Relation between Polygenic Risk Score, Vitamin D Status and BMI-for-Age z Score in Chinese Preschool Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. BMI-for-Age z Score
2.3. Vitamin D Status
2.4. Genotyping and Single-Nucleotide Polymorphism (SNP) Selection
2.5. Polygenic Risk Score
2.6. Covariates
2.7. Statistical Analysis
3. Results
3.1. Demographic Characteristics of the Participants According to Genetic Risk
3.2. Correlations between Polygenic Risk Score, 25(OH)D Levels, and zBMI
3.3. Differences in zBMI at Different Genetic Risk Groups and Different Vitamin D Statuses
3.4. Comparisons of zBMI across Different Subgroups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Facts and Figures on Childhood Obesity. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 20 December 2023).
- Pan, X.F.; Wang, L.; Pan, A. Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 373–392. [Google Scholar] [CrossRef]
- Verduci, E.; Di Profio, E.; Fiore, G.; Zuccotti, G. Integrated Approaches to Combatting Childhood Obesity. Ann. Nutr. Metab. 2022, 78 (Suppl. S2), 8–19. [Google Scholar] [CrossRef]
- Liu, D.; Hao, Y.X.; Zhao, T.Z.; Song, P.K.; Zhai, Y.; Pang, S.J.; Zhao, Y.F.; Zhang, M.; Wang, Z.Q.; Mi, S.Q.; et al. Childhood BMI and Adult Obesity in a Chinese Sample: A 13-Year Follow-up Study. Biomed. Environ. Sci. 2019, 32, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.J.F.; Yeo, G.S.H. The genetics of obesity: From discovery to biology. Nat. Rev. Genet. 2022, 23, 120–133. [Google Scholar] [CrossRef] [PubMed]
- Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.; Elliott, K.S.; Lango, H.; Rayner, N.W.; et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007, 316, 889–894. [Google Scholar] [CrossRef]
- Scuteri, A.; Sanna, S.; Chen, W.M.; Uda, M.; Albai, G.; Strait, J.; Najjar, S.; Nagaraja, R.; Orrú, M.; Usala, G.; et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007, 3, e115. [Google Scholar] [CrossRef]
- Sun, C.; Kovacs, P.; Guiu-Jurado, E. Genetics of Obesity in East Asians. Front. Genet. 2020, 11, 575049. [Google Scholar] [CrossRef]
- Akiyama, M.; Okada, Y.; Kanai, M.; Takahashi, A.; Momozawa, Y.; Ikeda, M.; Iwata, N.; Ikegawa, S.; Hirata, M.; Matsuda, K.; et al. Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat. Genet. 2017, 49, 1458–1467. [Google Scholar] [CrossRef] [PubMed]
- Bradfield, J.P.; Vogelezang, S.; Felix, J.F.; Chesi, A.; Helgeland, Ø.; Horikoshi, M.; Karhunen, V.; Lowry, E.; Cousminer, D.L.; Ahluwalia, T.S.; et al. A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity. Hum. Mol. Genet. 2019, 28, 3327–3338. [Google Scholar] [CrossRef]
- Felix, J.F.; Bradfield, J.P.; Monnereau, C.; van der Valk, R.J.; Stergiakouli, E.; Chesi, A.; Gaillard, R.; Feenstra, B.; Thiering, E.; Kreiner-Møller, E.; et al. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Hum. Mol. Genet. 2016, 25, 389–403. [Google Scholar] [CrossRef]
- Vogelezang, S.; Bradfield, J.P.; Ahluwalia, T.S.; Curtin, J.A.; Lakka, T.A.; Grarup, N.; Scholz, M.; van der Most, P.J.; Monnereau, C.; Stergiakouli, E.; et al. Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits. PLoS Genet. 2020, 16, e1008718. [Google Scholar] [CrossRef]
