Less Favorable Nutri-Score Consumption Ratings Are Prospectively Associated with Abdominal Obesity in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Methodology and Participant Selection
2.2. Research Variables
2.2.1. Dietary Intake Evaluation and Calculation of the Nutri-Score
- The five-color Nutri-Score dietary index (5-CNS DI, in grams per day per kilogram): This index was determined by totaling the consumed quantities of each packaged food and beverage (grams per day), each multiplied by its respective 5-CNS rating (where A is scored as 1 and E as 5), and then dividing this total by the individual’s body weight in kilograms. In the present analysis this DI was considered the main exposure.
- The continuous Nutri-Score dietary index (in grams per day per kilogram): This index was computed by summing the consumption amounts of all packaged foods and beverages (grams per day), each amount multiplied by its respective continuous Nutri-Score value (which varies from −15 to +40). This sum was divided by the individual’s body weight in kilograms.
- The five-color Nutri-Score dietary index (5-CNS DI as a percentage of energy intake): This index was computed using the 5-CNS DI, where food consumption is represented as a percentage of total energy intake (percent energy per kilogram).
- The continuous Nutri-Score dietary index (as a percentage of energy intake): This index was derived by calculating the continuous Nutri-Score DI, where food consumption is quantified as a percentage of total energy intake (percent energy per kilogram).
2.2.2. Abdominal Obesity
2.2.3. Other Variables
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-CNS DI | Five-Color Nutri-Score Dietary Index |
BMI | Body mass index |
CHNS | China Health and Nutrition Survey study and the National Diet |
CI | Confidence intervals |
DH-ENRICA | validated computer-based dietary history from the Study on Nutrition and Cardiovascular risk factors in Spain |
DI | Dietary Index |
ELSA-Brasil cohort | The Brazilian Longitudinal Study of Adult Health, cohort |
ENRICA | Study on Nutrition and Cardiovascular risk factors in Spain |
EPIC | European Prospective Investigation into Cancer and Nutrition cohort |
FOP | Front-of-packages |
NDNS | Nutrition Survey Rolling Programme |
MEDAS | Mediterranean Diet Adherence Score |
OR | Odds Ratio |
SD | Standard Deviation |
Seniors-ENRICA Cohort | Seniors Study on Nutrition and Cardiovascular risk factors in Spain cohort |
SU.VI.MAX | The Supplementation en Vitamines et Mineraux Antioxydants cohort |
SUN | University of Navarra Follow-Up cohort study |
UPF | Ultra-processed food |
References
- Temple, N.J. Front-of-Package Food Labels: A Narrative Review. Appetite 2020, 144, 104485. [Google Scholar] [CrossRef]
- Cecchini, M.; Warin, L. Impact of Food Labelling Systems on Food Choices and Eating Behaviours: A Systematic Review and Meta-Analysis of Randomized Studies. Obes. Rev. 2016, 17, 201–210. [Google Scholar] [CrossRef]
