Caffeine Improves Sprint Time in Simulated Freestyle Swimming Competition but Not the Vertical Jump in Female Swimmers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Procedures
2.2.1. Anthropometric and Body Composition Assessments
2.2.2. Balance Test
2.2.3. Auditory Reaction Time Test
2.2.4. Vertical Jump and Anaerobic Power Test
2.2.5. Swimming Performance Test
2.3. Supplementation Protocol
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McRae, K.A.; Galloway, S. Carbohydrate-electrolyte drink ingestion and skill performance during and after 2 hr of indoor tennis match play. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Skinner, T.L.; Desbrow, B.; Arapova, J.; Schaumberg, M.A.; Osborne, J.; Grant, G.D.; Anoopkumar-Dukie, S.; Leveritt, M.D. Women experience the same ergogenic response to caffeine as men. Med. Sci. Sports Exerc. 2019, 51, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Clarke, N.D.; Kirwan, N.A.; Richardson, D.L. Coffee ingestion improves 5 km cycling performance in men and women by a similar magnitude. Nutrients 2019, 11, 2575. [Google Scholar] [CrossRef] [PubMed]
- Lara, B.; Gutierrez Hellin, J.; Ruiz-Moreno, C.; Romero-Moraleda, B.; Del Coso, J. Acute caffeine intake increases performance in the 15-s Wingate test during the menstrual cycle. Br. J. Clin. Pharmacol. 2020, 86, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Lara, B.; Salinero, J.J.; Giraldez-Costas, V.; Del Coso, J. Similar ergogenic effect of caffeine on anaerobic performance in men and women athletes. Eur. J. Nutr. 2021, 60, 4107–4114. [Google Scholar] [CrossRef] [PubMed]
- Delleli, S.; Ouergui, I.; Messaoudi, H.; Ballmann, C.G.; Ardigo, L.P.; Chtourou, H. Effects of caffeine consumption combined with listening to music during warm-up on taekwondo physical performance, perceived exertion and psychological aspects. PLoS ONE 2023, 18, e0292498. [Google Scholar] [CrossRef] [PubMed]
- Berjisian, E.; Naderi, A.; Mojtahedi, S.; Grgic, J.; Ghahramani, M.H.; Karayigit, R.; Forbes, J.L.; Amaro-Gahete, F.J.; Forbes, S.C. Are Caffeine’s Effects on Resistance Exercise and Jumping Performance Moderated by Training Status? Nutrients 2022, 14, 4840. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef]
- Bazzucchi, I.; Felici, F.; Montini, M.; Figura, F.; Sacchetti, M. Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve 2011, 43, 839–844. [Google Scholar] [CrossRef]
- Cristina-Souza, G.; Santos, P.S.; Santos-Mariano, A.C.; Coelho, D.B.; Rodacki, A.; FR, D.E.-O.; Bishop, D.J.; Bertuzzi, R.; Lima-Silva, A.E. Caffeine Increases Endurance Performance via Changes in Neural and Muscular Determinants of Performance Fatigability. Med. Sci. Sports Exerc. 2022, 54, 1591–1603. [Google Scholar] [CrossRef]
- Karayigit, R.; Forbes, S.C.; Osmanov, Z.; Yilmaz, C.; Yasli, B.C.; Naderi, A.; Buyukcelebi, H.; Benesova, D.; Gabrys, T.; Esen, O. Low and Moderate Doses of Caffeinated Coffee Improve Repeated Sprint Performance in Female Team Sport Athletes. Biology 2022, 11, 1498. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J. A meta-analysis on the effects of caffeine ingestion on swimming performance. Nutr. Food Sci. 2022, 52, 1242–1253. [Google Scholar] [CrossRef]
- Martins, G.L.; Guilherme, J.; Ferreira, L.H.B.; de Souza-Junior, T.P.; Lancha, A.H., Jr. Caffeine and Exercise Performance: Possible Directions for Definitive Findings. Front. Sports Act. Living 2020, 2, 574854. [Google Scholar] [CrossRef] [PubMed]
