Association of Dietary Fiber and Measures of Physical Fitness with High-Sensitivity C-Reactive Protein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sources of Data and the Participants in This Study
2.2. Statement on Ethics and Availability of Data
2.3. Socio-Demographic and Lifestyle Factors
2.4. Anthropometric Measurements
2.5. Assessment of Inflammation
2.6. Dietary Assessment
2.7. Assessment of Physical Fitness and Sedentary Time
2.8. Statistical Analysis
3. Results
3.1. Characteristics of the Study Participants Based on hs-CRP Levels and the Category of Total Physical Activity
3.2. Association of Dietary Fiber Intake and Sedentary Time with Inflammation
3.3. Association of Dietary Fiber Intake and Hand Grip Strength with Inflammation
3.4. Association of Dietary Fiber Intake and the Number of Days of Resistance Training per Week with Inflammation
3.5. Association of Dietary Fiber Intake and Total Physical Activity with Inflammation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ridker, P.M. High-sensitivity C-reactive protein and cardiovascular risk: Rationale for screening and primary prevention. Am. J. Cardiol. 2003, 92, 17K–22K. [Google Scholar] [CrossRef]
- Ridker, P.M. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation 2003, 107, 363–369. [Google Scholar] [CrossRef]
- Bernell, S.; Howard, S.W. Use your words carefully: What is a chronic disease? Front. Public Health 2016, 4, 159. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Heidari-Bakavoli, A.R.; Shoeibi, S.; Mirhafez, S.R.; Moohebati, M.; Esmaily, H.; Ghazavi, H.; Saberi Karimian, M.; Parizadeh, S.M.R.; Mohammadi, M. Association of serum hs-CRP levels with the presence of obesity, diabetes mellitus, and other cardiovascular risk factors. J. Clin. Lab. Anal. 2016, 30, 672–676. [Google Scholar] [CrossRef]
- Carmen Zaha, D.; Vesa, C.; Uivarosan, D.; Bratu, O.; Fratila, O.; Mirela Tit, D.; Pantis, C.; Diaconu, C.C.; Bungau, S. Influence of inflammation and adipocyte biochemical markers on the components of metabolic syndrome. Exp. Ther. Med. 2020, 20, 121–128. [Google Scholar] [CrossRef]
- Haffner, S.M. The metabolic syndrome: Inflammation, diabetes mellitus, and cardiovascular disease. Am. J. Cardiol. 2006, 97, 3A–11A. [Google Scholar] [CrossRef]
- Festa, A.; D’Agostino, R., Jr.; Howard, G.; Mykkänen, L.; Tracy, R.P.; Haffner, S.M. Chronic subclinical inflammation as part of the insulin resistance syndrome: The Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000, 102, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O., III; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Huffman, F.G.; Gomez, G.P.; Zarini, G.G. Metabolic syndrome and high-sensitivity C-reactive protein in Cubans. Ethn. Dis. 2009, 19, 115–120. [Google Scholar] [PubMed]
- Knudsen, K.E.B. The nutritional significance of “dietary fibre” analysis. Anim. Feed Sci. Tech. 2001, 90, 3–20. [Google Scholar] [CrossRef]
- Klosterbuer, A.; Roughead, Z.F.; Slavin, J. Benefits of dietary fiber in clinical nutrition. Nutr. Clin. Pract. 2011, 26, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.H. Nutritional implications of dietary fiber. Am. J. Clin. Nutr. 1978, 31, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Spiller, G.A.; Amen, R.J.; Kritchevsky, D. Dietary fiber in human nutrition. Crit. Rev. Food Sci. Nutr. 1975, 7, 39–70. [Google Scholar] [CrossRef]
- Snauwaert, E.; Paglialonga, F.; Vande Walle, J.; Wan, M.; Desloovere, A.; Polderman, N.; Renken-Terhaerdt, J.; Shaw, V.; Shroff, R. The benefits of dietary fiber: The gastrointestinal tract and beyond. Pediatr. Nephrol. 2023, 38, 2929–2938. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, C.R.; Rose, D.J. US Consumer Identification of the Health Benefits of Dietary Fiber and Consideration of Fiber When Making Food Choices. Nutrients 2022, 14, 2341. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.; Rodriguez-Artalejo, F.; Lopes, C. The association of fruits, vegetables, antioxidant vitamins and fibre intake with high-sensitivity C-reactive protein: Sex and body mass index interactions. Eur. J. Clin. Nutr. 2009, 63, 1345–1352. [Google Scholar] [CrossRef]
- Ajani, U.A.; Ford, E.S.; Mokdad, A.H. Dietary fiber and C-reactive protein: Findings from national health and nutrition examination survey data. J. Nutr. 2004, 134, 1181–1185. [Google Scholar] [CrossRef]
- Taskinen, R.E.; Hantunen, S.; Tuomainen, T.-P.; Virtanen, J.K. The associations between whole grain and refined grain intakes and serum C-reactive protein. Eur. J. Clin. Nutr. 2022, 76, 544–550. [Google Scholar] [CrossRef]
