Managing the Risk of Foodborne Infections in Pediatric Patients with Cancer: Is the Neutropenic Diet Still an Option?
Abstract
:1. Introduction
2. Foodborne Infection in Children with Cancer or Undergoing Hematopoietic Cell Transplantation
3. Dietary Restrictions to Reduce the Risk of Foodborne Infections: From a Neutropenic Diet to Safe Food Handling
4. Food Restrictions for Patients Undergoing Chemotherapy or Hematopoietic Cell Transplantation
4.1. Food Restrictions during Hematopoietic Cell Transplantation
4.2. Effectiveness of the Neutropenic Diet in Children Undergoing Hematopoietic Cell Transplantation
4.3. Food Management Practices
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pizzo, P.A.; Poplack, D.G. Principles and Practice of Pediatric Oncology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2015. [Google Scholar]
- Lee, A.C.W.; Ong, N.D.S.P. Food-borne bacteremic illnesses in febrile neutropenic children. Hematol. Rep. 2011, 3, e11. [Google Scholar] [CrossRef] [PubMed]
- Moody, K.; Charlson, M.E.; Finlay, J. The neutropenic diet: What’s the evidence? J. Pediatr. Hematol. Oncol. 2002, 24, 717–721. [Google Scholar] [CrossRef] [PubMed]
- van Dalen, E.C.; Mank, A.; Leclercq, E.; Mulder, R.L.; Davies, M.; Kersten, M.J.; van de Wetering, M.D. Low bacterial diet versus control diet to prevent infection in cancer patients treated with chemotherapy causing episodes of neutropenia. Cochrane Database Syst. Rev. 2016, 2019, CD006247. [Google Scholar] [CrossRef]
- Masetti, R.; D’Amico, F.; Zama, D.; Leardini, D.; Muratore, E.; Ussowicz, M.; Fraczkiewicz, J.; Cesaro, S.; Caddeo, G.; Pezzella, V. Febrile neutropenia duration is associated with the severity of gut microbiota dysbiosis in pediatric allogeneic hematopoietic stem cell transplantation recipients. Cancers 2022, 14, 1932. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Vital signs: Incidence and trends of infection with pathogens transmitted commonly through food—Foodborne diseases active surveillance network, 10 US sites, 1996–2010. MMWR Morb. Mortal. Wkly. Rep. 2011, 60, 749–755. [Google Scholar]
- Archer, D.L. Diarrheal episodes and diarrheal disease: Acute disease with chronic implications. J. Food Prot. 1984, 47, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Archer, D.L. Foodborne Gram-negative bacteria and atherosclerosis: Is there a connection? J. Food Prot. 1987, 50, 783–787. [Google Scholar] [CrossRef] [PubMed]
- Neal, K.R.; Hebden, J.; Spiller, R. Prevalence of gastrointestinal symptoms six months after bacterial gastroenteritis and risk factors for development of the irritable bowel syndrome: Postal survey of patients. BMJ 1997, 314, 779. [Google Scholar] [CrossRef]
- Sockett, P.N.; Rodgers, F.G. Enteric and foodborne disease in children: A review of the influence of food-and environment-related risk factors. Paediatr. Child Health 2001, 6, 203–209. [Google Scholar] [CrossRef]
- Lund, B.M.; O’Brien, S.J. The occurrence and prevention of foodborne disease in vulnerable people. Foodborne Pathog. Dis. 2011, 8, 961–973. [Google Scholar] [CrossRef]
- Chan, M.M.; Rico, G.T. The “pet effect” in cancer patients: Risks and benefits of human-pet interaction. Crit. Rev. Oncol. Hematol. 2019, 143, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Gradel, K.O.; Nørgaard, M.; Dethlefsen, C.; Schønheyder, H.C.; Kristensen, B.; Ejlertsen, T.; Nielsen, H. Increased risk of zoonotic Salmonella and Campylobacter gastroenteritis in patients with haematological malignancies: A population-based study. Ann. Hematol. 2009, 88, 761–767. [Google Scholar] [CrossRef]
- Mani, I.; Maguire, J.H. Small animal zoonoses and immuncompromised pet owners. Top. Companion Anim. Med. 2009, 24, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Domenech, C.; Rabodonirina, M.; Bleyzac, N.; Pagès, M.P.; Bertrand, Y. Cryptosporidiosis in children with acute lymphoblastic leukemia on maintenance chemotherapy. J. Pediatr. Hematol./Oncol. 2011, 33, 570–572. [Google Scholar] [CrossRef]