- Mielgo-Ayuso, J.; Marques-Jiménez, D.; Refoyo, I.; Del Coso, J.; León-Guereño, P.; Calleja-González, J. Effect of caffeine supplementation on sports performance based on differences between sexes: A systematic review. Nutrients 2019, 11, 2313. [Google Scholar] [CrossRef] [PubMed]
- Ganio, M.S.; Klau, J.F.; Casa, D.J.; Armstrong, L.E.; Maresh, C.M. Effect of caffeine on sport-specific endurance performance: A systematic review. J. Strength. Cond. Res. 2009, 23, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Souza, D.B.; Del Coso, J.; Casonatto, J.; Polito, M.D. Acute effects of caffeine-containing energy drinks on physical performance: A systematic review and meta-analysis. Eur. J. Nutr. 2017, 56, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Sabblah, S.; Dixon, D.; Bottoms, L. Sex differences on the acute effects of caffeine on maximal strength and muscular endurance. Comp. Exerc. Physiol. 2015, 11, 89–94. [Google Scholar] [CrossRef]
- Adan, A.; Prat, G.; Fabbri, M.; Sanchez-Turet, M. P0318-Early arousing effects of caffeine and decaffeinate coffee. Eur. Psychiatry 2008, 23, S393. [Google Scholar] [CrossRef]
- Bishop, C.; Cree, J.; Read, P.; Chavda, S.; Edwards, M.; Turner, A. Strength and conditioning for sprint swimming. Strength Cond. J. 2013, 35, 1–6. [Google Scholar] [CrossRef]
- Diaz-Lara, F.J.; Del Coso, J.; Garcia, J.M.; Portillo, L.J.; Areces, F.; Abian-Vicen, J. Caffeine improves muscular performance in elite Brazilian Jiu-jitsu athletes. Eur. J. Sport. Sci. 2016, 16, 1079–1086. [Google Scholar] [CrossRef]
- Potdevin, F.J.; Alberty, M.E.; Chevutschi, A.; Pelayo, P.; Sidney, M.C. Effects of a 6-week plyometric training program on performances in pubescent swimmers. J. Strength Cond. Res. 2011, 25, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.C.; Smith, R.J.; Smith, M.F.; Rigby, H.E. Effect of plyometric training on swimming block start performance in adolescents. J. Strength. Cond. Res. 2009, 23, 2137–2143. [Google Scholar] [CrossRef] [PubMed]
- Veliz, R.R.; Suarez-Arrones, L.; Requena, B.; Haff, G.G.; Feito, J.; de Villarreal, E.S. Effects of in-competitive season power-oriented and heavy resistance lower-body training on performance of elite female water polo players. J. Strength Cond. Res. 2015, 29, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Girold, S.; Jalab, C.; Bernard, O.; Carette, P.; Kemoun, G.; Dugue, B. Dry-land strength training vs. electrical stimulation in sprint swimming performance. J. Strength. Cond. Res. 2012, 26, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Markovic, G.; Jaric, S. Is vertical jump height a body size-independent measure of muscle power? J. Sports Sci. 2007, 25, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- West, D.J.; Owen, N.J.; Cunningham, D.J.; Cook, C.J.; Kilduff, L.P. Strength and power predictors of swimming starts in international sprint swimmers. J. Strength. Cond. Res. 2011, 25, 950–955. [Google Scholar] [CrossRef] [PubMed]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Bühler, E.; Lachenmeier, D.W.; Schlegel, K.; Winkler, G. Development of a tool to assess the caffeine intake among teenagers and young adults. Ernahr. Umsch. 2014, 61, 58–63. [Google Scholar] [CrossRef]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Steidl-Muller, L.; Hildebrandt, C.; Muller, E.; Fink, C.; Raschner, C. Limb symmetry index in competitive alpine ski racers: Reference values and injury risk identification according to age-related performance levels. J. Sport. Health Sci. 2018, 7, 405–415. [Google Scholar] [CrossRef]
