Trajectories of Body Mass Index and Waist Circumference in Relation to the Risk of Cardiac Arrhythmia: A Prospective Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Measurements of BMI and WC
2.3. Diagnosis of Cardiac Arrhythmia (CA)
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021, 143, e254–e743. [Google Scholar] [CrossRef]
- Chugh, S.S.; Havmoeller, R.; Narayanan, K.; Singh, D.; Rienstra, M.; Benjamin, E.J.; Gillum, R.F.; Kim, Y.H.; McAnulty, J.H., Jr.; Zheng, Z.J.; et al. Worldwide epidemiology of atrial fibrillation: A Global Burden of Disease 2010 Study. Circulation 2014, 129, 837–847. [Google Scholar] [CrossRef]
- Krijthe, B.P.; Kunst, A.; Benjamin, E.J.; Lip, G.Y.; Franco, O.H.; Hofman, A.; Witteman, J.C.; Stricker, B.H.; Heeringa, J. Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur. Heart J. 2013, 34, 2746–2751. [Google Scholar] [CrossRef]
- Lip, G.Y.H.; Gue, Y.; Zhang, J.; Chao, T.F.; Calkins, H.; Potpara, T. Stroke prevention in atrial fibrillation. Trends Cardiovasc. Med. 2022, 32, 501–510. [Google Scholar] [CrossRef]
- Ruddox, V.; Sandven, I.; Munkhaugen, J.; Skattebu, J.; Edvardsen, T.; Otterstad, J.E. Atrial fibrillation and the risk for myocardial infarction, all-cause mortality and heart failure: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2017, 24, 1555–1566. [Google Scholar] [CrossRef]
- Guasch, E.; Mont, L. Diagnosis, pathophysiology, and management of exercise-induced arrhythmias. Nat. Rev. Cardiol. 2017, 14, 88–101. [Google Scholar] [CrossRef]
- Alpert, M.A.; Omran, J.; Bostick, B.P. Effects of Obesity on Cardiovascular Hemodynamics, Cardiac Morphology, and Ventricular Function. Curr. Obes. Rep. 2016, 5, 424–434. [Google Scholar] [CrossRef]
- Alpert, M.A.; Omran, J.; Mehra, A.; Ardhanari, S. Impact of obesity and weight loss on cardiac performance and morphology in adults. Prog. Cardiovasc. Dis. 2014, 56, 391–400. [Google Scholar] [CrossRef]
- Lavie, C.J.; Pandey, A.; Lau, D.H.; Alpert, M.A.; Sanders, P. Obesity and Atrial Fibrillation Prevalence, Pathogenesis, and Prognosis: Effects of Weight Loss and Exercise. J. Am. Coll. Cardiol. 2017, 70, 2022–2035. [Google Scholar] [CrossRef]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Li, Y.; Detrano, R.C.; Chen, K.; Li, X.; Zhao, L.; Benjamin, E.J.; Wu, Y. Association of obesity and atrial fibrillation among middle-aged and elderly Chinese. Int. J. Obes. 2009, 33, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
- Ahn, H.J.; Lee, S.R.; Choi, E.K.; Han, K.D.; Rhee, T.M.; Kwon, S.; Kim, S.; Oh, S.; Lip, G.Y.H. Associations between obesity parameters and the risk of incident atrial fibrillation and ischaemic stroke in the different age groups. Front. Cardiovasc. Med. 2022, 9, 906844. [Google Scholar] [CrossRef] [PubMed]
- Wanahita, N.; Messerli, F.H.; Bangalore, S.; Gami, A.S.; Somers, V.K.; Steinberg, J.S. Atrial fibrillation and obesity--results of a meta-analysis. Am. Heart J. 2008, 155, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Rosengren, A.; Hauptman, P.J.; Lappas, G.; Olsson, L.; Wilhelmsen, L.; Swedberg, K. Big men and atrial fibrillation: Effects of body size and weight gain on risk of atrial fibrillation in men. Eur. Heart J. 2009, 30, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Poorthuis, M.H.F.; Sherliker, P.; de Borst, G.J.; Carter, J.L.; Lam, K.B.H.; Jones, N.R.; Halliday, A.; Lewington, S.; Bulbulia, R. Joint Associations Between Body Mass Index and Waist Circumference With Atrial Fibrillation in Men and Women. J. Am. Heart Assoc. 2021, 10, e019025. [Google Scholar] [CrossRef]
