Adherence to Diet Quality Indices and Breast Cancer Risk in the Italian ORDET Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Food Frequency Questionnaire
2.3. Diet Quality Indices
2.4. Inflammatory Biomarkers
2.5. Follow-Up
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics of ORDET Women
3.2. Associations between Diet Scores and Breast Cancer Risk
3.3. Associations between Diet Score with the Inflammatory Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Cancer Day 2021: Spotlight on IARC Research Related to Breast Cancer—IARC. Available online: https://www.iarc.who.int/featured-news/world-cancer-day-%202021/ (accessed on 29 February 2024).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Sorveglianza Passi. n.d. Available online: https://www.epicentro.iss.it/passi/ (accessed on 12 April 2024).
- Friedenreich, C.M.; Ryder-Burbidge, C.; McNeil, J. Physical Activity, Obesity and Sedentary Behavior in Cancer Etiology: Epidemiologic Evidence and Biologic Mechanisms. Mol. Oncol. 2021, 15, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Jayedi, A.; Soltani, S.; Abdolshahi, A.; Shab-Bidar, S. Healthy and Unhealthy Dietary Patterns and the Risk of Chronic Disease: An Umbrella Review of Meta-Analyses of Prospective Cohort Studies. Br. J. Nutr. 2020, 124, 1133–1144. [Google Scholar] [CrossRef] [PubMed]
- American Institute for Cancer Research; World Cancer Research Fund. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective A Summary of the Third Expert Report; World Cancer Research Fund International: London, UK, 2018. [Google Scholar]
- Tucker, K.L. Dietary Patterns, Approaches, and Multicultural Perspective This Is One of a Selection of Papers Published in the CSCN–CSNS 2009 Conference, Entitled Can We Identify Culture-Specific Healthful Dietary Patterns among Diverse Populations Undergoing Nutrition Transition? Appl. Physiol. Nutr. Metab. 2010, 35, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary Pattern Analysis: A New Direction in Nutritional Epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Alberti-Fidanza, A.; Fidanza, F. Mediterranean Adequacy Index of Italian Diets. Public Health Nutr. 2004, 7, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Schwedhelm, C.; Galbete, C.; Hoffmann, G. Adherence to Mediterranean Diet and Risk of Cancer: An Updated Systematic Review and Meta-Analysis. Nutrients 2017, 9, 1063. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Obarzanek, E.; Windhauser, M.M.; Svetkey, L.P.; Vollmer, W.M.; McCullough, M.; Karanja, N.; Lin, P.H.; Steele, P.; Proschan, M.A.; et al. Rationale and Design of the Dietary Approaches to Stop Hypertension Trial (DASH): A Multicenter Controlled-Feeding Study of Dietary Patterns to Lower Blood Pressure. Ann. Epidemiol. 1995, 5, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R.; Simons-Morton, D.G.; et al. Effects on Blood Pressure of Reduced Dietary Sodium and the Dietary Approaches to Stop Hypertension (DASH) Diet. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef]
- Challa, H.J.; Ameer, M.A.; Uppaluri, K.R. DASH Diet to Stop Hypertension; StatPearls: Tampa, FL, USA, 2023. [Google Scholar]