- Yang, J.; Benyamin, B.; McEvoy, B.P.; Gordon, S.; Henders, A.K.; Nyholt, D.R.; Madden, P.A.; Heath, A.C.; Martin, N.G.; Montgomery, G.W.; et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 2010, 42, 565–569. [Google Scholar] [CrossRef]
- Choi, S.W.; Mak, T.S.; O’Reilly, P.F. Tutorial: A guide to performing polygenic risk score analyses. Nat. Protoc. 2020, 15, 2759–2772. [Google Scholar] [CrossRef]
- Hang, D.; Shen, H.B. Application of polygenic risk scores in risk prediction and precision prevention of complex diseases: Opportunities and challenges. Zhonghua Liu Xing Bing Xue Za Zhi 2019, 40, 1027–1030. [Google Scholar] [CrossRef]
- Yoon, N.; Cho, Y.S. Development of a Polygenic Risk Score for BMI to Assess the Genetic Susceptibility to Obesity and Related Diseases in the Korean Population. Int. J. Mol. Sci. 2023, 24, 11560. [Google Scholar] [CrossRef]
- Tyrrell, J.; Wood, A.R.; Ames, R.M.; Yaghootkar, H.; Beaumont, R.N.; Jones, S.E.; Tuke, M.A.; Ruth, K.S.; Freathy, R.M.; Davey Smith, G.; et al. Gene-obesogenic environment interactions in the UK Biobank study. Int. J. Epidemiol. 2017, 46, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Yang, H.J.; Kim, M.J.; Hur, H.J.; Kim, S.H.; Kim, M.S. Interactions between Polygenic Risk Scores, Dietary Pattern, and Menarche Age with the Obesity Risk in a Large Hospital-Based Cohort. Nutrients 2021, 13, 3772. [Google Scholar] [CrossRef]
- Dashti, H.S.; Miranda, N.; Cade, B.E.; Huang, T.; Redline, S.; Karlson, E.W.; Saxena, R. Interaction of obesity polygenic score with lifestyle risk factors in an electronic health record biobank. BMC Med. 2022, 20, 5. [Google Scholar] [CrossRef] [PubMed]
- van Schoor, N.; Lips, P. Global Overview of Vitamin D Status. Endocrinol. Metab. Clin. N. Am. 2017, 46, 845–870. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Santos, M.; Costa, P.R.; Assis, A.M.; Santos, C.A.; Santos, D.B. Obesity and vitamin D deficiency: A systematic review and meta-analysis. Obes. Rev. 2015, 16, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Saneei, P.; Salehi-Abargouei, A.; Esmaillzadeh, A. Serum 25-hydroxy vitamin D levels in relation to body mass index: A systematic review and meta-analysis. Obes. Rev. 2013, 14, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Vimaleswaran, K.S.; Berry, D.J.; Lu, C.; Tikkanen, E.; Pilz, S.; Hiraki, L.T.; Cooper, J.D.; Dastani, Z.; Li, R.; Houston, D.K.; et al. Causal relationship between obesity and vitamin D status: Bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 2013, 10, e1001383. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, S.; Jeppesen, P.B. Body Mass Index, Vitamin D, and Type 2 Diabetes: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 1182. [Google Scholar] [CrossRef]
- Huang, X.; Yang, Y.; Jiang, Y.; Zhou, Z.; Zhang, J. Association between vitamin D deficiency and lipid profiles in overweight and obese adults: A systematic review and meta-analysis. BMC Public Health 2023, 23, 1653. [Google Scholar] [CrossRef] [PubMed]