- Tedrow, U.B.; Conen, D.; Ridker, P.M.; Cook, N.R.; Koplan, B.A.; Manson, J.E.; Buring, J.E.; Albert, C.M. The long- and short-term impact of elevated body mass index on the risk of new atrial fibrillation the WHS (women’s health study). J. Am. Coll. Cardiol. 2010, 55, 2319–2327. [Google Scholar] [CrossRef]
- Korantzopoulos, P.; Kolettis, T.M. Obesity and the risk of new-onset atrial fibrillation. JAMA 2005, 293, 1974, author reply 1975. [Google Scholar] [CrossRef] [PubMed]
- Tsang, T.S.; Barnes, M.E.; Miyasaka, Y.; Cha, S.S.; Bailey, K.R.; Verzosa, G.C.; Seward, J.B.; Gersh, B.J. Obesity as a risk factor for the progression of paroxysmal to permanent atrial fibrillation: A longitudinal cohort study of 21 years. Eur. Heart J. 2008, 29, 2227–2233. [Google Scholar] [CrossRef]
- Pouliot, M.C.; Després, J.P.; Lemieux, S.; Moorjani, S.; Bouchard, C.; Tremblay, A.; Nadeau, A.; Lupien, P.J. Waist circumference and abdominal sagittal diameter: Best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am. J. Cardiol. 1994, 73, 460–468. [Google Scholar] [CrossRef]
- Chan, L.C.; Ware, R.S.; Kesting, J.; Marczak, M.; Good, D.; Shaw, J.T. Association between anthropometric measures of obesity and cardiovascular risk markers in a self-selected group of indigenous Australians. Eur. J. Cardiovasc. Prev. Rehabil. 2007, 14, 515–517. [Google Scholar] [CrossRef]
- Wang, Z.; Hoy, W.E. Waist circumference, body mass index, hip circumference and waist-to-hip ratio as predictors of cardiovascular disease in Aboriginal people. Eur. J. Clin. Nutr. 2004, 58, 888–893. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Chen, S.; Vaidya, A.; Wu, Y.; Wu, Z.; Hu, F.B.; Kris-Etherton, P.; Wu, S.; Gao, X. Longitudinal Change in Fasting Blood Glucose and Myocardial Infarction Risk in a Population without Diabetes. Diabetes Care 2017, 40, 1565–1572. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Huang, Z.; Jin, W.; Rimm, E.B.; Lichtenstein, A.H.; Kris-Etherton, P.M.; Wu, S.; Gao, X. Peripheral Inflammatory Biomarkers for Myocardial Infarction Risk: A Prospective Community-Based Study. Clin. Chem. 2017, 63, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lee, Y.; Wu, Y.; Zhang, X.; Jin, C.; Huang, Z.; Wang, Y.; Wang, Z.; Kris-Etherton, P.; Wu, S.; et al. A prospective study of waist circumference trajectories and incident cardiovascular disease in China: The Kailuan Cohort Study. Am. J. Clin. Nutr. 2021, 113, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Nagin, D.S. Group-based trajectory modeling: An overview. Ann. Nutr. Metab. 2014, 65, 205–210. [Google Scholar] [CrossRef]
- Mohammad, K.A.; Fatima-Tuz-Zahura, M.; Bari, W. Fine and Gray competing risk regression model to study the cause-specific under-five child mortality in Bangladesh. BMC Int. Health Hum. Rights 2017, 17, 3. [Google Scholar] [CrossRef]
- Lu, Z.; Tilly, M.J.; Geurts, S.; Aribas, E.; Roeters van Lennep, J.; de Groot, N.M.S.; Ikram, M.A.; van Rosmalen, J.; Kavousi, M. Sex-specific anthropometric and blood pressure trajectories and risk of incident atrial fibrillation: The Rotterdam Study. Eur. J. Prev. Cardiol. 2022, 29, 1744–1755. [Google Scholar] [CrossRef]
- Stevens, J.; Katz, E.G.; Huxley, R.R. Associations between gender, age and waist circumference. Eur. J. Clin. Nutr. 2010, 64, 6–15. [Google Scholar] [CrossRef]