- Erkmen, N.; Taskin, H.; Sanioglu, A.; Kaplan, T.; Basturk, D. Relationships between balance and functional performance in football players. J. Hum. Kinet. 2010, 26, 21–29. [Google Scholar] [CrossRef]
- Fox, E.L.; Bowers, R.W.; Foss, M.L. The Physiological Basis for Exercise and Sport; Brown & Benchmark: Dubuque, IA, USA, 1993. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Salgueiro, D.; Balikian, P.; Andrade, V.; Júnior, O. Caffeine improves swimming speed, decreases the rate of perceived exertion and lactate concentration during a high intensity intermittent aerobic training session for male swimmers. Sci. Sports 2022, 37, 762–765. [Google Scholar] [CrossRef]
- Lara, B.; Ruiz-Vicente, D.; Areces, F.; Abian-Vicen, J.; Salinero, J.J.; Gonzalez-Millan, C.; Gallo-Salazar, C.; Del Coso, J. Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers. Br. J. Nutr. 2015, 114, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Vanata, D.; Mazzino, N.; Bergosh, R.; Graham, P. Caffeine improves sprint-distance performance among Division II collegiate swimmers. Sport J. 2014, 17, 1–8. [Google Scholar] [CrossRef]
- Goods, P.S.; Landers, G.; Fulton, S. Caffeine Ingestion Improves Repeated Freestyle Sprints in Elite Male Swimmers. J. Sports Sci. Med. 2017, 16, 93–98. [Google Scholar]
- Pruscino, C.L.; Ross, M.L.; Gregory, J.R.; Savage, B.; Flanagan, T.R. Effects of sodium bicarbonate, caffeine, and their combination on repeated 200-m freestyle performance. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 116–130. [Google Scholar] [CrossRef] [PubMed]
- Alkatan, M. The effect of caffeine on swimming speed. J. Phys. Educ. Res. 2020, 7, 24–29. [Google Scholar]
- Kalmar, J.M. The influence of caffeine on voluntary muscle activation. Med. Sci. Sports Exerc. 2005, 37, 2113–2119. [Google Scholar] [CrossRef]
- Apostolidis, A.; Mougios, V.; Smilios, I.; Frangous, M.; Hadjicharalambous, M. Caffeine supplementation is ergogenic in soccer players independent of cardiorespiratory or neuromuscular fitness levels. J. Int. Soc. Sports Nutr. 2020, 17, 31. [Google Scholar] [CrossRef]
- Potgieter, S.; Wright, H.H.; Smith, C. Caffeine Improves Triathlon Performance: A Field Study in Males and Females. Int. J. Sport. Nutr. Exerc. Metab. 2018, 28, 228–237. [Google Scholar] [CrossRef]
- Richardson, D.L.; Clarke, N.D. Effect of Coffee and Caffeine Ingestion on Resistance Exercise Performance. J. Strength. Cond. Res. 2016, 30, 2892–2900. [Google Scholar] [CrossRef]
- Davis, J.-K.; Green, J.M.; Laurent, C.M. Effects of caffeine on resistance training performance on repetitions to failure. J. Caffeine Res. 2012, 2, 31–37. [Google Scholar] [CrossRef]
- Da Silva, V.L.; Messias, F.R.; Zanchi, N.E.; Gerlinger-Romero, F.; Duncan, M.J.; Guimaraes-Ferreira, L. Effects of acute caffeine ingestion on resistance training performance and perceptual responses during repeated sets to failure. J. Sports Med. Phys. Fitness 2015, 55, 383–389. [Google Scholar]