- Tangestani, H.; Salari-Moghaddam, A.; Ghalandari, H.; Emamat, H. Adherence to the Dietary Approaches to Stop Hypertension (DASH) Dietary Pattern Reduces the Risk of Colorectal Cancer: A Systematic Review and Meta-Analysis. Clin. Nutr. 2020, 39, 2975–2981. [Google Scholar] [CrossRef]
- Shu, L.; Huang, Y.Q.; Zhang, X.Y.; Zheng, P.F.; Zhu, Q.; Zhou, J.Y. Adherence to the Dietary Approaches to Stop Hypertension Diet Reduces the Risk of Breast Cancer: A Systematic Review and Meta-Analysis. Front. Nutr. 2023, 9, 1032654. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Sieri, S.; Krogh, V.; Muti, P.; Micheli, A.; Pala, V.; Crosignani, P.; Berrino, F. Fat and Protein Intake and Subsequent Breast Cancer Risk in Postmenopausal Women. Nutr. Cancer 2002, 42, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.A.; Benedict, F.G. A Biometric Study of Human Basal Metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Gnagnarella, d.P.; Parpinel, M.; Salvini, S. Banca Dati Di Composizione Degli Alimenti per Studi Epidemiologici in Italia; Libreriauniversitaria.it: Milano, Italy, 1998. [Google Scholar]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Eng. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed]
- Agnoli, C.; Krogh, V.; Grioni, S.; Sieri, S.; Palli, D.; Masala, G.; Sacerdote, C.; Vineis, P.; Tumino, R.; Frasca, G.; et al. A Priori–Defined Dietary Patterns Are Associated with Reduced Risk of Stroke in a Large Italian Cohort. J. Nutr. 2011, 141, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.T.; Chiuve, S.E.; McCullough, M.L.; Rexrode, K.M.; Logroscino, G.; Hu, F.B. Adherence to a DASH-Style Diet and Risk of Coronary Heart Disease and Stroke in Women. Arch. Intern. Med. 2008, 168, 713–720. [Google Scholar] [CrossRef]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A Clinical Trial of the Effects of Dietary Patterns on Blood Pressure. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Obarzanek, E.; Sacks, F.M.; Vollmer, W.M.; Bray, G.A.; Miller, E.R.; Lin, P.H.; Karanja, N.M.; Most-Windhauser, M.M.; Moore, T.J.; Swain, J.F.; et al. Effects on Blood Lipids of a Blood Pressure–Lowering Diet: The Dietary Approaches to Stop Hypertension (DASH) Trial. Am. J. Clin. Nutr. 2001, 74, 80–89. [Google Scholar] [CrossRef]
- Knuppel, A.; Papier, K.; Key, T.J.; Travis, R.C. EAT-Lancet Score and Major Health Outcomes: The EPIC-Oxford Study. Lancet 2019, 394, 213–214. [Google Scholar] [CrossRef]
- Agnoli, C.; Grioni, S.; Pala, V.; Allione, A.; Matullo, G.; Di Gaetano, C.; Tagliabue, G.; Sieri, S.; Krogh, V. Biomarkers of Inflammation and Breast Cancer Risk: A Case-Control Study Nested in the EPIC-Varese Cohort. Sci. Rep. 2017, 7, 12708. [Google Scholar] [CrossRef] [PubMed]
- Contiero, P.; Tittarelli, A.; Maghini, A.; Fabiano, S.; Frassoldi, E.; Costa, E.; Gada, D.; Codazzi, T.; Crosignani, P.; Tessandori, R.; et al. Comparison with Manual Registration Reveals Satisfactory Completeness and Efficiency of a Computerized Cancer Registration System. J. Biomed. Inform. 2008, 41, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.S.M.; Bandera, E.V.; Greenwood, D.C.; Norat, T. Circulating C-Reactive Protein and Breast Cancer Risk—Systematic Literature Review and Meta-Analysis of Prospective Cohort Studies. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1439–1449. [Google Scholar] [CrossRef] [PubMed]