- Kanter, R.; Vanderlee, L.; Vandevijvere, S. Front-of-Package Nutrition Labelling Policy: Global Progress and Future Directions. Public Health Nutr. 2018, 21, 1399–1408. [Google Scholar] [CrossRef]
- Shangguan, S.; Afshin, A.; Shulkin, M.; Ma, W.; Marsden, D.; Smith, J.; Saheb-Kashaf, M.; Shi, P.; Micha, R.; Imamura, F.; et al. A Meta-Analysis of Food Labeling Effects on Consumer Diet Behaviors and Industry Practices. Am. J. Prev. Med. 2019, 56, 300–314. [Google Scholar] [CrossRef]
- Andreeva, V.A.; Egnell, M.; Touvier, M.; Galan, P.; Julia, C.; Hercberg, S. International Evidence for the Effectiveness of the Front-of-Package Nutrition Label Called Nutri-Score. Cent. Eur. J. Public Health 2021, 29, 76–79. [Google Scholar] [CrossRef]
- Adriouch, S.; Julia, C.; Kesse-Guyot, E.; Méjean, C.; Ducrot, P.; Péneau, S.; Donnenfeld, M.; Deschasaux, M.; Menai, M.; Hercberg, S.; et al. Prospective Association between a Dietary Quality Index Based on a Nutrient Profiling System and Cardiovascular Disease Risk. Eur. J. Prev. Cardiol. 2016, 23, 1669–1676. [Google Scholar] [CrossRef]
- Julia, C.; Fézeu, L.K.; Ducrot, P.; Méjean, C.; Péneau, S.; Touvier, M.; Hercberg, S.; Kesse-Guyot, E. The Nutrient Profile of Foods Consumed Using the British Food Standards Agency Nutrient Profiling System Is Associated with Metabolic Syndrome in the SU.VI.MAX Cohort. J. Nutr. 2015, 145, 2355–2361. [Google Scholar] [CrossRef]
- Montero-Salazar, H.; Guallar-Castillón, P.; Banegas, J.R.; Åkesson, A.; Rey-García, J.; Rodríguez-Artalejo, F.; Donat-Vargas, C. Food Consumption Based on the Nutrient Profile System Underlying the Nutri-Score and Renal Function in Older Adults. Clin. Nutr. 2022, 41, 1541–1548. [Google Scholar] [CrossRef]
- Rey-García, J.; Donat-Vargas, C.; Sandoval-Insausti, H.; Banegas, J.R.; Dominguez, L.J.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Less Favourable Food Consumption Ratings in the Five-Color Nutri-Score Are Associated with Incident Frailty in Older Adults. Age Ageing 2023, 52, afad142. [Google Scholar] [CrossRef]
- Donnenfeld, M.; Julia, C.; Kesse-Guyot, E.; Méjean, C.; Ducrot, P.; Péneau, S.; Deschasaux, M.; Latino-Martel, P.; Fezeu, L.; Hercberg, S.; et al. Prospective Association between Cancer Risk and an Individual Dietary Index Based on the British Food Standards Agency Nutrient Profiling System. Br. J. Nutr. 2015, 114, 1702–1710. [Google Scholar] [CrossRef]
- Deschasaux, M.; Huybrechts, I.; Murphy, N.; Julia, C.; Hercberg, S.; Srour, B.; Kesse-Guyot, E.; Latino-Martel, P.; Biessy, C.; Casagrande, C.; et al. Nutritional Quality of Food as Represented by the FSAm-NPS Nutrient Profiling System Underlying the Nutri-Score Label and Cancer Risk in Europe: Results from the EPIC Prospective Cohort Study. PLoS Med. 2018, 15, e1002651. [Google Scholar] [CrossRef] [PubMed]