- Son, D.-H.; Song, S.-A.; Lee, Y.-J. Association Between C-Reactive Protein and Relative Handgrip Strength in Postmenopausal Korean Women Aged 45–80 Years: A Cross-Sectional Study. Clin. Interv. Aging 2022, 17, 971–978. [Google Scholar] [CrossRef]
- Gubelmann, C.; Vollenweider, P.; Marques-Vidal, P. Association of grip strength with cardiovascular risk markers. Eur. J. Prev. Cardiol. 2017, 24, 514–521. [Google Scholar] [CrossRef]
- Kim, B.-J.; Lee, S.H.; Kwak, M.K.; Isales, C.M.; Koh, J.-M.; Hamrick, M.W. Inverse relationship between serum hsCRP concentration and hand grip strength in older adults: A nationwide population-based study. Aging 2018, 10, 2051. [Google Scholar] [CrossRef]
- Norman, K.; Stobäus, N.; Kulka, K.; Schulzke, J. Effect of inflammation on handgrip strength in the non-critically ill is independent from age, gender and body composition. Eur. J. Clin. Nutr. 2014, 68, 155–158. [Google Scholar] [CrossRef]
- Sardeli, A.V.; Tomeleri, C.M.; Cyrino, E.S.; Fernhall, B.; Cavaglieri, C.R.; Chacon-Mikahil, M.P.T. Effect of resistance training on inflammatory markers of older adults: A meta-analysis. Exp. Gerontol. 2018, 111, 188–196. [Google Scholar] [CrossRef]
- Ihalainen, J.K.; Schumann, M.; Eklund, D.; Hämäläinen, M.; Moilanen, E.; Paulsen, G.; Häkkinen, K.; Mero, A. Combined aerobic and resistance training decreases inflammation markers in healthy men. Scand. J. Med. Sci. Sports 2018, 28, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.L.; Vaccarino, V. Relationship between physical activity and inflammation among apparently healthy middle-aged and older US adults. Arch. Intern. Med. 2002, 162, 1286–1292. [Google Scholar] [CrossRef] [PubMed]
- Geffken, D.F.; Cushman, M.; Burke, G.L.; Polak, J.F.; Sakkinen, P.A.; Tracy, R.P. Association between physical activity and markers of inflammation in a healthy elderly population. Am. J. Epidemiol. 2001, 153, 242–250. [Google Scholar] [CrossRef]
- Taaffe, D.R.; Harris, T.B.; Ferrucci, L.; Rowe, J.; Seeman, T.E. Cross-sectional and prospective relationships of interleukin-6 and C-reactive protein with physical performance in elderly persons: MacArthur studies of successful aging. J. Gerontol. Biol. Sci. Med. Sci. 2000, 55, M709–M715. [Google Scholar] [CrossRef] [PubMed]
- Wannamethee, S.G.; Lowe, G.D.; Whincup, P.H.; Rumley, A.; Walker, M.; Lennon, L. Physical activity and hemostatic and inflammatory variables in elderly men. Circulation 2002, 105, 1785–1790. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewski, M.; Charchar, F.J.; Przybycin, M.; Crawford, L.; Wallace, A.M.; Gosek, K.; Lowe, G.D.; Zukowska-Szczechowska, E.; Grzeszczak, W.; Sattar, N. Strikingly low circulating CRP concentrations in ultramarathon runners independent of markers of adiposity: How low can you go? Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1640–1644. [Google Scholar] [CrossRef] [PubMed]
- Koenig, W.; Sund, M.; Fröhlich, M.; Fischer, H.-G.N.; Löwel, H.; Döring, A.; Hutchinson, W.L.; Pepys, M.B. C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: Results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation 1999, 99, 237–242. [Google Scholar] [PubMed]
- Pitsavos, C.; Chrysohoou, C.; Panagiotakos, D.B.; Skoumas, J.; Zeimbekis, A.; Kokkinos, P.; Stefanadis, C.; Toutouzas, P.K. Association of leisure-time physical activity on inflammation markers (C-reactive protein, white cell blood count, serum amyloid A, and fibrinogen) in healthy subjects (from the ATTICA study). Am. J. Cardiol. 2003, 91, 368–370. [Google Scholar] [CrossRef]
- Rohde, L.E.; Hennekens, C.H.; Ridker, P.M. Survey of C-reactive protein and cardiovascular risk factors in apparently healthy men. Am. J. Cardiol. 1999, 84, 1018–1022. [Google Scholar] [CrossRef]
- Albert, M.A.; Glynn, R.J.; Ridker, P.M. Effect of physical activity on serum C-reactive protein. Am. J. Cardiol. 2004, 93, 221–225. [Google Scholar] [CrossRef]
- Bergström, G.; Behre, C.J.; Schmidt, C. Moderate intensities of leisure-time physical activity are associated with lower levels of high-sensitivity C-reactive protein in healthy middle-aged men. Angiology 2012, 63, 412–415. [Google Scholar] [CrossRef]