- Zahid, H.; Simpson, E.R.; Brown, K.A. Inflammation, Dysregulated Metabolism and Aromatase in Obesity and Breast Cancer. Curr. Opin. Pharmacol. 2016, 31, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Ahluwalia, N.; Brouns, F.; Buetler, T.; Clement, K.; Cunningham, K.; Esposito, K.; Jönsson, L.S.; Kolb, H.; Lansink, M.; et al. Dietary Factors and Low-Grade Inflammation in Relation to Overweight and Obesity. Br. J. Nutr. 2011, 106 (Suppl. S3), S5–S78. [Google Scholar] [CrossRef] [PubMed]
- Barbaresko, J.; Koch, M.; Schulze, M.B.; Nöthlings, U. Dietary Pattern Analysis and Biomarkers of Low-Grade Inflammation: A Systematic Literature Review. Nutr. Rev. 2013, 71, 511–527. [Google Scholar] [CrossRef] [PubMed]
- Toledo, E.; Salas-Salvadó, J.; Donat-Vargas, C.; Buil-Cosiales, P.; Estruch, R.; Ros, E.; Corella, D.; Fitó, M.; Hu, F.B.; Arós, F.; et al. Mediterranean Diet and Invasive Breast Cancer Risk Among Women at High Cardiovascular Risk in the PREDIMED Trial. JAMA Intern. Med. 2015, 175, 1752. [Google Scholar] [CrossRef]
- Torres-Mejía, G.; Navarro-Lechuga, E.; Tuesca-Molina, R.d.J.; Ángeles-Llerenas, A. The Epidemiological Challenges of Breast Cancer among Premenopausal Women in Limited Resource Settings. Rev. Investig. Clin. 2017, 69, 59–65. [Google Scholar] [CrossRef]
- Di Giosia, P.; Stamerra, C.A.; Giorgini, P.; Jamialahamdi, T.; Butler, A.E.; Sahebkar, A. The Role of Nutrition in Inflammaging. Ageing Res. Rev. 2022, 77, 101596. [Google Scholar] [CrossRef]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean Diet and Multiple Health Outcomes: An Umbrella Review of Meta-Analyses of Observational Studies and Randomised Trials. Eur. J. Clin. Nutr. 2017, 72, 30–43. [Google Scholar] [CrossRef]
- Soltani, S.; Arablou, T.; Jayedi, A.; Salehi-Abargouei, A. Adherence to the Dietary Approaches to Stop Hypertension (DASH) Diet in Relation to All-Cause and Cause-Specific Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Nutr. J. 2020, 19, 37. [Google Scholar] [CrossRef] [PubMed]
- Bu, Y.; Qu, J.; Ji, S.; Zhou, J.; Xue, M.; Qu, J.; Sun, H.; Liu, Y. Dietary Patterns and Breast Cancer Risk, Prognosis, and Quality of Life: A Systematic Review. Front. Nutr. 2023, 9, 1057057. [Google Scholar] [CrossRef] [PubMed]
- Steck, S.E.; Murphy, E.A. Dietary Patterns and Cancer Risk. Nat. Rev. Cancer 2020, 20, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Song, M.; Eliassen, A.H.; Wang, M.; Fung, T.T.; Clinton, S.K.; Rimm, E.B.; Hu, F.B.; Willett, W.C.; Tabung, F.K.; et al. Optimal Dietary Patterns for Prevention of Chronic Disease. Nat. Med. 2023, 29, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.T.; Hu, F.B.; McCullough, M.L.; Newby, P.K.; Willett, W.C.; Holmes, M.D. Diet Quality Is Associated with the Risk of Estrogen Receptor–Negative Breast Cancer in Postmenopausal Women. J. Nutr. 2006, 136, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Koelman, L.; Herpich, C.; Norman, K.; Jannasch, F.; Börnhorst, C.; Schulze, M.B.; Aleksandrova, K. Adherence to Healthy and Sustainable Dietary Patterns and Long-Term Chronic Inflammation: Data from the EPIC-Potsdam Cohort. J. Nutr. Health Aging 2023, 27, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Steinmetz, K.A.; Potter, J.D. Vegetables, Fruit, and Cancer Prevention. J. Am. Diet. Assoc. 