- Trexler, E.T.; Smith-Ryan, A.E.; Roelofs, E.J.; Hirsch, K.R.; Mock, M.G. Effects of coffee and caffeine anhydrous on strength and sprint performance. Eur. J. Sport. Sci. 2016, 16, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Doherty, M.; Smith, P.M. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta-analysis. Scand. J. Med. Sci. Sports 2005, 15, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Sabol, F.; Grgic, J.; Mikulic, P. The Effects of 3 Different Doses of Caffeine on Jumping and Throwing Performance: A Randomized, Double-Blind, Crossover Study. Int. J. Sports Physiol. Perform. 2019, 14, 1170–1177. [Google Scholar] [CrossRef] [PubMed]
- Gawel, D.; Kaszuba, M.; Komarek, Z.; Krawczyk, R.; Bichowska, M.; Jasinski, M.; Trybulski, R. The effect of caffeine on countermovement jump performance in recreationally trained women habituated to caffeine. Balt. J. Health Phys. Act. 2022, 14, 3. [Google Scholar] [CrossRef]
- Ali, A.; O’Donnell, J.; Foskett, A.; Rutherfurd-Markwick, K. The influence of caffeine ingestion on strength and power performance in female team-sport players. J. Int. Soc. Sports Nutr. 2016, 13, 46. [Google Scholar] [CrossRef] [PubMed]
- Lorino, A.J.; Lloyd, L.K.; Crixell, S.H.; Walker, J.L. The effects of caffeine on athletic agility. J. Strength. Cond. Res. 2006, 20, 851–854. [Google Scholar] [CrossRef] [PubMed]
- Campos, Y.; Lago-Rodríguez, Á.; San Juan, A.; Moreno-Pérez, V.; Lopez-Samanes, A.; Sánchez-Oliver, A.; Da Silva, S.; Domínguez, R. Caffeine supplementation improves physical performance without affecting fatigue level: A double-blind crossover study. Biol. Sport 2022, 39, 521–528. [Google Scholar] [CrossRef]
- de Salles Painelli, V.; Teixeira, E.L.; Tardone, B.; Moreno, M.; Morandini, J.; Larrain, V.H.; Pires, F.O. Habitual caffeine consumption does not interfere with the acute caffeine supplementation effects on strength endurance and jumping performance in trained individuals. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 321–328. [Google Scholar] [CrossRef]
- Santos-Mariano, A.C.; Cristina-Souza, G.; Santos, P.S.; Domingos, P.R.; De-Oliveira, P.; Bertuzzi, R.; Rodacki, C.; Lima-Silva, A.E. Caffeine intake increases countermovement jump performance in well-trained high jumpers. Pharma Nutr. 2022, 21, 100305. [Google Scholar] [CrossRef]
- Filip-Stachnik, A.; Spieszny, M.; Stanisz, L.; Krzysztofik, M. Does caffeine ingestion affect the lower-body post-activation performance enhancement in female volleyball players? BMC Sports Sci. Med. Rehabil. 2022, 14, 93. [Google Scholar] [CrossRef] [PubMed]
- Filip-Stachnik, A.; Kaszuba, M.; Dorozynski, B.; Komarek, Z.; Gawel, D.; Del Coso, J.; Klocek, T.; Spieszny, M.; Krzysztofik, M. Acute effects of caffeinated chewing gum on volleyball performance in high-performance female players. J. Hum. Kinet. 2022, 84, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Foskett, A.; Ali, A.; Gant, N. Caffeine enhances cognitive function and skill performance during simulated soccer activity. Int. J. Sport. Nutr. Exerc. Metab. 2009, 19, 410–423. [Google Scholar] [CrossRef] [PubMed]
- Bloms, L.P.; Fitzgerald, J.S.; Short, M.W.; Whitehead, J.R. The Effects of Caffeine on Vertical Jump Height and Execution in Collegiate Athletes. J. Strength. Cond. Res. 2016, 30, 1855–1861. [Google Scholar] [CrossRef] [PubMed]