- Katja, B.; Laatikainen, T.; Salomaa, V.; Jousilahti, P. Associations of leisure time physical activity, self-rated physical fitness, and estimated aerobic fitness with serum C-reactive protein among 3803 adults. Atherosclerosis 2006, 185, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Kweon, S.; Kim, Y.; Jang, M.-J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.-H.; Oh, K. Data resource profile: The Korea national health and nutrition examination survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Mbada, C.E.; Adeyemi, A.B.; Omosebi, O.; Olowokere, A.E.; Faremi, F.A. Hand grip strength in pregnant and non-pregnant females. Middle East J. Rehabil. Health Stud. 2015, 2, e27641. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, H.S.; Kim, D.J.; Han, J.H.; Kim, S.M.; Cho, G.J.; Kim, D.Y.; Kwon, H.S.; Kim, S.R.; Lee, C.B. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res. Clin. Pract. 2007, 75, 72–80. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, D.J.; Lee, K.E.; Kim, Y.M.; Song, Y.D.; Kim, H.D.; Ahn, C.W.; Cha, B.S.; Huh, K.B.; Lee, H.C. Cut-off value of waist circumference for metabolic syndrome patients in Korean adult population. J. Korean Soc. Study Obes. 2004, 13, 53–60. [Google Scholar]
- World Health Organization. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Weisell, R.C. Body mass index as an indicator of obesity. Asia Pac. J. Clin. Nutr. 2002, 11, S681–S684. [Google Scholar] [CrossRef]
- Joo, H.J.; Kim, G.R.; Park, E.-C.; Jang, S.-I. Association between Frequency of breakfast consumption and insulin resistance using triglyceride-glucose index: A Cross-Sectional Study of the Korea National Health and nutrition examination survey (2016–2018). Int. J. Environ. Res. Public Health 2020, 17, 3322. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.; Lee, K.W.; Brann, L.; Shivappa, N.; Hébert, J.R. Dietary inflammatory index is positively associated with serum high-sensitivity C-reactive protein in a Korean adult population. Nutrition 2019, 63, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Park, R.J.; Kim, Y.H. Association between high sensitivity CRP and suicidal ideation in the Korean general population. Eur. Neuropsychopharmacol. 2017, 27, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Jeong, K.; Lee, S.; Baek, Y. Relationship between low vegetable consumption, increased high-sensitive C-reactive protein level, and cardiometabolic risk in Korean adults with Tae-eumin: A cross-sectional study. Evid.-Based Complement. Altern. Med. 2021, 2021, 3631445. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Lee, H.; Jung, S.; Kim, J.Y.; Park, S. Higher energy consumption in the evening is associated with increased odds of obesity and metabolic syndrome: Findings from the 2016-2018 Korea National Health and Nutrition Examination Survey (7th KNHANES). Epidemiol. Health 2023, 45. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Shim, J.E.; Paik, H.Y.; Song, W.O.; Joung, H. Nutritional intake of Korean population before and after adjusting for within-individual variations: 2001 Korean National Health and Nutrition Survey Data. Nutr. Res. Pract. 2011, 5, 266–274. [Google Scholar] [CrossRef]
- Keating, X.D.; Zhou, K.; Liu, X.; Hodges, M.; Liu, J.; Guan, J.; Phelps, A.; Castro-Piñero, J. Reliability and concurrent validity of global physical activity questionnaire (GPAQ): A systematic review. Int. J. Environ. Res. Public Health 2019, 16, 4128. [Google Scholar] [CrossRef]
- Stelmach, M. Physical activity assessment tools in monitoring physical activity: The Global Physical Activity Questionnaire (GPAQ), the International Physical Activity Questionnaire (IPAQ) or accelerometers–choosing the best tools. Health Probl. Civiliz. 2018, 12, 57–63. [Google Scholar] [CrossRef]
- de Courten, M. Developing a simple global physical activity questionnaire for population studies. Australas. Epidemiol. 2002, 9, 6–9. [Google Scholar]
- Armstrong, T.; Bull, F. Development of the world health organization global physical activity questionnaire (GPAQ). J. Public Health 2006, 14, 66–70. [Google Scholar] [CrossRef]
- Herrmann, S.D.; Heumann, K.J.; Der Ananian, C.A.; Ainsworth, B.E. Validity and reliability of the global physical activity questionnaire (GPAQ). Meas. Phys. Educ. 2013, 17, 221–235. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Park, Y.-H.; Lee, J.-W.; Sung, E.-S.; Lee, H.-S.; Park, J. Household-specific physical activity levels and energy intakes according to the presence of metabolic syndrome in Korean young adults: Korean National Health and nutrition examination survey 2016–2018. BMC Public Health 2022, 22, 476. [Google Scholar] [CrossRef]
- Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Advisory Committee Report, 2008; US Department of Health and Human Services: Washington, DC, USA, 2008. [Google Scholar]
- King, A.C.; Powell, K.E.; Kraus, W.E. The US physical activity guidelines advisory committee report—Introduction. Med. Sci. Sports Exerc. 2019, 51, 1203–1205. [Google Scholar] [CrossRef]
- Lee, M.-R.; Jung, S.M.; Kim, H.S.; Kim, Y.B. Association of muscle strength with cardiovascular risk in Korean adults: Findings from the Korea National Health and Nutrition Examination Survey (KNHANES) VI to VII (2014–2016). Medicine 2018, 97, e13240. [Google Scholar] [CrossRef]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef]