1996, 96, 1027–1039. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tsao, R. Dietary Polyphenols, Oxidative Stress and Antioxidant and Anti-Inflammatory Effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Tsigalou, C.; Konstantinidis, T.; Paraschaki, A.; Stavropoulou, E.; Voidarou, C.; Bezirtzoglou, E. Mediterranean Diet as a Tool to Combat Inflammation and Chronic Diseases. An Overview. Biomedicines 2020, 8, 201. [Google Scholar] [CrossRef]
- Song, D.; Cheng, L.; Zhang, X.; Wu, Z.; Zheng, X. The Modulatory Effect and the Mechanism of Flavonoids on Obesity. J. Food Biochem. 2019, 43, e12954. [Google Scholar] [CrossRef]
- Kawser Hossain, M.; Abdal Dayem, A.; Han, J.; Yin, Y.; Kim, K.; Kumar Saha, S.; Yang, G.-M.; Choi, H.; Cho, S.-G. Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids. Int. J. Mol. Sci. 2016, 17, 569. [Google Scholar] [CrossRef] [PubMed]
- Martino, H.S.D.; Dias, M.M.d.S.; Noratto, G.; Talcott, S.; Mertens-Talcott, S.U. Anti-Lipidaemic and Anti-Inflammatory Effect of Açai (Euterpe Oleracea Martius) Polyphenols on 3T3-L1 Adipocytes. J. Funct. Foods 2016, 23, 432–443. [Google Scholar] [CrossRef]
- Chuang, C.-C.; Shen, W.; Chen, H.; Xie, G.; Jia, W.; Chung, S.; McIntosh, M.K. Differential Effects of Grape Powder and Its Extract on Glucose Tolerance and Chronic Inflammation in High-Fat-Fed Obese Mice. J. Agric. Food Chem. 2012, 60, 12458–12468. [Google Scholar] [CrossRef] [PubMed]
- Serino, A.; Salazar, G. Protective Role of Polyphenols against Vascular Inflammation, Aging and Cardiovascular Disease. Nutrients 2018, 11, 53. [Google Scholar] [CrossRef] [PubMed]
- Morselli, E.; Mariño, G.; Bennetzen, M.V.; Eisenberg, T.; Megalou, E.; Schroeder, S.; Cabrera, S.; Bénit, P.; Rustin, P.; Criollo, A.; et al. Spermidine and Resveratrol Induce Autophagy by Distinct Pathways Converging on the Acetylproteome. J. Cell Biol. 2011, 192, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Christoph, M.; Hoffmann, G. Effects of Olive Oil on Markers of Inflammation and Endothelial Function—A Systematic Review and Meta-Analysis. Nutrients 2015, 7, 7651–7675. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Luna, R.; Muñoz-Hernandez, R.; Miranda, M.L.; Costa, A.F.; Jimenez-Jimenez, L.; Vallejo-Vaz, A.J.; Muriana, F.J.G.; Villar, J.; Stiefel, P. Olive Oil Polyphenols Decrease Blood Pressure and Improve Endothelial Function in Young Women with Mild Hypertension. Am. J. Hypertens. 2012, 25, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Ling, W.-H.; Duan, R.-D. Lycopene Suppresses LPS-Induced NO and IL-6 Production by Inhibiting the Activation of ERK, P38MAPK, and NF-ΚB in Macrophages. Inflamm. Res. 2010, 59, 115–121. [Google Scholar] [CrossRef]
- Ghavipour, M.; Saedisomeolia, A.; Djalali, M.; Sotoudeh, G.; Eshraghyan, M.R.; Moghadam, A.M.; Wood, L.G. Tomato Juice Consumption Reduces Systemic Inflammation in Overweight and Obese Females. Br. J. Nutr. 2013, 109, 2031–2035. [Google Scholar] [CrossRef]
- Maskarinec, G.; Morimoto, Y.; Takata, Y.; Murphy, S.P.; Stanczyk, F.Z. Alcohol and Dietary Fibre Intakes Affect Circulating Sex Hormones among Premenopausal Women. Public Health Nutr. 2006, 9, 875–881. [Google Scholar] [CrossRef]