- Arora, S.; Thakkar, D.; Upasana, K.; Yadav, A.; Rastogi, N.; Yadav, S.P. Bacillus cereus infection in pediatric oncology patients: A case report and review of literature. IDCases 2021, 26, e01302. [Google Scholar] [CrossRef] [PubMed]
- Kalyoussef, S.; Feja, K.N. Foodborne illnesses. Adv. Pediatr. 2014, 61, 287–312. [Google Scholar] [CrossRef]
- Medeiros, L.C.; Chen, G.; Hillers, V.N.; Kendall, P.A. Discovery and development of educational strategies to encourage safe food handling behaviors in cancer patients. J. Food Prot. 2008, 71, 1666–1672. [Google Scholar] [CrossRef]
- Moody, K. Neutropenic dietary restrictions for hematopoietic stem cell patients: Time for a change. Biol. Blood Marrow Transplant. 2019, 25, e223–e225. [Google Scholar] [CrossRef]
- Muratore, E.; Leardini, D.; Baccelli, F.; Venturelli, F.; Cerasi, S.; Zanaroli, A.; Lanari, M.; Prete, A.; Masetti, R.; Zama, D. The emerging role of nutritional support in the supportive care of pediatric patients undergoing hematopoietic stem cell transplantation. Front. Nutr. 2023, 10, 1075778. [Google Scholar] [CrossRef]
- Ifversen, M.; Meisel, R.; Sedlacek, P.; Kalwak, K.; Sisinni, L.; Hutt, D.; Lehrnbecher, T.; Balduzzi, A.; Diesch, T.; Jarisch, A. Supportive care during pediatric hematopoietic stem cell transplantation: Prevention of infections. A report from workshops on supportive care of the Paediatric Diseases Working Party (PDWP) of the European Society for Blood and Marrow Transplantation (EBMT). Front. Pediatr. 2021, 9, 737. [Google Scholar]
- Toenges, R.; Greinix, H.; Lawitschka, A.; Halter, J.; Baumgartner, A.; Simon, A.; Arends, J.; Jäger, P.; Middeke, M.; Hilgendorf, I. Current practice in nutrition after allogeneic hematopoietic stem cell transplantation–Results from a survey among hematopoietic stem cell transplant centers. Clin. Nutr. 2021, 40, 1571–1577. [Google Scholar] [CrossRef]
- Morris, A.; O’Connor, G.; Renshaw, G. A Cross-sectional Survey to Review Food Safety Practices Within Pediatric Oncology and Stem Cell Transplant Centers in the United Kingdom. J. Pediatr. Hematol./Oncol. 2023, 45, e471–e478. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Paden, H.; Hatsu, I.; Kane, K.; Lustberg, M.; Grenade, C.; Bhatt, A.; Diaz Pardo, D.; Beery, A.; Ilic, S. Assessment of food safety knowledge and behaviors of cancer patients receiving treatment. Nutrients 2019, 11, 1897. [Google Scholar] [CrossRef] [PubMed]
- Fiumana, G.; Botta, D.; Dalla Porta, M.F.; Macchi, S.; Soncini, E.; Santaniello, A.; Paciello, O.; Amicucci, M.; Cellini, M.; Cesaro, S. Consensus Statement on Animals’ Relationship with Pediatric Oncohematological Patients, on Behalf of Infectious Diseases and Nurse Working Groups of the Italian Association of Pediatric Hematology-Oncology. J. Clin. Med. 2023, 12, 2481. [Google Scholar] [CrossRef] [PubMed]
- El Saleeby, C.M.; Howard, S.C.; Hayden, R.T.; McCullers, J.A. Association between tea ingestion and invasive Bacillus cereus infection among children with cancer. Clin. Infect. Dis. 2004, 39, 1536–1539. [Google Scholar] [CrossRef] [PubMed]
- Boyle, N.M.; Podczervinski, S.; Jordan, K.; Stednick, Z.; Butler-Wu, S.; McMillen, K.; Pergam, S.A. Bacterial foodborne infections after hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 2014, 20, 1856–1861. [Google Scholar] [CrossRef]
- Rahman, M.T.; Sobur, M.A.; Islam, M.S.; Ievy, S.; Hossain, M.J.; El Zowalaty, M.E.; Rahman, A.T.; Ashour, H.M. Zoonotic diseases: Etiology, impact, and control. Microorganisms 2020, 8, 1405. [Google Scholar] [CrossRef]
- Ye, X.; Van, J.N.; Munoz, F.M.; Revell, P.A.; Kozinetz, C.A.; Krance, R.A.; Atmar, R.L.; Estes, M.K.; Koo, H.L. Noroviruses as a cause of diarrhea in immunocompromised pediatric hematopoietic stem cell and solid organ transplant recipients. Am. J. Transplant. 2015, 15, 1874–1881. [Google Scholar] [CrossRef]