- Kim, C.R.; Jeon, Y.-J.; Kim, M.C.; Jeong, T.; Koo, W.R. Reference values for hand grip strength in the South Korean population. PLoS ONE 2018, 13, e0195485. [Google Scholar] [CrossRef]
- Yoo, J.-I.; Choi, H.; Ha, Y.-C. Mean hand grip strength and cut-off value for sarcopenia in Korean adults using KNHANES VI. J. Korean Med. Sci. 2017, 32, 868–872. [Google Scholar] [CrossRef]
- Kim, Y.M.; Kim, S.; Bae, J.; Kim, S.H.; Won, Y.J. Association between relative hand-grip strength and chronic cardiometabolic and musculoskeletal diseases in Koreans: A cross-sectional study. Arch. Gerontol. Geriatr. 2021, 92, 104181. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Van Dam, R.M.; Liu, S.; Franz, M.; Mantzoros, C.; Hu, F.B. Whole-grain, bran, and cereal fiber intakes and markers of systemic inflammation in diabetic women. Diabetes Care 2006, 29, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Bernaud, F.S.; Beretta, M.V.; do Nascimento, C.; Escobar, F.; Gross, J.L.; Azevedo, M.J.; Rodrigues, T.C. Fiber intake and inflammation in type 1 diabetes. Diabetol. Metab. Syndr. 2014, 6, 66. [Google Scholar] [CrossRef] [PubMed]
- Begum, I.A.; Sen, M.; Afrin, S.F.; Shafia, S.M.; Islam, M.A.; Rahman, M.H. Association of dietary fiber with high sensitivity C-reactive proteinin type 2 diabetes mellitus. Bangladesh J. Med. Sci. 2012, 11, 117. [Google Scholar] [CrossRef]
- Shahadan, S.Z.; Daud, A.; Ibrahim, M.; Md Isa, M.L.; Draman, S. Association between dietary macronutrient intake and high-sensitivity C-reactive protein levels among obese women in Kuantan, Malaysia. Makara J. Sci. 2020, 24, 5. [Google Scholar]
- Liu, L.; Xie, S. Dietary fiber intake associated with risk of rheumatoid arthritis among US adults: NHANES 2010–2020. Medicine 2023, 102, e33357. [Google Scholar] [CrossRef]
- Swann, O.G.; Kilpatrick, M.; Breslin, M.; Oddy, W.H. Dietary fiber and its associations with depression and inflammation. Nutr. Rev. 2020, 78, 394–411. [Google Scholar] [CrossRef] [PubMed]
- Bishehsari, F.; Engen, P.A.; Preite, N.Z.; Tuncil, Y.E.; Naqib, A.; Shaikh, M.; Rossi, M.; Wilber, S.; Green, S.J.; Hamaker, B.R. Dietary fiber treatment corrects the composition of gut microbiota, promotes SCFA production, and suppresses colon carcinogenesis. Genes 2018, 9, 102. [Google Scholar] [CrossRef] [PubMed]
- Burton-Freeman, B. Dietary fiber and energy regulation. J. Nutr. 2000, 130, 272S–275S. [Google Scholar] [CrossRef] [PubMed]
- Burley, V.; Paul, A.; Blundell, J. Influence of a high-fibre food (myco-protein*) on appetite: Effects on satiation (within meals) and satiety (following meals). Eur. J. Clin. Nutr. 1993, 47, 409. [Google Scholar] [PubMed]
- Zimmermann, E.; Anty, R.; Tordjman, J.; Verrijken, A.; Gual, P.; Tran, A.; Iannelli, A.; Gugenheim, J.; Bedossa, P.; Francque, S. C-reactive protein levels in relation to various features of non-alcoholic fatty liver disease among obese patients. J. Hepatol. 2011, 55, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Requena, M.C.; Aguilar-González, C.N.; Barragán, L.A.P.; das Graças Carneiro-da Cunha, M.; Correia, M.T.; Esquivel, J.C.C.; Herrera, R.R. Dietary fiber: An ingredient against obesity. Emir. J. Food Agric. 2016, 28, 522–530. [Google Scholar] [CrossRef]
- Norman, K.; Stobäus, N.; Gonzalez, M.C.; Schulzke, J.-D.; Pirlich, M. Hand grip strength: Outcome predictor and marker of nutritional status. Clin. Nutr. 2011, 30, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, C.S.; Thang, L.A.; Maier, A.B. Markers of inflammation and their association with muscle strength and mass: A systematic review and meta-analysis. Ageing Res. Rev. 2020, 64, 101185. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Jung, J.-H.; Park, S. Changes in high-sensitivity C-reactive protein levels and metabolic indices according to grip strength in Korean postmenopausal women. Climacteric 2022, 25, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Agostinis-Sobrinho, C.; Ramírez-Vélez, R.; García-Hermoso, A.; Rosário, R.; Moreira, C.; Lopes, L.; Martinkenas, A.; Mota, J.; Santos, R. The combined association of adherence to Mediterranean diet, muscular and cardiorespiratory fitness on low-grade inflammation in adolescents: A pooled analysis. Eur. J. Nutr. 2019, 58, 2649–2656. [Google Scholar] [CrossRef] [PubMed]
- Shabani, R.; Yosefizad, L.; Fallah, F. Effects of eight weeks of endurance-resistance training on some inflammatory markers and cardiovascular endurance in sedentary postmenopausal women. Iran. J. Obstet. Gynecol. Infertil. 2017, 20, 23–30. [Google Scholar]