- Burke, B.I.; Travis, S.K.; Gentles, J.A.; Sato, K.; Lang, H.M.; Bazyler, C.D. The Effects of Caffeine on Jumping Performance and Maximal Strength in Female Collegiate Athletes. Nutrients 2021, 13, 2496. [Google Scholar] [CrossRef] [PubMed]
- Haycraft, J.A.Z.; Robertson, S. The effects of concurrent aerobic training and maximal strength, power and swim-specific dry-land training methods on swim performance: A review. J. Aust. Strength Cond. 2015, 23, 91–99. [Google Scholar]
- Jones, J.V.; Pyne, D.B.; Haff, G.G.; Newton, R.U. Comparison of ballistic and strength training on swimming turn and dry-land leg extensor characteristics in elite swimmers. Int. J. Sports Sci. Coach. 2018, 13, 262–269. [Google Scholar] [CrossRef]
- Muniz-Pardos, B.; Gomez-Bruton, A.; Matute-Llorente, A.; Gonzalez-Aguero, A.; Gomez-Cabello, A.; Gonzalo-Skok, O.; Casajus, J.A.; Vicente-Rodriguez, G. Nonspecific Resistance Training and Swimming Performance: Strength or Power? A Systematic Review. J. Strength. Cond. Res. 2022, 36, 1162–1170. [Google Scholar] [CrossRef]
- Norberto, M.S.; Kalva-Filho, C.A.; Schneider, G.N.; Campos, E.Z.; Papoti, M. Two Different Approaches to Dry-land Training Do Not Improve the Water Performance of Swimmers. Int. J. Exerc. Sci. 2023, 16, 770. [Google Scholar] [PubMed Central]
- Impey, J.; Bahdur, K.; Kramer, M. The Mediating Effects of Caffeine Ingestion and Post-Activation Performance Enhancement on Reactive Dive Times in Goalkeepers. Ann. Appl. Sport Sci. 2022, 10, 1–7. [Google Scholar] [CrossRef]
- Impey, J.; Bahdur, K.; Kramer, M. Steigerung der reaktiven Sprung-und Sprintleistung bei Torhütern im Futball durch Kaffeinkonsum und Verbesserung der Postaktivierungsleistung (PAPE). Ger. J. Exerc. Sport Res. 2022, 52, 110–118. [Google Scholar] [CrossRef]
- Balko, S.; Simonek, J.; Balko, I.; Heller, J.; Chytry, V.; Balogova, K.; Gronek, P. The influence of different caffeine doses on visual and audial reaction time with different delay from its consumption. Sci. Sports 2020, 35, 358–363. [Google Scholar] [CrossRef]
- Bottoms, L.; Greenhalgh, A.; Gregory, K. The effect of caffeine ingestion on skill maintenance and fatigue in epee fencers. J. Sports Sci. 2013, 31, 1091–1099. [Google Scholar] [CrossRef]
- Virdinli, S.G.; Kutlay, E.; Yuzbasioglu, Y.; Vollaard, N.B.; Rudarli Nalcakan, G. The effect of mouth rinsing with different concentrations of caffeine solutions on reaction time. J. Sports Sci. 2022, 40, 928–933. [Google Scholar] [CrossRef]
- Church, D.D.; Hoffman, J.R.; LaMonica, M.B.; Riffe, J.J.; Hoffman, M.W.; Baker, K.M.; Varanoske, A.N.; Wells, A.J.; Fukuda, D.H.; Stout, J.R. The effect of an acute ingestion of Turkish coffee on reaction time and time trial performance. J. Int. Soc. Sports Nutr. 2015, 12, 37. [Google Scholar] [CrossRef]
- Santos, V.G.; Santos, V.R.; Felippe, L.J.; Almeida, J.W., Jr.; Bertuzzi, R.; Kiss, M.A.; Lima-Silva, A.E. Caffeine reduces reaction time and improves performance in simulated-contest of taekwondo. Nutrients 2014, 6, 637–649. [Google Scholar] [CrossRef] [PubMed]
- Reigal, R.E.; Barrero, S.; Martín, I.; Morales-Sánchez, V.; Juárez-Ruiz de Mier, R.; Hernández-Mendo, A. Relationships between reaction time, selective attention, physical activity, and physical fitness in children. Front. Psychol. 2019, 10, 2278. [Google Scholar] [CrossRef]