- Ludwig, A.; Adams, O.; Laws, H.J.; Schroten, H.; Tenenbaum, T. Quantitative detection of norovirus excretion in pediatric patients with cancer and prolonged gastroenteritis and shedding of norovirus. J. Med. Virol. 2008, 80, 1461–1467. [Google Scholar] [CrossRef]
- Colson, P.; Borentain, P.; Queyriaux, B.; Kaba, M.; Moal, V.; Gallian, P.; Heyries, L.; Raoult, D.; Gerolami, R. Pig liver sausage as a source of hepatitis E virus transmission to humans. J. Infect. Dis. 2010, 202, 825–834. [Google Scholar] [CrossRef]
- Harritshøj, L.H.; Hother, C.E.; Sengeløv, H.; Daugaard, G.; Sørensen, S.S.; Jacobsen, S.; Perch, M.; Holm, D.K.; Sækmose, S.G.; Aagaard, B. Epidemiology of hepatitis E virus infection in a cohort of 4023 immunocompromised patients. Int. J. Infect. Dis. 2020, 91, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Oksenhendler, E.; Gérard, L.; Fieschi, C.; Malphettes, M.; Mouillot, G.; Jaussaud, R.; Viallard, J.F.; Gardembas, M.; Galicier, L.; Schleinitz, N. Infections in 252 patients with common variable immunodeficiency. Clin. Infect. Dis. 2008, 46, 1547–1554. [Google Scholar] [CrossRef] [PubMed]
- Andreoletti, O.; Budka, H.; Buncic, S.; Colin, P.; Collins, J.D.; De, A.; Noeckler, B.N.; Maradona, M.P.; Roberts, T.; Vågsholm, I. Surveillance and monitoring of Toxoplasma in humans, food and animals scientific opinion of the panel on biological hazards. EFSA J. 2007, 583, 1–64. [Google Scholar]
- Kijlstra, A.; Jongert, E. Control of the risk of human toxoplasmosis transmitted by meat. Int. J. Parasitol. 2008, 38, 1359–1370. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.L.; Dargelas, V.; Roberts, J.; Press, C.; Remington, J.S.; Montoya, J.G. Risk factors for Toxoplasma gondii infection in the United States. Clin. Infect. Dis. 2009, 49, 878–884. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, M.J.; Tissing, W.J.; Dun, C.A.; Meessen, N.E.; Kamps, W.A.; de Bont, E.S.; Harmsen, H.J. Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin. Infect. Dis. 2009, 49, 262–270. [Google Scholar] [CrossRef]
- Preisler, H.D.; Goldstein, I.M.; Henderson, E.S. Gastrointestinal “sterilization” in the treatment of patients with acute leukemia. Cancer 1970, 26, 1076–1081. [Google Scholar] [CrossRef] [PubMed]
- Pizzo, P.A.; Purvis, D.S.; Waters, C. Microbiological evaluation of food items. For patients undergoing gastrointestinal decontamination and protected isolation. J. Am. Diet. Assoc. 1982, 81, 272–279. [Google Scholar] [CrossRef]
- Pedretti, L.; Massa, S.; Leardini, D.; Muratore, E.; Rahman, S.; Pession, A.; Esposito, S.; Masetti, R. Role of Nutrition in Pediatric Patients with Cancer. Nutrients 2023, 15, 710. [Google Scholar] [CrossRef]
- Braun, L.E.; Chen, H.; Frangoul, H. Significant inconsistency among pediatric oncologists in the use of the neutropenic diet. Pediatr. Blood Cancer 2014, 61, 1806–1810. [Google Scholar] [CrossRef]
- Maia, J.E.; da Cruz, L.B.; Gregianin, L.J. Microbiological profile and nutritional quality of a regular diet compared to a neutropenic diet in a pediatric oncology unit. Pediatr. Blood Cancer 2018, 65, e26828. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, A.D.; Crosby, G.A. A review of the impact of preparation and cooking on the nutritional quality of vegetables and legumes. Int. J. Gastron. Food Sci. 2016, 3, 2–11. [Google Scholar] [CrossRef]
- Moody, K.; Finlay, J.; Mancuso, C.; Charlson, M. Feasibility and safety of a pilot randomized trial of infection rate: Neutropenic diet versus standard food safety guidelines. J. Pediatr. Hematol./Oncol. 2006, 28, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Moody, K.M.; Baker, R.A.; Santizo, R.O.; Olmez, I.; Spies, J.M.; Buthmann, A.; Granowetter, L.; Dulman, R.Y.; Ayyanar, K.; Gill, J.B. A randomized trial of the effectiveness of the neutropenic diet versus food safety guidelines on infection rate in pediatric oncology patients. Pediatr. Blood Cancer 2018, 65, e26711. [Google Scholar] [CrossRef] [PubMed]