- Blenck, C.L.; Harvey, P.A.; Reckelhoff, J.F.; Leinwand, L.A. The Importance of Biological Sex and Estrogen in Rodent Models of Cardiovascular Health and Disease. Circ. Res. 2016, 118, 1294–1312. [Google Scholar] [CrossRef]
- Iorga, A.; Cunningham, C.M.; Moazeni, S.; Ruffenach, G.; Umar, S.; Eghbali, M. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol. Sex Differ. 2017, 8, 33. [Google Scholar] [CrossRef]
- Dhana, K.; van Rosmalen, J.; Vistisen, D.; Ikram, M.A.; Hofman, A.; Franco, O.H.; Kavousi, M. Trajectories of body mass index before the diagnosis of cardiovascular disease: A latent class trajectory analysis. Eur. J. Epidemiol. 2016, 31, 583–592. [Google Scholar] [CrossRef]
- Yuan, Y.; Chu, C.; Zheng, W.L.; Ma, Q.; Hu, J.W.; Wang, Y.; Yan, Y.; Liao, Y.Y.; Mu, J.J. Body Mass Index Trajectories in Early Life Is Predictive of Cardiometabolic Risk. J. Pediatr. 2020, 219, 31–37.e36. [Google Scholar] [CrossRef]
- Calderón-Larrañaga, A.; Hu, X.; Guo, J.; Ferrucci, L.; Xu, W.; Vetrano, D.L. Body mass trajectories and multimorbidity in old age: 12-year results from a population-based study. Clin. Nutr. 2021, 40, 5764–5770. [Google Scholar] [CrossRef]
- Buscot, M.J.; Thomson, R.J.; Juonala, M.; Sabin, M.A.; Burgner, D.P.; Lehtimäki, T.; Hutri-Kähönen, N.; Viikari, J.S.A.; Raitakari, O.T.; Magnussen, C.G. Distinct child-to-adult body mass index trajectories are associated with different levels of adult cardiometabolic risk. Eur. Heart J. 2018, 39, 2263–2270. [Google Scholar] [CrossRef]
- Blond, K.; Aarestrup, J.; Vistisen, D.; Bjerregaard, L.G.; Jensen, G.B.; Petersen, J.; Nordestgaard, B.G.; Jørgensen, M.E.; Jensen, B.W.; Baker, J.L. Associations between body mass index trajectories in childhood and cardiovascular risk factors in adulthood. Atherosclerosis 2020, 314, 10–17. [Google Scholar] [CrossRef]
- Pietrobelli, A.; Faith, M.S.; Allison, D.B.; Gallagher, D.; Chiumello, G.; Heymsfield, S.B. Body mass index as a measure of adiposity among children and adolescents: A validation study. J. Pediatr. 1998, 132, 204–210. [Google Scholar] [CrossRef]
- Garvey, W.T.; Mechanick, J.I.; Brett, E.M.; Garber, A.J.; Hurley, D.L.; Jastreboff, A.M.; Nadolsky, K.; Pessah-Pollack, R.; Plodkowski, R.; Reviewers of the AACE/ACE Obesity Clinical Practice Guidelines. American association of clinical endocrinologists and american college of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr. Pract. 2016, 22 (Suppl. S3), 1–203. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.; Powell-Wiley, T.M.; Ancheta, I.; Hairston, K.; Kirley, K.; Lear, S.A.; North, K.E.; Palaniappan, L.; Rosal, M.C. Identification of Obesity and Cardiovascular Risk in Ethnically and Racially Diverse Populations: A Scientific Statement From the American Heart Association. Circulation 2015, 132, 457–472. [Google Scholar] [CrossRef]
- Bray, G.A.; Heisel, W.E.; Afshin, A.; Jensen, M.D.; Dietz, W.H.; Long, M.; Kushner, R.F.; Daniels, S.R.; Wadden, T.A.; Tsai, A.G.; et al. The Science of Obesity Management: An Endocrine Society Scientific Statement. Endocr. Rev. 2018, 39, 79–132. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Dos Santos, A.R.; de Oliveira Zanuso, B.; Miola, V.F.B.; Barbalho, S.M.; Santos Bueno, P.C.; Flato, U.A.P.; Detregiachi, C.R.P.; Buchaim, D.V.; Buchaim, R.L.; Tofano, R.J.; et al. Adipokines, Myokines, and Hepatokines: Crosstalk and Metabolic Repercussions. Int. J. Mol. Sci. 2021, 22, 2639. [Google Scholar] [CrossRef] [PubMed]