- Kaaks, R.; Bellati, C.; Venturelli, E.; Rinaldi, S.; Secreto, G.; Biessy, C.; Pala, V.; Sieri, S.; Berrino, F. Effects of Dietary Intervention on IGF-I and IGF-Binding Proteins, and Related Alterations in Sex Steroid Metabolism: The Diet and Androgens (DIANA) Randomised Trial. Eur. J. Clin. Nutr. 2003, 57, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Tosti, V.; Bertozzi, B.; Fontana, L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J. Gerontol. Ser. A 2018, 73, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Surh, Y.-J. Cancer Chemoprevention with Dietary Phytochemicals. Nat. Rev. Cancer 2003, 3, 768–780. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, M.; Chiefari, E.; Arcidiacono, B.; Corigliano, D.M.; Brunetti, F.S.; Maggisano, V.; Russo, D.; Foti, D.P.; Brunetti, A. Mediterranean Diet Nutrients to Turn the Tide against Insulin Resistance and Related Diseases. Nutrients 2020, 12, 1066. [Google Scholar] [CrossRef] [PubMed]
- Yu, H. Role of the Insulin-Like Growth Factor Family in Cancer Development and Progression. J. Natl. Cancer Inst. 2000, 92, 1472–1489. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, S.; Peeters, P.H.M.; Berrino, F.; Dossus, L.; Biessy, C.; Olsen, A.; Tjonneland, A.; Overvad, K.; Clavel-Chapelon, F.; Boutron-Ruault, M.C.; et al. IGF-I, IGFBP-3 and Breast Cancer Risk in Women: The European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr. Relat. Cancer 2006, 13, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, P.; Rinaldi, S.; Jenab, M.; Lukanova, A.; Olsen, A.; Tjønneland, A.; Overvad, K.; Clavel-Chapelon, F.; Fagherazzi, G.; Touillaud, M.; et al. Dietary Fiber Intake and Risk of Hormonal Receptor–Defined Breast Cancer in the European Prospective Investigation into Cancer and Nutrition Study. Am. J. Clin. Nutr. 2013, 97, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Panno, M.L.; Salerno, M.; Pezzi, V.; Sisci, D.; Maggiolini, M.; Mauro, L.; Morrone, E.G.; Andò, S. Effect of Oestradiol and Insulin on the Proliferative Pattern and on Oestrogen and Progesterone Receptor Contents in MCF-7 Cells. J. Cancer Res. Clin. Oncol. 1996, 122, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Fardet, A. New Hypotheses for the Health-Protective Mechanisms of Whole-Grain Cereals: What Is beyond Fibre? Nutr. Res. Rev. 2010, 23, 65–134. [Google Scholar] [CrossRef]
- Guo, L.; Liu, S.; Zhang, S.; Chen, Q.; Zhang, M.; Quan, P.; Lu, J.; Sun, X. C-Reactive Protein and Risk of Breast Cancer: A Systematic Review and Meta-Analysis. Sci. Rep. 2015, 5, 10508. [Google Scholar] [CrossRef]
- Li, M.; van Esch, B.C.A.M.; Wagenaar, G.T.M.; Garssen, J.; Folkerts, G.; Henricks, P.A.J. Pro- and Anti-Inflammatory Effects of Short Chain Fatty Acids on Immune and Endothelial Cells. Eur. J. Pharmacol. 2018, 831, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Morze, J.; Hoffmann, G. Mediterranean Diet and Health Status: Active Ingredients and Pharmacological Mechanisms. Br. J. Pharmacol. 2020, 177, 1241–1257. [Google Scholar] [CrossRef] [PubMed]