- Tramsen, L.; Salzmann-Manrique, E.; Bochennek, K.; Klingebiel, T.; Reinhardt, D.; Creutzig, U.; Sung, L.; Lehrnbecher, T. Lack of effectiveness of neutropenic diet and social restrictions as anti-infective measures in children with acute myeloid leukemia: An analysis of the AML-BFM 2004 trial. J. Clin. Oncol. 2016, 34, 2776. [Google Scholar] [CrossRef] [PubMed]
- Fabozzi, F.; Trovato, C.M.; Diamanti, A.; Mastronuzzi, A.; Zecca, M.; Tripodi, S.I.; Masetti, R.; Leardini, D.; Muratore, E.; Barat, V. Management of Nutritional Needs in Pediatric Oncology: A Consensus Statement. Cancers 2022, 14, 3378. [Google Scholar] [CrossRef] [PubMed]
- Ball, S.; Brown, T.J.; Das, A.; Khera, R.; Khanna, S.; Gupta, A. Effect of neutropenic diet on infection rates in cancer patients with neutropenia. Am. J. Clin. Oncol. 2019, 42, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Taggart, C.; Neumann, N.; Alonso, P.B.; Lane, A.; Pate, A.; Stegman, A.; Stendahl, A.; Davies, S.M.; Dandoy, C.E.; Grimley, M. Comparing a neutropenic diet to a food safety-based diet in pediatric patients undergoing hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2019, 25, 1382–1386. [Google Scholar] [CrossRef] [PubMed]
- Trifilio, S.; Helenowski, I.; Giel, M.; Gobel, B.; Pi, J.; Greenberg, D.; Mehta, J. Questioning the role of a neutropenic diet following hematopoetic stem cell transplantation. Biol. Blood Marrow Transplant. 2012, 18, 1385–1390. [Google Scholar] [CrossRef]
- Peric, Z.; Botti, S.; Stringer, J.; Krawczyk, J.; van der Werf, S.; van Biezen, A.; Aljurf, M.; Murray, J.; Liptrott, S.; Greenfield, D.M. Variability of nutritional practices in peritransplant period after allogeneic hematopoietic stem cell transplantation: A survey by the Complications and Quality of Life Working Party of the EBMT. Bone Marrow Transplant. 2018, 53, 1030–1037. [Google Scholar] [CrossRef]
- Tomblyn, M.; Chiller, T.; Einsele, H.; Gress, R.; Sepkowitz, K.; Storek, J.; Wingard, J.R.; Young, J.A.; Boeckh, M.J. Guidelines for preventing infectious complications among hematopoietic cell transplant recipients: A global perspective. Bone Marrow Transplant. 2009, 44, 453–455. [Google Scholar] [CrossRef] [PubMed]
- Lassiter, M. A pilot study comparing the neutropenic diet to a non-neutropenic diet in the allogeneic hematopoietic stem cell transplantation population. Clin. J. Oncol. Nurs. 2015, 19, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Sonbol, M.B.; Jain, T.; Firwana, B.; Hilal, T.; Deleon, T.; Murad, A.; Murad, M.H.; Khera, N. Neutropenic diets to prevent cancer infections: Updated systematic review and meta-analysis. BMJ Support. Palliat. Care 2019, 9, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Stella, F.; Marasco, V.; Levati, G.V.; Guidetti, A.; De Filippo, A.; Pennisi, M.; Vismara, C.; Miceli, R.; Ljevar, S.; Tecchio, C. Nonrestrictive diet does not increase infections during post-HSCT neutropenia: Data from a multicenter randomized trial. Blood Adv. 2023, 7, 5996–6004. [Google Scholar] [CrossRef] [PubMed]
- Muratore, E.; Leardini, D.; Baccelli, F.; Venturelli, F.; Prete, A.; Masetti, R. Nutritional modulation of the gut microbiome in allogeneic hematopoietic stem cell transplantation recipients. Front. Nutr. 2022, 9, 993668. [Google Scholar] [CrossRef] [PubMed]
- Nicole Fox, R.D.; Freifeld, A.G. The neutropenic diet reviewed: Moving toward a safe food handling approach. Oncology 2012, 26, 572. [Google Scholar]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hütterer, E.; Isenring, E.; Kaasa, S. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef]