- Fayh, A.P.T.; Lopes, A.L.; da Silva, A.M.V.; Reischak-Oliveira, A.; Friedman, R. Effects of 5% weight loss through diet or diet plus exercise on cardiovascular parameters of obese: A randomized clinical trial. Eur. J. Nutr. 2013, 52, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Mecca, M.S.; Moreto, F.; Burini, F.H.; Dalanesi, R.C.; McLellan, K.C.; Burini, R.C. Ten-week lifestyle changing program reduces several indicators for metabolic syndrome in overweight adults. Diabetol. Metab. Syndr. 2012, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S. Does exercise reduce inflammation? Physical activity and C-reactive protein among US adults. Epidemiology 2002, 13, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Goldhammer, E.; Tanchilevitch, A.; Maor, I.; Beniamini, Y.; Rosenschein, U.; Sagiv, M. Exercise training modulates cytokines activity in coronary heart disease patients. Int. J. Cardiol. 2005, 100, 93–99. [Google Scholar] [CrossRef]
- Vepsäläinen, T.; Soinio, M.; Marniemi, J.; Lehto, S.; Juutilainen, A.; Laakso, M.; Rönnemaa, T. Physical activity, high-sensitivity C-reactive protein, and total and cardiovascular disease mortality in type 2 diabetes. Diabetes Care 2011, 34, 1492–1496. [Google Scholar] [CrossRef]
- Pischon, T.; Hankinson, S.E.; Hotamisligil, G.S.; Rifai, N.; Rimm, E.B. Leisure-time physical activity and reduced plasma levels of obesity-related inflammatory markers. Obes. Res. 2003, 11, 1055–1064. [Google Scholar] [CrossRef]
- Loprinzi, P.D.; Walker, J.F. Combined association of physical activity and diet with C-reactive protein among smokers. J. Diabetes Metab. Disord. 2015, 14, 51. [Google Scholar] [CrossRef] [PubMed]
- Pitsavos, C.; Panagiotakos, D.B.; Tzima, N.; Lentzas, Y.; Chrysohoou, C.; Das, U.N.; Stefanadis, C. Diet, exercise, and C-reactive protein levels in people with abdominal obesity: The ATTICA epidemiological study. Angiology 2007, 58, 225–233. [Google Scholar] [CrossRef]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean diet: A literature review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef]
- Ros, E.; Martínez-González, M.A.; Estruch, R.; Salas-Salvadó, J.; Fitó, M.; Martínez, J.A.; Corella, D. Mediterranean diet and cardiovascular health: Teachings of the PREDIMED study. Adv. Nutr. 2014, 5, 330S–336S. [Google Scholar] [CrossRef]
- Imayama, I.; Ulrich, C.M.; Alfano, C.M.; Wang, C.; Xiao, L.; Wener, M.H.; Campbell, K.L.; Duggan, C.; Foster-Schubert, K.E.; Kong, A. Effects of a caloric restriction weight loss diet and exercise on inflammatory biomarkers in overweight/obese postmenopausal women: A randomized controlled trial. Cancer Res. 2012, 72, 2314–2326. [Google Scholar] [CrossRef] [PubMed]
- Amini, P.; Maghsoudi, Z.; Feizi, A.; Ghiasvand, R.; Askari, G. Effects of High Protein and Balanced Diets on Lipid Profiles and Inflammation Biomarkers in Obese and Overweight Women at Aerobic Clubs: A Randomized Clinical Trial. Int. J. Prev. Med. 2016, 7, 110. [Google Scholar] [CrossRef]
- Camhi, S.M.; Stefanick, M.L.; Ridker, P.M.; Young, D.R. Changes in C-reactive protein from low-fat diet and/or physical activity in men and women with and without metabolic syndrome. Metabolism 2010, 59, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Daud, A.; Jamal, A.F.; Shahadan, S.Z. Association between sitting time and high-sensitivity C-reactive protein level among obese women. Enferm. Clin. 2021, 31, S139–S142. [Google Scholar] [CrossRef]
- Ricci, C.; Leitzmann, M.F.; Freisling, H.; Schutte, A.E.; Schutte, R.; Kruger, S.H.; Smuts, C.M.; Pieters, M. Diet and sedentary behaviour in relation to mortality in US adults with a cardiovascular condition: Results from the National Health and Nutrition Examination Survey linked to the US mortality registry. Br. J. Nutr. 2020, 124, 1329–1337. [Google Scholar] [CrossRef]
- Arouca, A.B.; Santaliestra-Pasías, A.M.; Moreno, L.A.; Marcos, A.; Widhalm, K.; Molnár, D.; Manios, Y.; Gottrand, F.; Kafatos, A.; Kersting, M. Diet as a moderator in the association of sedentary behaviors with inflammatory biomarkers among adolescents in the HELENA study. Eur. J. Nutr. 2019, 58, 2051–2065. [Google Scholar] [CrossRef]
- Saputra, L.K.; Chandra, D.N.; Mudjihartini, N. Dietary Fiber’s Effect on High Sensitivity C-reactive Protein Serum in Sedentary Workers. World Nutr. J. 2021, 5, 40–46. [Google Scholar] [CrossRef]
Men | Women | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Total (n = 7434) | hs-CRP <3 mg/L (n = 6731) | hs-CRP ≥3 mg/L (n = 703) | p-Value a | Total (n = 9500) | hs-CRP <3 mg/L (n = 8787) | hs-CRP ≥3 mg/L (n = 713) | p-Value a |