- Kelishadi, R.; Farajzadegan, Z.; Bahreynian, M. Association between vitamin D status and lipid profile in children and adolescents: A systematic review and meta-analysis. Int. J. Food Sci. Nutr. 2014, 65, 404–410. [Google Scholar] [CrossRef]
- Ruiz-Ojeda, F.J.; Anguita-Ruiz, A.; Leis, R.; Aguilera, C.M. Genetic Factors and Molecular Mechanisms of Vitamin D and Obesity Relationship. Ann. Nutr. Metab. 2018, 73, 89–99. [Google Scholar] [CrossRef]
- Akter, R.; Afrose, A.; Sharmin, S.; Rezwan, R.; Rahman, M.R.; Neelotpol, S. A comprehensive look into the association of vitamin D levels and vitamin D receptor gene polymorphism with obesity in children. Biomed. Pharmacother. 2022, 153, 113285. [Google Scholar] [CrossRef]
- A health professional’s guide for using the new WHO growth charts. Paediatr. Child Health 2010, 15, 84–98. [CrossRef]
- Feng, J.; Wang, Y.; Liu, T.; Huo, J.; Zhuo, Q.; Gong, Z. Effects of the Duration of Ying Yang Bao Consumption on Hemoglobin Concentration in Infants and Young Children in Less Developed Areas of China. Nutrients 2022, 14, 4539. [Google Scholar] [CrossRef]
- Cashman, K.D.; van den Heuvel, E.G.; Schoemaker, R.J.; Prévéraud, D.P.; Macdonald, H.M.; Arcot, J. 25-Hydroxyvitamin D as a Biomarker of Vitamin D Status and Its Modeling to Inform Strategies for Prevention of Vitamin D Deficiency within the Population. Adv. Nutr. 2017, 8, 947–957. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- He, C.; Holme, J.; Anthony, J. SNP genotyping: The KASP assay. Methods Mol. Biol. 2014, 1145, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Liu, L.; Gu, H.; Hou, F.; Xie, X.; Li, X.; Meng, H.; Zhang, J.; Xu, S.; Song, R. Pathways linking socioeconomic status to small-for-gestational-age (SGA) infants among primiparae: A birth cohort study in China. BMJ Open 2018, 8, e020694. [Google Scholar] [CrossRef] [PubMed]
- Elliott, A.C.; Hynan, L.S. A SAS® macro implementation of a multiple comparison post hoc test for a Kruskal-Wallis analysis. Comput. Methods Programs Biomed. 2011, 102, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Mason, K.E.; Palla, L.; Pearce, N.; Phelan, J.; Cummins, S. Genetic risk of obesity as a modifier of associations between neighbourhood environment and body mass index: An observational study of 335 046 UK Biobank participants. BMJ Nutr. Prev. Health 2020, 3, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Gong, C.; Wan, Y.; Xu, Y.; Tao, F.; Sun, Y. Polygenic risk, adherence to a healthy lifestyle, and childhood obesity. Pediatr. Obes. 2019, 14, e12489. [Google Scholar] [CrossRef]
- Duncan, L.; Shen, H.; Gelaye, B.; Meijsen, J.; Ressler, K.; Feldman, M.; Peterson, R.; Domingue, B. Analysis of polygenic risk score usage and performance in diverse human populations. Nat. Commun. 2019, 10, 3328. [Google Scholar] [CrossRef]
- Karampela, I.; Sakelliou, A.; Vallianou, N.; Christodoulatos, G.S.; Magkos, F.; Dalamaga, M. Vitamin D and Obesity: Current Evidence and Controversies. Curr. Obes. Rep. 2021, 10, 162–180. [Google Scholar] [CrossRef]
- Mallard, S.R.; Howe, A.S.; Houghton, L.A. Vitamin D status and weight loss: A systematic review and meta-analysis of randomized and nonrandomized controlled weight-loss trials. Am. J. Clin. Nutr. 2016, 104, 1151–1159. [Google Scholar] [CrossRef]