- Carreras, E.; Dufour, C.; Mohty, M.; Kröger, N. The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies; Springer: Cham, Switzerland, 2019. [Google Scholar]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef]
- Zama, D.; Biagi, E.; Masetti, R.; Gasperini, P.; Prete, A.; Candela, M.; Brigidi, P.; Pession, A. Gut microbiota and hematopoietic stem cell transplantation: Where do we stand? Bone Marrow Transplant. 2017, 52, 7–14. [Google Scholar] [CrossRef]
- Baumgartner, A.; Bargetzi, A.; Zueger, N.; Bargetzi, M.; Medinger, M.; Bounoure, L.; Gomes, F.; Stanga, Z.; Mueller, B.; Schuetz, P. Revisiting nutritional support for allogeneic hematologic stem cell transplantation—A systematic review. Bone Marrow Transplant. 2017, 52, 506–513. [Google Scholar] [CrossRef]
- Venturelli, F.; Leardini, D.; Baccelli, F.; Gottardi, F.; Barat, V.; Vendemini, F.; Folsi, V.M.; Meazza, C.; Marinoni, M.; Bernardo, M.E.; et al. Current practices for nutritional evaluation and care during the treatment of pediatric oncology patients: A survey among AIEOP centers. Eur. J. Pediatr. 2023, 183, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
Title of the Study, First Author, Year [ref.] | Type of Study | Objective | Population | Cases | Stage of the Disease at Time of Infection | Type of Chemotherapy | Type of Infection, Source | Clinical Symptoms | Outcome |
---|---|---|---|---|---|---|---|---|---|
Food-borne bacteremic illnesses in febrile neutropenic children. Anselm Chi-Wai Lee, 2011 [2] | Three-year retrospective hospital chart survey | To review all cases of documented bacteremia associated with febrile neutropenia * at the Children’s Hematology and Cancer Center of Singapore from March 2007 to February 2010 | 15 children with a solid tumor or leukemia |
|
|
|
|
| Recovery |
Cryptosporidiosis in children with acute lymphoblastic leukemia on maintenance chemotherapy. Carine Domenech, 2011, [15] | Case report | To describe two cases of children on maintenance chemotherapy with severe diarrhea disease caused by Cryptosporidium | 2 children with ALL |
|
|
| Cryptosporydium gastroenteritis, definite source of the infection is NA |
| Recovery |
Bacillus cereus infection in pediatric oncology patients: A case report and review of literature. Sunisha Arora, 2021, [16] | Case report and systematic review | To describe the case of a child on induction chemotherapy who developed Bacillus Cereus’s septicemia. | 1 child with ALL | A 15-year-old boy | Induction | NA | Bacillus Cereus septicemia, definite source of the infection is NA | Hematemesis, difficulty breathing (Oxygen saturation 92% on room air), drowsiness, and severe hypotension (BP 70/30 mmHg). The patient later developed encephalopathy, DIC, and multiorgan dysfunction. | Death |
Association between tea ingestion and invasive Bacillus cereus infection among children with cancer. El Saleeby CM, 2004, [27] | Case-control study, prompted by a clinical case | To demonstrate an association between dietary tea ingestion and B. cereus bacteremia | 1 child with ALL | A 17-year-old girl | Induction | NA | B. cereus bacteremia from a tea bag made from Camellia Sinensis leaves | NA | Recovery |
Quantitative detection of norovirus excretion in pediatric patients with cancer and prolonged gastroenteritis and shedding of norovirus. Ludwig A, 2008, [31] | Retrospective cohort study | To describe noroviral shedding in immunocompromised patients and its correlation with clinical symptoms | 9 children with a solid tumor or leukemia |
|
|
| Norovirus gastroenteritis, definite source of the infection is NA | Vomiting (66.6%), fever (44%), and diarrhea (44.4%) | Recovery |