Age (years) | 45.69 (±0.26) | 45.35 (±0.74) | 49.27 (±0.72) | <0.0001 | 47.66 (±0.25) | 47.57 (±0.77) | 48.85 (±0.75) | <0.0001 |
Energy (kcal/day) | 2427.63 (±15.91) | 2433.42 (±47.54) | 2366.42 (±45.39) | <0.0001 | 1705.48 (±9.37) | 1704.32 (±37.40) | 1720.07 (±36.95) | <0.0001 |
Carbohydrate (g/day) | 341.79 (±1.97) | 341.99 (±6.79) | 339.67 (±6.59) | <0.0001 | 267.51 (±1.50) | 267.44 (±5.06) | 268.39 (±4.95) | <0.0001 |
Protein (g/day) | 87.98 (±0.78) | 56.43 (±2.16) | 53.92 (±2.07) | <0.0001 | 60.60 (±0.42) | 38.82 (±1.50) | 38.73 (±1.48) | <0.0001 |
Fat (g/day) | 56.21 (±0.64) | 88.46 (±2.10) | 82.89 (±1.96) | <0.0001 | 38.82 (±0.37) | 60.59 (±1.49) | 60.67 (±1.47) | <0.0001 |
Dietary fiber (g/day) | 27.04 (±0.21) | 27.05 (±0.64) | 26.99 (±0.62) | <0.0001 | 23.21 (±0.19) | 23.29 (±0.59) | 22.19 (±0.57) | <0.0001 |
Weight status | 0.0014 | <0.0001 | ||||||
Underweight | 166 (2.4%) | 153 (2.6%) | 13 (1.3%) | 430 (5.3%) | 413 (5.6%) | 17 (1.9%) | ||
Normal weight | 2244 (29.9%) | 2042 (30.2%) | 202 (26.6%) | 4158 (46.7%) | 3963 (48.2%) | 195 (27.6%) | ||
Overweight | 1988 (26.0%) | 1825 (26.3%) | 163 (22.9%) | 1982 (19.8%) | 1844 (19.8%) | 138 (19.3%) | ||
Obese | 3036 (41.7%) | 2711 (41.0%) | 325 (49.1%) | 2930 (28.3%) | 2567 (26.4%) | 363 (51.3%) | ||
Abdominal obesity status b | <0.0001 | <0.0001 | ||||||
No abdominal obesity | 4908 (67.1%) | 4507 (68.1%) | 401 (56.7%) | 6849 (75.3%) | 6478 (77.0%) | 371 (53.6%) | ||
Abdominal obesity | 2526 (32.9%) | 2224 (31.9%) | 302 (43.3%) | 2651 (24.7%) | 2309 (23.0%) | 342 (46.4%) | ||
Individual income level | 0.0065 | 0.0814 | ||||||
Low | 1769 (23.8%) | 1556 (23.2%) | 213 (30.0%) | 2247 (23.9%) | 2054 (23.6%) | 193 (27.7%) | ||
Middle-lower | 1838 (24.6%) | 1664 (24.7%) | 174 (23.6%) | 2381 (24.6%) | 2205 (24.6%) | 176 (24.2%) | ||
Middle-upper | 1902 (25.7%) | 1745 (26.0%) | 157 (22.6%) | 2410 (25.0%) | 2224 (25.0%) | 186 (25.7%) | ||
High | 1925 (25.9%) | 1766 (26.1%) | 159 (23.9%) | 2462 (26.5%) | 2304 (26.8%) | 158 (22.5%) | ||
Education | <0.0001 | 0.0047 | ||||||
Elementary school | 1110 (9.5%) | 956 (9.0%) | 154 (14.6%) | 2344 (18.4%) | 2115 (17.9%) | 229 (23.9%) | ||
Middle school | 771 (7.5%) | 681 (7.3%) | 90 (9.6%) | 957 (8.8%) | 890 (8.8%) | 67 (8.3%) | ||
High school | 2553 (37.3%) | 2338 (37.6%) | 215 (34.1%) | 2969 (34.4%) | 2764 (34.4%) | 205 (34.2%) | ||
University or higher | 3000 (45.7%) | 2756 (46.1%) | 244 (41.7%) | 3230 (38.4%) | 3018 (38.8%) | 212 (33.6%) | ||
Marital status | 0.0561 | 0.4859 | ||||||
Married | 5927 (71.2%) | 5341 (70.8%) | 586 (75.3%) | 8221 (80.8%) | 7597 (80.7%) | 624 (82.1%) | ||
Unmarried | 1507 (28.8%) | 1390 (29.2%) | 117 (24.7%) | 1279 (19.2%) | 1190 (19.3%) | 89 (17.9%) | ||
Drinking habits c | 0.0426 | 0.3976 | ||||||
None | 1843 (24.6%) | 1640 (24.1%) | 203 (29.2%) | 4023 (47.2%) | 3719 (46.9%) | 304 (50.4%) | ||
Moderate | 2617 (39.7%) | 2396 (40.0%) | 221 (36.0%) | 2884 (38.6%) | 2685 (38.8%) | 199 (36.2%) | ||
High | 2636 (35.8%) | 2396 (35.9%) | 240 (34.8%) | 1069 (14.2%) | 990 (14.3%) | 79 (13.4%) | ||
Smoking status | 0.0601 | 0.1725 | ||||||
Never | 1795 (26.5%) | 1647 (26.9%) | 148 (22.2%) | 8533 (88.7%) | 7910 (88.8%) | 623 (86.5%) | ||
Past | 3225 (38.4%) | 2911 (38.4%) | 314 (39.1%) | 524 (5.9%) | 480 (5.8%) | 44 (6.2%) | ||
Current | 2414 (35.0%) | 2173 (34.7%) | 241 (38.7%) | 443 (5.5%) | 379 (5.3%) | 46 (7.3%) | ||
Total metabolic equivalent (MET min/week) | 386.62 (±7.50) | 392.58 (±23.94) | 323.70 (±22.64) | <0.0001 | 362.68 (±6.32) | 363.92 (±21.12) | 347.24 (±20.24) | <0.0001 |
Aerobic physical activity status d | 0.0021 | 0.0975 | ||||||
Yes | 3535 (51.8%) | 3239 (52.4%) | 296 (45.6%) | 4002 (45.9%) | 3728 (46.2%) | 274 (42.3%) | ||
No | 3899 (48.2%) | 3492 (47.6%) | 407 (54.4%) | 5498 (54.1%) | 5059 (53.8%) | 439 (57.7%) |
Men (n = 7434) | Women (n = 9500) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Inactive (n = 4370) | Somewhat Active (n = 922) | Active (n = 1440) | Very Active (n = 702) | p-Value b | Inactive (n = 5408) | Somewhat Active (n = 1423) | Active (n = 1926) | Very Active (n = 743) | p-Value b | |
Age (years) | 47.8 (±0.67) | 45.15 (±0.88) | 43.18 (±0.79) | 40.41 (±0.63) | <0.0001 | 49.66 (±0.70) | 47.41 (±0.80) | 45.13 (±0.76) | 41.99 (±0.65) | <0.0001 |
Energy (kcal/day) | 2424.84 (±51.16) | 2398.91 (±58.99) | 2393.15 (±54.76) | 2538.21 (±46.92) | < 0.0001 | 1669.74 (±35.13) | 1703.34 (±38.50) | 1761.04 (±38.23) | 1794.30 (±32.72) | <0.0001 |
Carbohydrate (g/day) | 342.51 (±6.23) | 336.96 (±7.21) | 339.64 (±6.81) | 347.72 (±5.65) | <0.0001 | 264.98 (±4.62) | 268.54 (±5.36) | 273.42 (±5.26) | 267.08 (±4.30) | <0.0001 |