- Donat-Vargas, C.; Sandoval-Insausti, H.; Rey-Garciá, J.; Ramón Banegas, J.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Five-Color Nutri-Score Labeling and Mortality Risk in a Nationwide, Population-Based Cohort in Spain: The Study on Nutrition and Cardiovascular Risk in Spain (ENRICA). Am. J. Clin. Nutr. 2021, 113, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Hirani, V. Generalised and Abdominal Adiposity Are Important Risk Factors for Chronic Disease in Older People: Results from a Nationally Representative Survey. J. Nutr. Health Aging 2011, 15, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Guallar-Castillón, P.; Sagardui-Villamor, J.; Banegas, J.R.; Graciani, A.; Fornés, N.S.; López García, E.; Rodríguez-Artalejo, F. Waist Circumference as a Predictor of Disability among Older Adults. Obesity 2007, 15, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Stenholm, S.; Harris, T.B.; Rantanen, T.; Visser, M.; Kritchevsky, S.B.; Ferrucci, L. Sarcopenic Obesity: Definition, Cause and Consequences. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 693–700. [Google Scholar] [CrossRef]
- Rodríguez-Artalejo, F.; Graciani, A.; Guallar-Castillón, P.; León-Muñoz, L.M.; Zuluaga, M.C.; López-García, E.; Gutiérrez-Fisac, J.L.; Taboada, J.M.; Aguilera, M.T.; Regidor, E.; et al. Justificación y Métodos Del Estudio Sobre Nutrición y Riesgo Cardiovascular En España (ENRICA). Rev. Esp. Cardiol. 2011, 64, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Guallar-Castillón, P.; Sagardui-Villamor, J.; Balboa-Castillo, T.; Sala-Vila, A.; Astolfi, M.J.A.; Pelous, M.D.S.; León-Muñoz, L.M.; Graciani, A.; Laclaustra, M.; Benito, C.; et al. Validity and Reproducibility of a Spanish Dietary History. PLoS ONE 2014, 9, e86074. [Google Scholar] [CrossRef] [PubMed]
- Moreiras, O.; Carvajal, A.; Cabrera, L.; Cuadrado, C. Tablas de Composición de Alimentos, 11th ed.; Ediciones Pirámide: Madrid, Spain, 2007. [Google Scholar]
- Ferrán, A.; Zamora, R.; Cervera, P. Tablas de Composición de Alimentos Del CESNID; Centre d’Ensenyament Superior de Nitricióí Dietètica (CESNID), Ed.; Edicions Universitat de Barcelona: Barcelona, Spain, 2004. [Google Scholar]
- Julia, C.; Kesse-Guyot, E.; Touvier, M.; Méjean, C.; Fezeu, L.; Hercberg, S. Application of the British Food Standards Agency Nutrient Profiling System in a French Food Composition Database. Br. J. Nutr. 2014, 112, 1699–1705. [Google Scholar] [CrossRef]
- Chantal, J.; Serge, H. Development of a New Front-of-Pack Nutrition Label in France: The Five-Colour Nutri-Score. Public Health Panor. 2017, 3, 537–820. [Google Scholar]
- Scientific Committee of the Nutri-Score Update Report from the Scientific Committee of the Nutri-Score 2022. 2022. Available online: www.aesan.gob.es/AECOSAN/docs/documentos/Nutri_Score/2022_main_algorithm_report_update_FINAL.pdf (accessed on 30 March 2024).
- Scientific Committee of the Nutri-Score 2023 Update of the Nutri-Score Algorithm for Beverages 2023, 1–104. Available online: www.aesan.gob.es/AECOSAN/docs/documentos/Nutri_Score/report_beverages_2023.pdf (accessed on 30 March 2024).
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11 December 2008; World Health Organization: Geneva, Switzerland, 2011; ISBN 9789241501491.