Noroviruses as a cause of diarrhea in immunocompromised pediatric hematopoietic stem cell and solid-organ transplant recipients. Ye X, 2015, [30] | Prospectively enrolled epidemiologic surveillance study | To evaluate the prevalence and clinical significance of Norovirus diarrhea among pediatric transplant recipients at Texas Children’s Hospital in Houston, Texas | 116 children (61 SOT and 55 HCT recipients) | / | Post SOT or post HCT | NA | Norovirus gastroenteritis, definite source of the infection is NA | Severe diarrhea (lasting on average > 14 days and requiring frequent hospitalization), severe dehydration and hypovolemia (n = 2), respiratory distress (n = 2), septic shock (n = 1), cardiac arrhythmia (n = 1), and pneumatosis intestinalis (n = 1) | Death for three patients and recovery for the others |
Bacterial foodborne infections after hematopoietic cell transplantation. Boyle NM, 2014, [28] | Retrospective cohort study | To describe the incidence of bacterial foodborne diseases after HCT | 4069 HCT recipients (children and adults) |
| Post HCT |
|
| NA Patients A and B developed gut graft-versus-host disease | Recovery |
Title of the Study, First Author, Year [Ref] | Type of Study | Objective | Population | Outcome |
---|---|---|---|---|
Feasibility and Safety of a Pilot Randomized Trial of Infection Rate: Neutropenic Diet Versus Standard Food Safety Guidelines, Moody K, 2006 [45] | Multicenter prospective randomized controlled trial | To evaluate the infection rate in pediatric cancer patients randomized to the ND or FDA-approved FSGs and assess tolerability and adherence to the diets. | 19 pediatric oncology patients (ND n = 9; FSGs n = 10) | Infection rates for children on the ND were similar to those of patients following FSGs; the adherence rate was 94% for the neutropenic diet and 100% for the food safety guidelines. |
A randomized trial of the effectiveness of the neutropenic diet versus food safety guidelines on infection rate in pediatric oncology patients, Moody K, 2018 [46] | Prospective randomized controlled trial | To study neutropenic infection rates in pediatric oncology patients randomized to FSGs versus the ND plus FSGs; study adherence to the diets and acceptability. | 150 patients were randomly assigned to FSGs (n = 73) or ND + FSGs (n = 77) | ND offers no benefit over FSGs in the prevention of infection; diet adherence in the FSGs group was higher than in the ND + FSGs group. |
Lack of effectiveness of neutropenic diet and social restrictions as anti-infective measures in children with acute myeloid leukemia, Tramsen L, 2016 [47] | Multicenter analyses on AML-BFM 2004 | To check the effectiveness of non-pharmacological measures, including ND. | 339 patients treated in 37 institutions. | Dietary restrictions were not significantly associated with a decreased incidence of FUO, bacteremia, pneumonia, and gastroenteritis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedretti, L.; Leardini, D.; Muratore, E.; Capoferri, G.; Massa, S.; Rahman, S.; Esposito, S.; Masetti, R. Managing the Risk of Foodborne Infections in Pediatric Patients with Cancer: Is the Neutropenic Diet Still an Option? Nutrients 2024, 16, 966. https://doi.org/10.3390/nu16070966
Pedretti L, Leardini D, Muratore E, Capoferri G, Massa S, Rahman S, Esposito S, Masetti R. Managing the Risk of Foodborne Infections in Pediatric Patients with Cancer: Is the Neutropenic Diet Still an Option? Nutrients. 2024; 16(7):966. https://doi.org/10.3390/nu16070966
Chicago/Turabian StylePedretti, Laura, Davide Leardini, Edoardo Muratore, Gaia Capoferri, Serena Massa, Sofia Rahman, Susanna Esposito, and Riccardo Masetti. 2024. "Managing the Risk of Foodborne Infections in Pediatric Patients with Cancer: Is the Neutropenic Diet Still an Option?" Nutrients 16, no. 7: 966. https://doi.org/10.3390/nu16070966
APA StylePedretti, L., Leardini, D., Muratore, E., Capoferri, G., Massa, S., Rahman, S., Esposito, S., & Masetti, R. (2024). Managing the Risk of Foodborne Infections in Pediatric Patients with Cancer: Is the Neutropenic Diet Still an Option? Nutrients, 16(7), 966. https://doi.org/10.3390/nu16070966