- Seki, H.; Sasaki, T.; Ueda, T.; Arita, M. Resolvins as Regulators of the Immune System. Sci. World J. 2010, 10, 818–831. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sánchez, M.L.; García-Vigara, A.; Hidalgo-Mora, J.J.; García-Pérez, M.-Á.; Tarín, J.; Cano, A. Mediterranean Diet and Health: A Systematic Review of Epidemiological Studies and Intervention Trials. Maturitas 2020, 136, 25–37. [Google Scholar] [CrossRef]
- Mikkilä, V.; Räsänen, L.; Raitakari, O.T.; Pietinen, P.; Viikari, J. Consistent Dietary Patterns Identified from Childhood to Adulthood: The Cardiovascular Risk in Young Finns Study. Br. J. Nutr. 2005, 93, 923–931. [Google Scholar] [CrossRef]
Characteristic | Tertile I: Score 0–2 (n = 3526) | Tertile II: Score 3–4 (n = 3690) | Tertile III: Score 5–10 (n = 1850) |
---|---|---|---|
Mean ± SD of | |||
Age, y | 48.1 ± 8.3 | 48.6 ± 8.6 | 48.3 ± 8.7 |
Age at menarche, y | 12.8 ± 1.6 | 12.9 ± 1.6 | 12.9 ± 1.5 |
Nonalcoholic energy, kcal/d | 1621 ± 420 | 1705 ± 504 | 1825 ± 506 |
Body mass index, kg/m2 | 25.3 ± 4.3 | 25.3 ± 4.4 | 25.3 ± 4.3 |
Percentage (n) of | |||
Menopausal status: Postmenopausal | 36.9% (1301) | 39.7% (1464) | 37. 8% (699) |
Perimenopausal | 6.0% (212) | 5.9% (219) | 4.7% (88) |
Premenopausal | 55.6% (1962) | 53.1% (1960) | 56.2% (1039) |
Not defined | 1.5% (51) | 1.3% (47) | 1.3% (24) |
Parity: Nulliparous | 11.5% (407) | 10.4% (384) | 11.9% (220) |
1–2 children | 66.2% (2334) | 65.6% (2419) | 65.8% (1217) |
>2 children | 22.3% (785) | 24.0% (887) | 22.3% (413) |
Age at 1st birth: ≤20 y | 3.6% (125) | 3.4% (127) | 3.5% (65) |
>20–≤25 y | 37.8% (1332) | 37.9% (1398) | 35.6% (659) |
>25 y | 47.1% (1662) | 48.3% (1781) | 49.0% (906) |
n.a. (no children) | 11.5% (407) | 10.4% (384) | 11. 9% (220) |
Smoking status: current smokers | 20.0% (704 | 19.2% (707) | 20.3% (375) |
Ex-smokers | 15.0% (531) | 14.3% (528) | 15.0% (277) |
Never smokers | 65.0% (2291) | 66.5% (2455) | 64.7% (1198) |
Education (>8 y) | 50.5% (1782) | 50.0% (1845) | 53.6% (992) |
Tertile of Adherence | P-Trend | |||
---|---|---|---|---|
I | II | III | ||
Italian Mediterranean Index | ||||
Score range | 0–2 | 3–4 | 5–10 | |
All women | ||||
Cases/Person-years | 227/72,975 | 219/75,218 | 91/37,122 | |
HR 1 | 1 | 0.92 (0.77–1.11125) | 0.76 (0.60–0.98) | 0.04 |
HR 2 | 1 | 0.92 (0.77–1.11) | 0.76 (0.60–0.97) | 0.04 |
Postmenopausal women | ||||
Cases/Person-years | 85/27,217 | 100/29,658 | 29/14,018 | |
HR 1 | 1 | 1.07 (0.80–1.43) | 0.65 (0.42–0.99) | 0.11 |
HR 2 | 1 | 1.07 (0.80–1.43) | 0.64 (0.42–0.98) | 0.11 |
Premenopausal women | ||||
Cases/Person-years | 129/40,377 | 105/40,268 | 59/20,923 | |
HR 1 | 1 | 0.81 (0.62–1.05) | 0.86 (0.63–1.18) | 0.22 |
HR 2 | 1 | 0.81 (0.62–1.05) | 0.87 (0.64–1.19) | 0.26 |
Greek Mediterranean Index | ||||
Score range | 0–3 | 4–5 | 6–9 | |
All women | ||||
Cases/Person-years | 224/72,677 | 232/78,331 | 91/34,306 | |
HR 1 | 1 | 1.00 (0.83–1.20) | 0.88 (0.69–1.13) | 0.37 |
HR 2 | 1 | 1.00 (0.83–1.20) | 0.88 (0.69–1.13) | 0.39 |
Postmenopausal women | ||||
Cases/Person-years | 91/27,976 | 89/30,042 | 34/12,876 | |
HR 1 | 1 | 0.90 (0.67–1.21) | 0.79 (0.53–1.18) | 0.24 |
HR 2 | 1 | 0.90 (0.67–1.21) | 0.78 (0.52–1.16) | 0.21 |
Premenopausal women | ||||
Cases/Person-years | 111/39,555 | 129/42,768 | 53/19,245 | |