- Çıldır, B.; Altın, B.; Aksoy, S. Caffeine Enhances the Balance System and Postural Balance in Short Time in Healthy Individuals. Turk. Arch. Otorhinolaryngol. 2021, 59, 253. [Google Scholar] [CrossRef]
- Kara, M.; Patlar, S.; Stofferen, T.A.; Erkmen, N. Effect of caffeine on standing balance during perceptual-cognitive tasks. Malays. J. Mov. Health Exerc. 2018, 7, 167–175. [Google Scholar] [CrossRef]
- Ben Waer, F.; Laatar, R.; Srihi, S.; Jouira, G.; Rebai, H.; Sahli, S. Acute effects of low versus high caffeine dose consumption on postural balance in middle-aged women. J. Women Aging 2021, 33, 620–634. [Google Scholar] [CrossRef] [PubMed]
Variables | X | SD | |||||
---|---|---|---|---|---|---|---|
Age (yr) | 21.3 | 1.4 | |||||
Height (cm) | 161.2 | 7.1 | |||||
Body mass (kg) | 56.3 | 6.7 | |||||
BMI (kg/m2) | 21.9 | 1.3 | |||||
Training age (yr) | 8.5 | 1.4 | |||||
Habitual consumption of CAF (mg/day) | 246.4 | 111.4 | |||||
Rating of Perceived Exertion (RPE) (A.U.) | |||||||
PLA (X ± SD) | CAF (X ± SD) | 95% CI | d | t | p | ||
LB | UB | ||||||
3.0 ± 0.7 | 3.0 ± 0.9 | −0.89 | 0.89374 | 0.00 | 0.000 | 1.000 |
Groups | |||||||
---|---|---|---|---|---|---|---|
Variables | PLA | CAF | 95% CI | d | t | p | |
X ± SD | X ± SD | LB | UB | ||||
VJ (cm) | 42.6 ± 5.8 | 41.8 ± 4.1 | −2.64 | 4.14 | 0.14 | 0.522 | 0.618 |
VJ (WATT) | 810.8 ± 92.5 | 805.3 ± 96.8 | −26.39 | 37.43 | 0.05 | 0.409 | 0.695 |
Balance (s) | 2.2 ± 0.6 | 1.8 ± 0.4 | −0.16 | 0.81 | 0.58 | 1.562 | 0.162 |
ART Fastest (ms) | 244.2 ± 30.8 | 217.6 ± 78.6 | −41.64 | 94.89 | 0.44 | 0.922 | 0.387 |
ART Slowest (ms) | 552.0 ± 155.3 | 544.1 ± 135.5 | −184.69 | 200.44 | 0.05 | 0.097 | 0.926 |
ART Average (ms) | 327.6 ± 50.0 | 320.3 ± 28.5 | −35.93 | 50.68 | 0.18 | 0.403 | 0.699 |
ART Deviation (ms) | 115.6 ± 55.8 | 118.2 ± 58.6 | −82.39 | 77.24 | 0.04 | −0.076 | 0.941 |
25 m FSP (s) | 22.8 ± 3.2 | 21.7 ± 2.8 | 0.13 | 2.18 | 0.37 | 2.675 | 0.032 * |
50 m FSP (s) | 50.7 ± 6.4 | 48.4 ± 5.8 | 0.25 | 4.47 | 0.38 | 2.645 | 0.033 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acar, K.; Mor, A.; Mor, H.; Kargın, Z.; Alexe, D.I.; Abdioğlu, M.; Karayiğit, R.; Alexe, C.I.; Cojocaru, A.M.; Mocanu, G.D. Caffeine Improves Sprint Time in Simulated Freestyle Swimming Competition but Not the Vertical Jump in Female Swimmers. Nutrients 2024, 16, 1253. https://doi.org/10.3390/nu16091253
Acar K, Mor A, Mor H, Kargın Z, Alexe DI, Abdioğlu M, Karayiğit R, Alexe CI, Cojocaru AM, Mocanu GD. Caffeine Improves Sprint Time in Simulated Freestyle Swimming Competition but Not the Vertical Jump in Female Swimmers. Nutrients. 2024; 16(9):1253. https://doi.org/10.3390/nu16091253
Chicago/Turabian StyleAcar, Kürşat, Ahmet Mor, Hakkı Mor, Zehra Kargın, Dan Iulian Alexe, Mekki Abdioğlu, Raci Karayiğit, Cristina Ioana Alexe, Adin Marian Cojocaru, and George Danuț Mocanu. 2024. "Caffeine Improves Sprint Time in Simulated Freestyle Swimming Competition but Not the Vertical Jump in Female Swimmers" Nutrients 16, no. 9: 1253. https://doi.org/10.3390/nu16091253
APA StyleAcar, K., Mor, A., Mor, H., Kargın, Z., Alexe, D. I., Abdioğlu, M., Karayiğit, R., Alexe, C. I., Cojocaru, A. M., & Mocanu, G. D. (2024). Caffeine Improves Sprint Time in Simulated Freestyle Swimming Competition but Not the Vertical Jump in Female Swimmers. Nutrients, 16(9), 1253. https://doi.org/10.3390/nu16091253