- Martínez-González, M.A.; García-Arellano, A.; Toledo, E.; Salas-Salvadó, J.; Buil-Cosiales, P.; Corella, D.; Covas, M.I.; Schröder, H.; Arós, F.; Gómez-Gracia, E.; et al. A 14-Item Mediterranean Diet Assessment Tool and Obesity Indexes among High-Risk Subjects: The PREDIMED Trial. PLoS ONE 2012, 7, e43134. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Levy, R.B.; Claro, R.M.; de Castro, I.R.R.; Cannon, G. A New Classification of Foods Based on the Extent and Purpose of Their Processing. Cad. Saude Publica 2010, 26, 2039–2049. [Google Scholar] [CrossRef] [PubMed]
- Touvier, M.; Srour, B.; Hercberg, S.; Galan, P.; Kesse-Guyot, E.; Julia, C. Health Impact of Foods: Time to Switch to a 3D-Vision. Front. Nutr. 2022, 9, 1958–1972. [Google Scholar] [CrossRef] [PubMed]
- Romieu, I.; Dossus, L.; Barquera, S.; Blottière, H.M.; Franks, P.W.; Gunter, M.; Hwalla, N.; Hursting, S.D.; Leitzmann, M.; Margetts, B.; et al. Energy Balance and Obesity: What Are the Main Drivers? Cancer Causes Control 2017, 28, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Faruque, S.; Tong, J.; Lacmanovic, V.; Agbonghae, C.; Minaya, D.M.; Czaja, K. The Dose Makes the Poison: Sugar and Obesity in the United States—A Review. Pol. J. Food Nutr. Sci. 2019, 69, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.M.; Kesse-Guyot, E.; McManus, R.; Hercberg, S.; Lairon, D.; Planells, R.; Roche, H.M. High Dietary Saturated Fat Intake Accentuates Obesity Risk Associated with the Fat Mass and Obesity-Associated Gene in Adults. J. Nutr. 2012, 142, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; He, F.J.; MacGregor, G.A. High Salt Intake: Independent Risk Factor for Obesity? Hypertension 2015, 66, 843–849. [Google Scholar] [CrossRef]
- Nour, M.; Lutze, S.A.; Grech, A.; Allman-Farinelli, M. The Relationship between Vegetable Intake and Weight Outcomes: A Systematic Review of Cohort Studies. Nutrients 2018, 10, 1626. [Google Scholar] [CrossRef] [PubMed]
- Dayib, M.; Larson, J.; Slavin, J. Dietary Fibers Reduce Obesity-Related Disorders: Mechanisms of Action. Curr. Opin. Clin. Nutr. Metab. Care 2020, 23, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Fappi, A.; Mittendorfer, B. Dietary Protein Intake and Obesity-Associated Cardiometabolic Function. Curr. Opin. Clin. Nutr. Metab. Care 2020, 23, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Romero Ferreiro, C.; Lora Pablos, D.; Gómez de la Cámara, A. Two Dimensions of Nutritional Value: Nutri-Score and NOVA. Nutrients 2021, 13, 2783. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Z.; Yang, H.; Qiu, P.; Wang, H.; Wang, F.; Zhao, Q.; Fang, J.; Nie, J. Consumption of Ultra-Processed Foods and Health Outcomes: A Systematic Review of Epidemiological Studies. Nutr. J. 2020, 19, 86. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Insausti, H.; Jiménez-Onsurbe, M.; Donat-Vargas, C.; Rey-García, J.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Ultra-Processed Food Consumption Is Associated with Abdominal Obesity: A Prospective Cohort Study in Older Adults. Nutrients 2020, 12, 2368. [Google Scholar] [CrossRef] [PubMed]