Protein (g/day) | 86.14 (±3.68) | 88.48 (±3.97) | 86.89 (±3.69) | 98.63 (±3.54) | <0.0001 | 58.52 (±1.74) | 61.00 (±1.90) | 63.01 (±1.83) | 66.82 (±1.67) | <0.0001 |
Fat (g/day) | 54.58 (±2.31) | 54.72 (±2.50) | 56.99 (±2.55) | 64.63 (±2.19) | <0.0001 | 37.03 (±1.43) | 38.58 (±1.58) | 41.23 (±1.53) | 44.30 (±1.33) | <0.0001 |
Dietary fiber | 26.95 (±0.68) | 27.24 (±0.79) | 26.48 (±0.78) | 28.32 (±0.62) | <0.0001 | 22.78 (±0.56) | 23.49 (±0.64) | 23.79 (±0.61) | 23.95 (±0.53) | <0.0001 |
Ratio of macronutrients | ||||||||||
Carbohydrate (%) | 63.69 (±0.22) | 62.83 (±0.45) | 62.49 (±0.38) | 60.11 (±0.51) | <0.0001 | 66.05 (±0.21) | 65.32 (±0.36) | 64.45 (±0.29) | 62.44 (±0.47) | <0.0001 |
Protein (%) | 15.43 (±0.09) | 15.92 (±0.20) | 15.56 (±0.13) | 16.50 (±0.24) | 0.0001 | 14.39 (±0.08) | 14.61 (±0.14) | 14.69 (±0.11) | 15.40 (±0.23) | <0.0001 |
Fat (%) | 20.87 (±0.18) | 21.26 (±0.37) | 21.94 (±0.32) | 23.39 (±0.40) | <0.0001 | 19.57 (±0.16) | 20.07 (±0.29) | 20.85 (±0.24) | 22.16 (±0.39) | <0.0001 |
Weight status | 0.2035 | 0.0921 | ||||||||
Underweight | 106 (2.6%) | 25 (3.2%) | 27 (2.1%) | 8 (1.3%) | 234 (5.3%) | 64 (5.4%) | 95 (5.5%) | 37 (5.0%) | ||
Normal weight | 1339 (30.1%) | 277 (30.0%) | 430 (30.0%) | 198 (28.4%) | 2285 (45.0%) | 634 (47.0%) | 881 (49.1%) | 358 (50.6%) | ||
Overweight | 1163 (25.8%) | 240 (25.1%) | 375 (25.7%) | 210 (28.6%) | 1136 (19.9%) | 295 (19.7%) | 395 (19.4%) | 156 (19.9%) | ||
Obese | 1762 (41.5%) | 380 (41.7%) | 608 (42.2%) | 286 (41.7%) | 1753 (29.8%) | 430 (28.0%) | 555 (26.1%) | 192 (24.5%) | ||
Abdominal obesity status | 0.0343 | <0.0001 | ||||||||
No abdominal obesity | 2837 (65.9%) | 607 (66.4%) | 964 (68.7%) | 500 (71.5%) | 3746 (72.5%) | 1044 (76.0%) | 1457 (78.4%) | 602 (83.5%) | ||
Abdominal obesity | 1533 (34.1%) | 315 (33.6%) | 476 (31.3%) | 202 (28.5%) | 1662 (27.5%) | 379 (24.0%) | 469 (21.6%) | 141 (16.5%) | ||
hs-CRP | 0.027 | 0.8064 | ||||||||
<3 mg/L | 3911 (90.4%) | 850 (92.4%) | 1317 (92.2%) | 653 (93.5%) | 4988 (92.4%) | 1320 (92.5%) | 1783 (92.9%) | 696 (93.4%) | ||
≥3 mg/L | 459 (9.6%) | 72 (7.6%) | 123 (7.8%) | 49 (6.5%) | 420 (7.6%) | 103 (7.5%) | 143 (7.1%) | 47 (6.6%) |
Model 1 | |||||
---|---|---|---|---|---|
Dietary Fiber (g/day) | |||||
Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | p-Interaction | |
Men (n = 7434) | |||||
Sedentary time (hours/day) | 0.32 | ||||
0–2 | 2.12 (0.91–4.98) | 1.07 (0.42–2.68) | 1.37 (0.54–3.46) | 1.11 (0.45–2.73) | |
3–6 | 0.90 (0.52–1.56) | 0.65 (0.39–1.08) | 0.81 (0.49–1.33) | 1.09 (0.68–1.76) | |
7–10 | 0.98 (0.59–1.63) | 0.86 (0.54–1.37) | 0.75 (0.46–1.21) | 0.84 (0.53–1.33) | |
11–22 | Ref. | 0.71 (0.42–1.20) | 0.86 (0.50–1.47) | 0.96 (0.58–1.61) | |
Women (n = 9500) | |||||
Sedentary time (hours/day) | 0.41 | ||||
0–3 | 1.20 (0.65–2.20) | 0.24 (0.11–0.54) | 0.82 (0.48–1.42) | 0.77 (0.45–1.32) | |
4–6 | 0.66 (0.41–1.09) | 0.58 (0.35–0.97) | 0.54 (0.34–0.87) | 0.49 (0.30–0.79) | |
7–10 | 0.76 (0.50–1.17) | 0.80 (0.52–1.22) | 0.66 (0.43–1.03) | 0.67 (0.44–1.02) | |
11–20 | Ref. | 0.61 (0.37–1.01) | 0.73 (0.44–1.20) | 0.57 (0.33–0.99) | |
Model2 | |||||
Dietary fiber (g/day) | |||||
Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | p-Interaction | |
Men (n = 7434) | |||||
Sedentary time (hours/day) | 0.51 | ||||
0–2 | 2.91 (0.97–8.67) | 0.79 (0.29–2.20) | 0.88 (0.34–2.33) | 1.13 (0.42–3.03) | |
3–6 | 0.99 (0.56–1.74) | 0.57 (0.33–0.99) | 0.79 (0.46–1.38) | 1.04 (0.60–1.80) | |
7–10 | 0.97 (0.57–1.66) | 0.77 (0.47–1.27) | 0.69 (0.41–1.17) | 0.91 (0.54–1.55) | |
11–22 | Ref. | 0.71 (0.41–1.25) | 0.85 (0.48–1.50) | 1.06 (0.58–1.95) | |
Women (n = 9500) | |||||
Sedentary time (hours/day) | 0.09 | ||||
0–3 | 0.81 (0.40–1.65) | 0.24 (0.10–0.57) | 0.67 (0.36–1.24) | 0.51 (0.27–0.97) | |
4–6 | 0.55 (0.32–0.95) | 0.52 (0.29–0.91) | 0.44 (0.26–0.75) | 0.40 (0.22–0.73) | |
7–10 | 0.69 (0.41–1.15) | 0.78 (0.49–1.26) | 0.62 (0.38–1.04) | 0.53 (0.31–0.90) | |
11–20 | Ref. | 0.62 (0.36–1.08) | 0.58 (0.32–1.05) | 0.32 (0.16–0.63) |
Model 1 | Model 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Dietary Fiber (g/day) | Dietary Fiber (g/day) | |||||||||
Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | p-Interaction | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | p-Interaction | |
Men (n = 7434) | ||||||||||
Average hand grip strength (kg) | 0.38 | 0.48 | ||||||||
Low (5.27–32.83) | Ref. | 0.79 (0.51–1.22) | 0.62 (0.39–0.99) | 0.88 (0.55–1.42) | Ref. | 0.81 (0.50–1.30) | 0.64 (0.38–1.08) | 0.96 (0.56–1.65) | ||
Middle (32.86–40) | 0.66 (0.39–1.13) | 0.46 (0.28–0.75) | 0.56 (0.35–0.89) | 0.59 (0.37–0.92) | 0.78 (0.44–1.37) | 0.49 (0.29–0.84) | 0.65 (0.39–1.08) | 0.67 (0.40–1.13) | ||