- Liu, C.; Wu, D.; Zhang, J.F.; Xu, D.; Xu, W.F.; Chen, Y.; Liu, B.Y.; Li, P.; Li, L. Changes in Bone Metabolism in Morbidly Obese Patients After Bariatric Surgery: A Meta-Analysis. Obes. Surg. 2016, 26, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Kalani, A.; Bami, H.; Tiboni, M.; Jaeschke, R.; Adachi, J.D.; Lau, A.N. The effect of bariatric surgery on serum 25-OH vitamin D levels: A systematic review and meta-analysis. Obes. Sci. Pract. 2017, 3, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Correa-Rodríguez, M.; Carrillo-Ávila, J.A.; Schmidt-RioValle, J.; González-Jiménez, E.; Vargas, S.; Martín, J.; Rueda-Medina, B. Genetic association analysis of vitamin D receptor gene polymorphisms and obesity-related phenotypes. Gene 2018, 640, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Su, K.; Ding, Z.; Zhang, Z.; Wang, C. Association of Vitamin D Receptor Gene Polymorphisms with Metabolic Syndrome in Chinese Children. Int. J. Gen. Med. 2021, 14, 57–66. [Google Scholar] [CrossRef]
Variables * | Total (n = 1046) | Genetic Risk Groups | ||
---|---|---|---|---|
Low-Risk PRS (n = 104) | Intermediate-Risk PRS (n = 838) | High-Risk PRS (n = 104) | ||
Sex, n (%) | ||||
Male | 528 (50.5) | 56 (53.8) | 423 (50.5) | 49 (47.1) |
Female | 518 (49.5) | 48 (46.2) | 415 (49.5) | 55 (52.9) |
Age (months) | 61.6 (57.3, 66.2) | 61.9 (57.0, 67.2) | 61.6 (57.4, 66.2) | 60.7 (56.3, 66.3) |
Birth length (cm) † | 50.1 ± 1.4 | 50.4 ± 1.4 | 50.1 ± 1.4 | 50.0 ± 1.5 |
Birth weight (g) | 3245 (3000, 3500) | 3245 (3000, 3600) | 3245 (3000, 3500) | 3222 (3000, 3500) |
Premature birth, n (%) | ||||
Yes | 39 (3.7) | 6 (5.8) | 28 (3.3) | 5 (4.8) |
No | 1007 (96.3) | 98 (94.2) | 810 (96.7) | 99 (95.2) |
Delivery, n (%) | ||||
Unknown | 11 (1.1) | 1 (1.0) | 9 (1.1) | 1 (1.0) |
Vaginal | 632 (60.4) | 56 (53.8) | 513 (61.2) | 63 (60.6) |
Caesarean | 403 (38.5) | 47 (45.2) | 316 (37.7) | 40 (38.4) |
Only child, n (%) | ||||
Unknown | 33 (3.1) | 4 (3.9) | 28 (3.3) | 1 (1.0) |
Yes | 139 (13.3) | 10 (9.6) | 108 (12.9) | 21 (20.2) |
No | 874 (83.6) | 90 (86.5) | 702 (83.8) | 82 (78.8) |
Breast feeding, n (%) | ||||
Yes | 937 (89.6) | 93 (89.4) | 753 (89.9) | 91 (87.5) |
No | 109 (10.4) | 11 (10.6) | 85 (10.1) | 13 (12.5) |
Vitamin D supplement, n (%) | ||||
Yes | 36 (3.4) | 5 (4.8) | 26 (3.1) | 5 (4.8) |
No | 1010 (96.6) | 99 (95.2) | 812 (96.9) | 99 (95.2) |
Ying Yang Bao, n (%) | ||||
Yes | 521 (49.8) | 47 (45.2) | 423 (50.5) | 51 (49.0) |
No | 525 (50.2) | 57 (54.8) | 415 (49.5) | 53 (51.0) |
Parental care, n (%) | ||||
Yes | 751 (71.8) | 77 (74.0) | 602 (71.8) | 72 (69.2) |
No | 295 (28.2) | 27 (26.0) | 236 (28.2) | 32 (30.8) |
Education of caregiver, n (%) | ||||
Primary school or below | 306 (29.3) | 30 (28.9) | 245 (29.2) | 31 (29.8) |
Junior middle school | 519 (49.6) | 54 (51.9) | 415 (49.5) | 50 (48.1) |
High school or above | 221 (21.1) | 20 (19.2) | 178 (21.3) | 23 (22.1) |
SES | 47.8 (44.8, 50.8) | 47.8 (44.8, 50.8) | 47.8 (44.8, 50.9) | 47.8 (44.8, 51.4) |