- Canhada, S.L.; Luft, V.C.; Giatti, L.; Duncan, B.B.; Chor, D.; de Jesus M da Fonseca, M.; Matos, S.M.A.; Molina, M.D.C.B.; Barreto, S.M.; Levy, R.B.; et al. Ultra-Processed Foods, Incident Overweight and Obesity, and Longitudinal Changes in Weight and Waist Circumference: The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Public Health Nutr. 2020, 23, 1076–1086. [Google Scholar] [CrossRef] [PubMed]
- da Silva Magalhães, E.I.; de Oliveira, B.R.; Rudakoff, L.C.S.; de Carvalho, V.A.; de Almeida Fonseca Viola, P.C.; Arruda, S.P.M.; de Carvalho, C.A.; da Silva Coelho, C.C.N.; Bragança, M.L.B.M.; Bettiol, H.; et al. Sex-Dependent Effects of the Intake of NOVA Classified Ultra-Processed Foods on Syndrome Metabolic Components in Brazilian Adults. Nutrients 2022, 14, 3126. [Google Scholar] [CrossRef] [PubMed]
- Beslay, M.; Srour, B.; Méjean, C.; Allès, B.; Fiolet, T.; Debras, C.; Chazelas, E.; Deschasaux, M.; Wendeu-Foyet, M.G.; Hercberg, S.; et al. Ultra-Processed Food Intake in Association with BMI Change and Risk of Overweight and Obesity: A Prospective Analysis of the French NutriNet-Santé Cohort. PLoS Med. 2020, 17, e1003256. [Google Scholar] [CrossRef] [PubMed]
- de Deus Mendonça, R.; Marcal Pimenta, A.; Gea, A.; de la Fuente-Arrillaga, C.; Martinez-Gonzalez, M.A.; Lopes, A.C.S.; Bes-Rastrollo, M. Ultraprocessed Food Consumption and Risk of Overweight and Obesity: The University of Navarra Follow-Up (SUN) Cohort Study. Am. J. Clin. Nutr. 2017, 105, 1012. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Shi, Z. Ultra-Processed Food Consumption Associated with Overweight/Obesity among Chinese Adults—Results from China Health and Nutrition Survey 1997–2011. Nutrients 2021, 13, 2796. [Google Scholar] [CrossRef] [PubMed]
- Cordova, R.; Kliemann, N.; Huybrechts, I.; Rauber, F.; Vamos, E.P.; Levy, R.B.; Wagner, K.-H.; Viallon, V.; Casagrande, C.; Nicolas, G.; et al. Consumption of Ultra-Processed Foods Associated with Weight Gain and Obesity in Adults: A Multi-National Cohort Study. Clin. Nutr. 2021, 40, 5079–5088. [Google Scholar] [CrossRef] [PubMed]
- Rauber, F.; Campagnolo, P.D.B.; Hoffman, D.J.; Vitolo, M.R. Nutrition, Metabolism & Cardiovascular Diseases Consumption of Ultra-Processed Food Products and Its Effects on Children’ s Lipid pro Fi Les: A Longitudinal Study. Nutr. Metab. Cardiovasc. Dis. 2019, 25, 116–122. [Google Scholar] [CrossRef]
- Zinöcker, M.K.; Lindseth, I.A. The Western Diet-Microbiome-Host Interaction and Its Role in Metabolic Disease. Nutrients 2018, 10, 365. [Google Scholar] [CrossRef] [PubMed]
- Rauber, F.; Steele, E.M.; da Costa Louzada, M.L.; Millett, C.; Monteiro, C.A.; Levy, R.B. Ultra-Processed Food Consumption and Indicators of Obesity in the United Kingdom Population (2008–2016). PLoS ONE 2020, 15, e0232676. [Google Scholar] [CrossRef] [PubMed]
- Heindel, J.J.; Newbold, R.; Schug, T.T. Endocrine Disruptors and Obesity. Nat. Rev. Endocrinol. 2015, 11, 653–661. [Google Scholar] [CrossRef]
