetinkalp S. Effects of Dietary Carbohydrate Concentration and Glycemic Index on Blood Glucose Variability and Free Fatty Acids in Individuals with Type 1 Diabetes. Nutrients. 2024; 16(9):1383. https://doi.org/10.3390/nu16091383
Chicago/Turabian StyleSeckiner, Selda, Murat Bas, Ilgin Yildirim Simsir, Su Ozgur, Yasemin Akcay, Cigdem Gozde Aslan, Ozge Kucukerdonmez, and Sevki Cetinkalp. 2024. "Effects of Dietary Carbohydrate Concentration and Glycemic Index on Blood Glucose Variability and Free Fatty Acids in Individuals with Type 1 Diabetes" Nutrients 16, no. 9: 1383. https://doi.org/10.3390/nu16091383
APA StyleSeckiner, S., Bas, M., Simsir, I. Y., Ozgur, S., Akcay, Y., Aslan, C. G., Kucukerdonmez, O., & Cetinkalp, S. (2024). Effects of Dietary Carbohydrate Concentration and Glycemic Index on Blood Glucose Variability and Free Fatty Acids in Individuals with Type 1 Diabetes. Nutrients, 16(9), 1383. https://doi.org/10.3390/nu16091383