PRS ** | −19.25 (−55.79, 14.54) | −110.20 (−123.95, −96.25) | −19.25 (−48.32, 7.46) | 69.34 (58.73, 83.68) |
25(OH)D levels (ng/mL) | 33.63 (26.79, 41.46) | 35.58 (26.87, 44.93) | 33.73 (26.92, 41.24) | 31.5 (25.16, 40.33) |
zBMI ** | −0.45 (−1.04, 0.15) | −0.53 (−1.15, 0.10) | −0.47 (−1.04, 0.11) | −0.11 (−0.87, 0.73) |
Correlation | Model I a | Model II b | Model III c | |||
---|---|---|---|---|---|---|
rs | p-Value | rs | p-Value | rs | p-Value | |
PRS and 25(OH)D levels | −0.0307 | 0.3210 | −0.0340 | 0.2731 | −0.0367 | 0.2388 |
PRS and zBMI | 0.0912 | 0.0031 | 0.0961 | 0.0019 | 0.0953 | 0.0022 |
25(OH)D levels and zBMI | −0.1084 | 0.0004 | −0.1051 | 0.0007 | −0.1082 | 0.0005 |
Group | N | zBMI | p-Value |
---|---|---|---|
Polygenic risk score | 0.0029 | ||
Low-risk PRS a | 104 | −0.53 (−1.15, 0.10) | |
Intermediate-risk PRS b | 838 | −0.47 (−1.04, 0.11) | |
High-risk PRS | 104 | −0.11 (−0.87, 0.73) | |
Vitamin D status | 0.0017 | ||
Vitamin D insufficiency | 393 | −0.36 (−0.95, 0.32) | |
Vitamin D sufficiency | 653 | −0.52 (−1.09, 0.04) |
Subgroup | N | zBMI | p-Value |
---|---|---|---|
Vitamin D status by PRS | |||
Low-risk PRS | 0.0308 | ||
Vitamin D insufficiency | 36 | −0.34 (−0.9, 0.45) | |
Vitamin D sufficiency | 68 | −0.75 (−1.23, −0.08) | |
Intermediate-risk PRS | 0.0121 | ||
Vitamin D insufficiency | 315 | −0.38 (−0.99, 0.29) | |
Vitamin D sufficiency | 523 | −0.54 (−1.09, 0.02) | |
High-risk PRS | 0.6216 | ||
Vitamin D insufficiency | 42 | 0.04 (−0.81, 0.76) | |
Vitamin D sufficiency | 62 | −0.2 (−0.88, 0.48) | |
PRS by vitamin D status | |||
Vitamin D insufficiency | 0.1874 | ||
Low-risk PRS | 36 | −0.34 (−0.9, 0.45) | |
Intermediate-risk PRS | 315 | −0.38 (−0.99, 0.29) | |
High-risk PRS | 42 | −0.04 (−0.81, 0.76) | |
Vitamin D sufficiency | 0.0077 | ||
Low-risk PRS a | 68 | −0.75 (−1.23, −0.08) | |
Intermediate-risk PRS b | 523 | −0.54 (−1.09, 0.02) | |
High-risk PRS | 62 | −0.2 (−0.88, 0.48) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, L.; Liu, T.; Han, C.; Shi, L.; Chen, C.; Zhao, J.; Feng, J.; Wang, M.; Zhuo, Q.; Huo, J.; et al. Relation between Polygenic Risk Score, Vitamin D Status and BMI-for-Age z Score in Chinese Preschool Children. Nutrients 2024, 16, 792. https://doi.org/10.3390/nu16060792
Peng L, Liu T, Han C, Shi L, Chen C, Zhao J, Feng J, Wang M, Zhuo Q, Huo J, et al. Relation between Polygenic Risk Score, Vitamin D Status and BMI-for-Age z Score in Chinese Preschool Children. Nutrients. 2024; 16(6):792. https://doi.org/10.3390/nu16060792
Chicago/Turabian StylePeng, Luolan, Tingting Liu, Chao Han, Lili Shi, Chen Chen, Jinpeng Zhao, Jing Feng, Mengyao Wang, Qin Zhuo, Junsheng Huo, and et al. 2024. "Relation between Polygenic Risk Score, Vitamin D Status and BMI-for-Age z Score in Chinese Preschool Children" Nutrients 16, no. 6: 792. https://doi.org/10.3390/nu16060792
APA StylePeng, L., Liu, T., Han, C., Shi, L., Chen, C., Zhao, J., Feng, J., Wang, M., Zhuo, Q., Huo, J., Li, Y., & Gong, Z. (2024). Relation between Polygenic Risk Score, Vitamin D Status and BMI-for-Age z Score in Chinese Preschool Children. Nutrients, 16(6), 792. https://doi.org/10.3390/nu16060792