- Gómez-Donoso, C.; Martínez-González, M.Á.; Perez-Cornago, A.; Sayón-Orea, C.; Martínez, J.A.; Bes-Rastrollo, M. Association between the Nutrient Profile System Underpinning the Nutri-Score Front-of-Pack Nutrition Label and Mortality in the SUN Project: A Prospective Cohort Study. Clin. Nutr. 2021, 40, 1085–1094. [Google Scholar] [CrossRef] [PubMed]
- Egnell, M.; Kesse-Guyot, E.; Galan, P.; Touvier, M.; Rayner, M.; Jewell, J.; Breda, J.; Hercberg, S.; Julia, C. Impact of Front-of-Pack Nutrition Labels on Portion Size Selection: An Experimental Study in a French Cohort. Nutrients 2018, 10, 1268. [Google Scholar] [CrossRef] [PubMed]
- Galan, P.; Babio, N.; Salas-Salvadó, J. Nutri-Score: Front-of-Pack Nutrition Label Useful for Public Heath in Spain Which Is Supported by as Strong Scientific Background. Nutr. Hosp. 2019, 36, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
- Acton, R.B.; Jones, A.C.; Kirkpatrick, S.I.; Roberto, C.A.; Hammond, D. Taxes and Front-of-Package Labels Improve the Healthiness of Beverage and Snack Purchases: A Randomized Experimental Marketplace. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 46. [Google Scholar] [CrossRef] [PubMed]
- Vandevijvere, S.; Vanderlee, L. Effect of Formulation, Labelling, and Taxation Policies on the Nutritional Quality of the Food Supply. Curr. Nutr. Rep. 2019, 8, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Fisac, J.L.; Guallar-Castillón, P.; León-Muñoz, L.M.; Graciani, A.; Banegas, J.R.; Rodríguez-Artalejo, F. Prevalence of General and Abdominal Obesity in the Adult Population of Spain, 2008-2010: The ENRICA Study. Obes. Rev. 2012, 13, 388–392. [Google Scholar] [CrossRef]
Five-Color Nutri-Score (5-CNS DI) in g/Day/kg | ||||||
---|---|---|---|---|---|---|
Q1 (Best Diet Quality) | Q2 | Q3 | Q4 (Worse Diet Quality) | p for Linear Trend | ||
n | 158 | 162 | 162 | 146 | ||
5-CNS DI in g/day/kg, mean ± SD | 20.2 ± 4.10 | 28.8 ± 24.43 | 35.7 ± 2.39 | 50.6 ± 12.2 | <0.001 | |
Continuous Nutri-Score DI in g/day/kg, mean ± SD | 20.3 ± 20.09 | 31.9 ± 21.0 | 46.1 ± 24.1 | 76.3 ± 42.0 | <0.001 | |
5-CNS DI based on the % of energy, mean ± SD | 1.76 ± 0.44 | 2.08 ± 0.33 | 2.24 ± 0.38 | 2.45 ± 0.40 | <0.001 | |
ontinuous Nutri-Score DI based on the % of energy, mean ± SD | 3.72 ± 2.48 | 4.55± 2.03 | 5.36 ± 2.29 | 6.10 ± 2.57 | <0.001 | |
Packaged foods (g/d), mean ± SD | ||||||
Label A | 146 ± 108 | 155 ± 92.8 | 167 ± 95.7 | 161 ± 91.1 | 0.092 | |
Label B | 223 ± 108 | 289 ± 123 | 315 ± 146 | 362 ± 202 | <0.001 | |
Label C | 144 ± 83.2 | 230 ± 98.9 | 290 ± 120 | 375 ± 207 | <0.001 | |
Label D | 45.7 ± 44.4 | 59.4 ± 53.5 | 75.2 ± 61.8 | 116 ± 106 | <0.001 | |
Label E | 38.9 ± 35.4 | 59.8 ± 43.5 | 89.4 ± 65.0 | 164 ± 152 | <0.001 | |
Energy (Kcal), mean ± SD | 1663 ± 410 | 1945 ± 450 | 2141 ± 458 | 2373 ± 470 | <0.001 | |
Sex (women), % | 44.3 | 45.1 | 44.4 | 45.9 | 0.823 | |
Age, mean ± SD | 67.3 ± 5.80 | 66.6 ± 5.37 | 66.9 ± 5.31 | 67.3 ± 6.56 | 0.886 | |
Educational level (%) | 0.714 † | |||||
Primary or less | 36.7 | 41.4 | 41.4 | 41.1 | ||
Secondary | 29.8 | 29.0 | 28.4 | 34.3 | ||