High (40.03–69.70) | 0.61 (0.37–0.99) | 0.34 (0.21–0.55) | 0.44 (0.28–0.70) | 0.61 (0.40–0.94) | 0.75 (0.44–1.28) | 0.41 (0.24–0.70) | 0.53 (0.31–0.89) | 0.77 (0.46–1.30) | ||
Women (n = 9500) | ||||||||||
Average hand grip strength (kg) | 0.92 | 0.88 | ||||||||
Low (5.27–19.43) | Ref. | 0.67 (0.45–1.01) | 0.75 (0.51–1.10) | 0.64 (0.43–0.96) | Ref. | 0.70 (0.44–1.12) | 0.73 (0.47–1.14) | 0.52 (0.31–0.86) | ||
Middle (19.46–23.96) | 0.71 (0.45–1.11) | 0.39 (0.25–0.60) | 0.49 (0.33–0.74) | 0.53 (0.36–0.79) | 0.76 (0.45–1.29) | 0.44 (0.27–0.71) | 0.50 (0.31–0.82) | 0.55 (0.34–0.90) | ||
High (23.97–44.70) | 0.56 (0.36–0.87) | 0.69 (0.46–1.04) | 0.55 (0.37–0.82) | 0.43 (0.28–0.64) | 0.64 (0.39–1.04) | 0.81 (0.51–1.28) | 0.61 (0.38–0.97) | 0.40 (0.24–0.68) |
Model 1 | Model 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Dietary Fiber (g/day) | Dietary Fiber (g/day) | |||||||||
Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | p-Interaction | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | p-Interaction | |
Men (n = 7434) | ||||||||||
Resistance training (times/week) | 0.91 | 0.48 | ||||||||
None | Ref. | 0.80 (0.57–1.06) | 0.74 (0.54–1.01) | 0.98 (0.73–1.31) | Ref. | 0.66 (0.47–0.92) | 0.68 (0.48–0.96) | 1.00 (0.68–1.47) | ||
1 to <3 | 0.42 (0.16–1.11) | 0.30 (0.15–0.61) | 0.40 (0.19–0.84) | 0.75 (0.42–1.34) | 0.41 (0.16–1.03) | 0.31 (0.15–0.65) | 0.35 (0.16–0.74) | 0.78 (0.42–1.46) | ||
≥3 | 0.70 (0.39–1.26) | 0.53 (0.32–0.89) | 0.78 (0.50–1.22) | 0.56 (0.37–0.85) | 0.77 (0.42–1.42) | 0.53 (0.30–0.92) | 0.73 (0.43–1.24) | 0.53 (0.32–0.89) | ||
Women (n = 9500) | ||||||||||
Resistance training (times/week) | 0.32 | 0.51 | ||||||||
None | Ref. | 0.77 (0.58–1.04) | 0.77 (0.59–1.02) | 0.80 (0.62–1.05) | Ref. | 0.86 (0.63–1.19) | 0.77 (0.56–1.07) | 0.67 (0.46–0.98) | ||
1 to <3 | 1.55 (0.79–3.04) | 0.62 (0.27–1.46) | 0.62 (0.32–1.20) | 0.47 (0.19–1.16) | 1.88 (0.93–3.80) | 0.84 (0.35–2.02) | 0.61 (0.29–1.27) | 0.51 (0.19–1.32) | ||
≥3 | 0.55 (0.28–1.11) | 0.70 (0.39–1.28) | 0.94 (0.53–1.68) | 0.40 (0.21–0.77) | 0.64 (0.30–1.38) | 0.73 (0.39–1.39) | 1.01 (0.55–1.88) | 0.40 (0.19–0.84) |
Model 1 | Model 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Dietary Fiber (g/day) | Dietary Fiber (g/day) | |||||||||
Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | p-Interaction | Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | p-Interaction | |
Men (n = 7434) | ||||||||||
Physical activity level a | 0.63 | 0.66 | ||||||||
Inactive | Ref. | 0.80 (0.58–1.12) | 0.80 (0.57–1.12) | 1.03 (0.75–1.41) | Ref. | 0.69 (0.48–0.99) | 0.69 (0.47–1.00) | 0.99 (0.66–1.49) | ||
Somewhat active | 0.52 (0.26–1.07) | 0.78 (0.44–1.40) | 0.64 (0.34–1.20) | 0.78 (0.44–1.38) | 0.54 (0.26–1.14) | 0.63 (0.35–1.14) | 0.69 (0.33–1.41) | 0.69 (0.38–1.25) | ||
Active | 1.01 (0.60–1.69) | 0.50 (0.29–0.83) | 0.71 (0.42–1.18) | 0.75 (0.49–1.17) | 1.00 (0.55–1.80) | 0.46 (0.27–0.79) | 0.62 (0.36–1.08) | 0.84 (0.49–1.45) | ||
Very active | 0.86 (0.41–1.79) | 0.41 (0.16–1.04) | 0.67 (0.36–1.24) | 0.50 (0.27–0.95) | 0.93 (0.43–2.00) | 0.39 (0.15–1.06) | 0.69 (0.36–1.30) | 0.58 (0.28–1.18) | ||
Women (n = 9500) | ||||||||||
Physical activity level | 0.18 | 0.15 | ||||||||
Inactive | Ref. | 0.90 (0.65–1.25) | 0.73 (0.53–1.01) | 0.66 (0.47–0.91) | Ref. | 0.98 (0.69–1.41) | 0.68 (0.46–1.00) | 0.49 (0.32–0.75) | ||
Somewhat active | 0.92 (0.53–1.60) | 0.52 (0.29–0.91) | 0.79 (0.46–1.34) | 0.96 (0.59–1.58) | 0.89 (0.46–1.63) | 0.68 (0.38–1.23) | 0.81 (0.45–1.43) | 0.80 (0.44–1.46) | ||
Active | 1.01 (0.63–1.62) | 0.55 (0.33–0.93) | 0.81 (0.54–1.21) | 0.70 (0.46–1.07) | 1.02 (0.58–1.78) | 0.55 (0.31–0.96) | 0.83 (0.50–1.37) | 0.73 (0.43–1.24) | ||
Very active | 0.87 (0.44–1.72) | 0.55 (0.23–1.30) | 0.83 (0.44–1.55) | 0.58 (0.30–1.12) | 1.04 (0.51–2.12) | 0.54 (0.22–1.33) | 0.86 (0.45–1.68) | 0.51 (0.23–1.13) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, M.-Z.; Lee, S.; Shin, D. Association of Dietary Fiber and Measures of Physical Fitness with High-Sensitivity C-Reactive Protein. Nutrients 2024, 16, 888. https://doi.org/10.3390/nu16060888
Su M-Z, Lee S, Shin D. Association of Dietary Fiber and Measures of Physical Fitness with High-Sensitivity C-Reactive Protein. Nutrients. 2024; 16(6):888. https://doi.org/10.3390/nu16060888
Chicago/Turabian StyleSu, Ming-Zhen, Suyeon Lee, and Dayeon Shin. 2024. "Association of Dietary Fiber and Measures of Physical Fitness with High-Sensitivity C-Reactive Protein" Nutrients 16, no. 6: 888. https://doi.org/10.3390/nu16060888
APA StyleSu, M. -Z., Lee, S., & Shin, D. (2024). Association of Dietary Fiber and Measures of Physical Fitness with High-Sensitivity C-Reactive Protein. Nutrients, 16(6), 888. https://doi.org/10.3390/nu16060888