HR 1 | 1 | 1.07 (0.83–1.38) | 0.96 (0.69–1.34) | 0.95 |
HR 2 | 1 | 1.07 (0.83–1.39) | 0.97 (0.70–1.35) | 0.98 |
DASH diet | ||||
Score range | 8–18 | 19–21 | 22–32 | |
All women | ||||
Cases/Person-years | 214/73,366 | 185/56,213 | 138/55,735 | |
HR 1 | 1 | 1.12 (0.92–1.37) | 0.84 (0.66–1.04) | 0.16 |
HR 2 | 1 | 1.13 (0.93–1.38) | 0.84 (0.68–1.04) | 0.17 |
Postmenopausal women | ||||
Cases/Person-years | 80/27,691 | 77/21,849 | 57/21,355 | |
HR 1 | 1 | 1.22 (0.89–1.66) | 0.91 (0.65–1.29) | 0.70 |
HR 2 | 1 | 1.22 (0.89–1.68) | 0.91 (0.65–1.28) | 0.68 |
Premenopausal women | ||||
Cases/Person-years | 121/40,763 | 100/30,220 | 72/30,585 | |
HR 1 | 1 | 1.11 (0.85–1.45) | 0.79 (0.59–1.05) | 0.15 |
HR 2 | 1 | 1.11 (0.85–1.45) | 0.80 (0.59–1.07) | 0.18 |
EAT-Lancet score | ||||
Score range | 4–9 | 10 | 11–12 | |
All women | ||||
Cases/Person-years | 187/65,858 | 225/79,870 | 125/39,586 | |
HR 1 | 1 | 0.99 (0.82–1.21) | 1.10 (0.87–1.38) | 0.48 |
HR 2 | 1 | 1.00 (0.82–1.21) | 1.10 (0.88–1.39) | 0.44 |
Postmenopausal women | ||||
Cases/Person-years | 76/25,448 | 97/30,357 | 41/15,090 | |
HR 1 | 1 | 1.07 (0.79–1.44) | 0.90 (0.61–1.31) | 0.69 |
HR 2 | 1 | 1.06 (0.78–1.43) | 0.89 (0.61–1.30) | 0.63 |
Premenopausal women | ||||
Cases/Person-years | 99/36,032 | 117/44,060 | 77/21,476 | |
HR 1 | 1 | 0.97 (0.74–1.27) | 1.30 (0.96–1.75) | 0.13 |
HR 2 | 1 | 0.98 (0.75–1.28) | 1.29 (0.96–1.75) | 0.13 |
C-Reactive Protein [CRP] | TNF-α | IL-6 | Leptin | Adiponectin | |
---|---|---|---|---|---|
β 1 (Confidence Interval 95%) | |||||
Italian Mediterranean Index | −0.10 (−0.18, −0.02) | 0.05 (−0.08, 0.19) | 0.02 (−0.11, 0.15) | 0.01 (−0.07, 0.09) | 0.44 (−0.02, 0.11) |
Greek Mediterranean Index | −0.13 (−0.21, −0.04) | 0.04 (−0.09, 0.18) | 0.01 (−0.12, 0.14) | 0.04 (−0.03, 0.12) | 0.03 (−0.03, 0.1) |
DASH diet | 0.01 (−0.08, 0.09) | −0.01 (−0.14, 0.13) | −0.03 (−0.16, 0.10) | 0.06 (−0.02, 0.14) | −0.03 (−0.09, 0.04) |
EAT-Lancet score | 0.10 (0.02, 0.18) | −0.03 (−0.17, 0.11) | −0.06 (−0.20, 0.07) | 0.00 (−0.07, 0.08) | −0.04 (−0.11, 0.02) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quartiroli, M.; Roncallo, C.; Pala, V.; Simeon, V.; Ricceri, F.; Venturelli, E.; Pattaroni, L.; Sieri, S.; Agnoli, C. Adherence to Diet Quality Indices and Breast Cancer Risk in the Italian ORDET Cohort. Nutrients 2024, 16, 1187. https://doi.org/10.3390/nu16081187
Quartiroli M, Roncallo C, Pala V, Simeon V, Ricceri F, Venturelli E, Pattaroni L, Sieri S, Agnoli C. Adherence to Diet Quality Indices and Breast Cancer Risk in the Italian ORDET Cohort. Nutrients. 2024; 16(8):1187. https://doi.org/10.3390/nu16081187
Chicago/Turabian StyleQuartiroli, Martina, Chiara Roncallo, Valeria Pala, Vittorio Simeon, Fulvio Ricceri, Elisabetta Venturelli, Lara Pattaroni, Sabina Sieri, and Claudia Agnoli. 2024. "Adherence to Diet Quality Indices and Breast Cancer Risk in the Italian ORDET Cohort" Nutrients 16, no. 8: 1187. https://doi.org/10.3390/nu16081187
APA StyleQuartiroli, M., Roncallo, C., Pala, V., Simeon, V., Ricceri, F., Venturelli, E., Pattaroni, L., Sieri, S., & Agnoli, C. (2024). Adherence to Diet Quality Indices and Breast Cancer Risk in the Italian ORDET Cohort. Nutrients, 16(8), 1187. https://doi.org/10.3390/nu16081187