University | 33.5 | 29.6 | 30.3 | 24.7 | ||
Smoking, % | 0.700 † | |||||
Current smoker | 14.6 | 14.8 | 11.7 | 16.4 | ||
Former smoker | 33.5 | 26.5 | 28.4 | 28.8 | ||
Never smoker | 51.9 | 58.6 | 59.9 | 54.8 | ||
Former drinker status, % | 6.33 | 7.41 | 4.32 | 13.01 | 0.094 | |
Physical activity at leisure time (Mets/h/week), mean ± SD | 24.7 ± 15.7 | 25.8 ± 17.4 | 22.9 ± 14.4 | 24.3 ± 16.7 | 0.453 | |
Time watching TV (h/week), mean ± SD | 15.4± 9.46 | 15.3 ± 8.93 | 14.6 ± 10.6 | 15.7 ± 8.47 | 0.956 | |
Total sleep time (minutes/day), mean ± SD | 428 ± 85.8 | 439 ± 81.4 | 434 ± 81.0 | 435 ± 77.1 | 0.578 | |
Body Mass Index (kg/m2), mean ± SD | 26.2 ± 2.44 | 25.7 ± 2.43 | 25.6± 2.49 | 24.9 ± 2.82 | <0.001 | |
Waist circumference (cm), mean ± SD | 89.4 ± 8.69 | 88.3 ± 9.12 | 88.9 ± 9.0 | 86.7 ± 9.85 | 0.026 | |
Ethanol consumption (g/day), mean ± SD | 10.6 ± 16.4 | 10.7 ± 17.9 | 12.9 ± 18.2 | 9.12 ± 15.0 | 0.781 | |
Coronary heart disease, % | 0.00 | 2.47 | 0.00 | 0.68 | 0.885 | |
Chronic respiratory disease, % | 3.16 | 6.17 | 4.94 | 5.48 | 0.465 | |
Hypertension, % | 60.1 | 61.7 | 61.1 | 53.4 | 0.432 † | |
Diabetes, % | 10.8 | 10.49 | 6.17 | 5.48 | 4.779 † | |
Cancer, % | 1.90 | 1.23 | 3.09 | 1.37 | 0.928 | |
Osteoarthritis, % | 34.8 | 35.8 | 35.2 | 37.0 | 0.739 | |
Arthritis, % | 5.70 | 7.41 | 8.64 | 9.59 | 0.183 | |
Number of medications, % | 0.751 † | |||||
0 | 33.5 | 37.0 | 38.3 | 41.1 | ||
1–3 | 55.7 | 49.4 | 51.9 | 47.3 | ||
>3 | 10.8 | 13.6 | 9.88 | 11.6 | ||
MEDAS Score (excluding wine), mean ± SD | 7.77 ± 1.65 | 7.48 ± 1.68 | 7.17 ± 1.57 | 6.61 ± 1.72 | <0.001 | |
Ultra-processed food (g/day) | 116 ± 80 | 180 ± 98 | 245 ± 119 | 400 ± 223 | <0.001 |
Five-Color Nutri-Score (5-CNS DI) in g/Day/kg | ||||||
---|---|---|---|---|---|---|
Sex-Specific Quartiles of the 5-CNS DI in g/day/kg | ||||||
Q1 (Best Diet Quality) | Q2 | Q3 | Q4 (Worse Diet Quality) | p-Trend | Per 10 Unit-Increment | |
Interquartile range (g/day/kg) | 17.78–23.46 | 27.04–30.46 | 34.13–37.62 | 42.94–54.78 | ||
Cases/n | 47/158 | 44/162 | 39/162 | 41/146 | ||
Model 1, OR (95% CI) | 1 (Ref.) | 0.94 (0.56–1.56) | 0.83 (0.48–1.44) | 1.08 (0.59–1.99) | 0.923 | 0.98 (0.82–1.17) |
Model 2, OR (95% CI) | 1 (Ref.) | 1.34 (0.75–2.39) | 1.32 (0.70–2.46) | 2.71 (1.33–5.50) | 0.012 | 1.28 (1.04–1.57) |
Model 3, OR (95% CI) | 1 (Ref.) | 1.29 (0.72–2.32) | 1.25 (0.66–2.36) | 2.45 (1.17–5.14) | 0.035 | 1.24 (1.00–1.53) |
Continuous Nutri-Score DI in g/day/kg | ||||||
Sex-Specific Quartiles of the Continuous Nutri-Score DI in g/day/kg | ||||||
Q1 (Best Diet Quality) | Q2 | Q3 | Q4 (Worse Diet Quality) | p-Trend | Per 10-Unit Increment | |
Interquartile range (g/day/kg) | 1.16–14.32 | 26.52–35.75 | 45.12–54.07 | 69.01–100.82 | ||
Cases/n | 38/161 | 45/160 | 41/159 | 47/148 | ||
Model 1, OR (95% CI) | 1 (Ref.) | 1.43 (0.85–2.40) | 1.36 (0.79–2.33) | 2.14 (1.19–3.87) | 0.022 | 1.05 (0.99–1.11) |
Model 2, OR (95% CI) | 1 (Ref.) | 1.62 (0.90–2.89) | 1.59 (0.87–2.92) | 2.73 (1.41–5.31) | 0.006 | 1.09 (1.02–1.17) |
Model 3, OR (95% CI) | 1 (Ref.) | 1.58 (0.87–2.84) | 1.52 (0.81–2.85) | 2.52 (1.22–5.20) | 0.023 | 1.08 (1.00–1.17) |
Five Color Nutri-Score DI (5-CNS DI) Based on the Percentage of Energy | ||||||
---|---|---|---|---|---|---|
Sex-Specific Quartiles of the 5-CNS DI Based on the % of Energy | ||||||
Q1 (Best Diet Quality) | Q2 | Q3 | Q4 (Worse Diet Quality) | p-Trend | Per 1-Unit Increment | |
Interquartile range (% of energy) | 1.44–1.74 | 1.93–2.06 | 2.20–2.32 | 2.51–2.87 | ||
Cases/n | 35/157 | 41/158 | 51/157 | 44/156 | ||
Model 1, OR (95% CI) | 1 (Ref.) | 1.33 (0.78–2.26) | 1.86 (1.10–3.12) | 1.60 (0.92–2.78) | 0.045 | 1.48 (0.98–2.24) |
Model 2, OR (95% CI) | 1 (Ref.) | 1.41 (0.78–2.56) | 2.29 (1.26–4.14) | 2.19 (1.16–4.14) | 0.005 | 1.88 (1.15–3.07) |
Model 3, OR (95% CI) | 1 (Ref.) | 1.37 (0.74–2.53) | 2.19 (1.17–4.11) | 2.03 (0.98–4.23) | 0.024 | 1.76 (0.98–3.15) |
Continuous Nutri-Score DI Based on the % of Energy | ||||||
Sex-Specific Quartiles of the Continuous Nutri-Score DI Based on the % of Energy | ||||||
Q1 (Best Diet Quality) | Q2 | Q3 | Q4 (Worse Diet Quality) | p-Trend | Per 1-Unit Increment | |
Interquartile range (% of energy) | 1.58–2.74 | 3.66–4.367 | 5.08–5.84 | 6.95–8.95 | ||
Cases/n | 31/160 | 45/157 | 46/158 | 49/153 | ||
Model 1, OR (95% CI) | 1 (Ref.) | 1.77 (1.0–3.0) | 1.90 (1.11–3.25) | 2.27 (1.32–3.93) | 0.004 | 1.08 (1.00–1.16) |
Model 2, OR (95% CI) | 1 (Ref.) | 1.74 (0.96–3.17) | 2.15 (1.18–3.92) | 2.34 (1.25–4.35) | 0.007 | 1.08 (0.99–1.17) |
Model 3, OR (95% CI) | 1 (Ref.) | 1.72 (0.92–3.19) | 2.09 (1.10–4.00) | 2.24 (1.07–4.68) | 0.031 | 1.05 (0.95–1.17) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rey-García, J.; Mérida, D.M.; Donat-Vargas, C.; Sandoval-Insausti, H.; Rodríguez-Ayala, M.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Less Favorable Nutri-Score Consumption Ratings Are Prospectively Associated with Abdominal Obesity in Older Adults. Nutrients 2024, 16, 1020. https://doi.org/10.3390/nu16071020
Rey-García J, Mérida DM, Donat-Vargas C, Sandoval-Insausti H, Rodríguez-Ayala M, Banegas JR, Rodríguez-Artalejo F, Guallar-Castillón P. Less Favorable Nutri-Score Consumption Ratings Are Prospectively Associated with Abdominal Obesity in Older Adults. Nutrients. 2024; 16(7):1020. https://doi.org/10.3390/nu16071020
Chicago/Turabian StyleRey-García, Jimena, Diana María Mérida, Carolina Donat-Vargas, Helena Sandoval-Insausti, Montserrat Rodríguez-Ayala, José Ramón Banegas, Fernando Rodríguez-Artalejo, and Pilar Guallar-Castillón. 2024. "Less Favorable Nutri-Score Consumption Ratings Are Prospectively Associated with Abdominal Obesity in Older Adults" Nutrients 16, no. 7: 1020. https://doi.org/10.3390/nu16071020
APA StyleRey-García, J., Mérida, D. M., Donat-Vargas, C., Sandoval-Insausti, H., Rodríguez-Ayala, M., Banegas, J. R., Rodríguez-Artalejo, F., & Guallar-Castillón, P. (2024). Less Favorable Nutri-Score Consumption Ratings Are Prospectively Associated with Abdominal Obesity in Older Adults. Nutrients, 16(7), 1020. https://doi.org/10.3390/nu16071020