- Battineni, G.; Sagaro, G.G.; Chintalapudi, N.; Amenta, F.; Tomassoni, D.; Tayebati, S.K. Impact of Obesity-Induced Inflammation on Cardiovascular Diseases (CVD). Int. J. Mol. Sci. 2021, 22, 4798. [Google Scholar] [CrossRef] [PubMed]
BMI Trajectory | WC Trajectory | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total (N = 35,739) | Low-Stable (N = 7400) | Moderate-Stable (N = 13,750) | Moderate-High- Stable (N = 10,950) | High-Stable (N = 3639) | p-Value | Low-Stable (N = 4489) | Moderate-Stable (N = 14,758) | Moderate-High- Stable (N = 13,352) | High-Stable (N = 3140) | p-Value | |
Age, Years | 52.2 (45.0, 59.1) | 50.3 (42.6, 57.7) | 52.6 (45.7, 59.3) | 52.8 (45.5, 59.7) | 52.2 (44.1, 59.5) | <0.001 | 46.7 (39.2, 54.0) | 51.9 (45.0, 58.8) | 53.4 (46.4, 60.1) | 54.7 (46.9, 62.5) | <0.001 |
Sex | <0.001 | <0.001 | |||||||||
Female | 8123 (22.7) | 2204 (29.8) | 2987 (21.7) | 2045 (18.7) | 887 (24.4) | 2309 (51.4) | 3655 (24.8) | 1861 (13.9) | 298 (9.5) | ||
Male | 27,616 (77.3) | 5196 (70.2) | 10,763 (78.3) | 8905 (81.3) | 2752 (75.6) | 2180 (48.6) | 11,103 (75.2) | 11,491 (86.1) | 2842 (90.5) | ||
Marital status | <0.001 | <0.001 | |||||||||
Unmarried | 422 (1.2) | 135 (1.8) | 140 (1.0) | 108 (1.0) | 39 (1.1) | 107 (2.4) | 155 (1.1) | 127 (1.0) | 33 (1.1) | ||
Currently married | 35,317 (98.8) | 7265 (98.2) | 13,610 (99.0) | 10,842 (99.0) | 3600 (98.9) | 4382 (97.6) | 14,603 (98.9) | 13,225 (99.0) | 3107 (98.9) | ||
Educational level | <0.001 | <0.001 | |||||||||
Primary school | 2365 (6.6) | 426 (5.8) | 950 (6.9) | 747 (6.8) | 242 (6.7) | 199 (4.4) | 921 (6.2) | 990 (7.4) | 255 (8.1) | ||
Middle-high school | 30,376 (85.0) | 6178 (83.5) | 11,727 (85.3) | 9378 (85.6) | 3093 (85.0) | 3596 (80.1) | 12,698 (86.0) | 11,389 (85.3) | 2693 (85.8) | ||
College or above | 2998 (8.4) | 796 (10.8) | 1073 (7.8) | 825 (7.5) | 304 (8.4) | 694 (15.5) | 1139 (7.7) | 973 (7.3) | 192 (6.1) | ||
Monthly income | 0.896 | <0.001 | |||||||||
≤CNY 1000 | 18,015 (50.4) | 3701 (50.0) | 6950 (50.5) | 5530 (50.5) | 1834 (50.4) | 2360 (52.6) | 7933 (53.8) | 6398 (47.9) | 1324 (42.2) | ||
>CNY 1000 | 17,724 (49.6) | 3699 (50.0) | 6800 (49.5) | 5420 (49.5) | 1805 (49.6) | 2129 (47.4) | 6825 (46.2) | 6954 (52.1) | 1816 (57.8) | ||
Drinking status | <0.001 | <0.001 | |||||||||
Never | 22,835 (63.9) | 4896 (66.2) | 8745 (63.6) | 6823 (62.3) | 2371 (65.2) | 3400 (75.7) | 9640 (65.3) | 7955 (59.6) | 1840 (58.6) | ||
Quit | 140 (0.4) | 22 (0.3) | 60 (0.4) | 45 (0.4) | 13 (0.4) | 12 (0.3) | 51 (0.3) | 60 (0.4) | 17 (0.5) | ||
Current | 12,764 (35.7) | 2482 (33.5) | 4945 (36.0) | 4082 (37.3) | 1255 (34.5) | 1077 (24.0) | 5067 (34.3) | 5337 (40.0) | 1283 (40.9) | ||
Smoking status | <0.001 | <0.001 | |||||||||
Never | 21,715 (60.8) | 4508 (60.9) | 8320 (60.5) | 6559 (59.9) | 2328 (64.0) | 3307 (73.7) | 9121 (61.8) | 7607 (57.0) | 1680 (53.5) | ||
Quit | 1445 (4.0) | 245 (3.3) | 558 (4.1) | 489 (4.5) | 153 (4.2) | 76 (1.7) | 545 (3.7) | 637 (4.8) | 187 (6.0) | ||
Current | 12,579 (35.2) | 2647 (35.8) | 4872 (35.4) | 3902 (35.6) | 1158 (31.8) | 1106 (24.6) | 5092 (34.5) | 5108 (38.3) | 1273 (40.5) | ||
Physical activity | <0.001 | <0.001 | |||||||||
None | 11,262 (31.5) | 2500 (33.8) | 4292 (31.2) | 3367 (30.7) | 1103 (30.3) | 1567 (34.9) | 4579 (31.0) | 4102 (30.7) | 1014 (32.3) | ||
Occasional | 19,731 (55.2) | 3987 (53.9) | 7658 (55.7) | 6028 (55.1) | 2058 (56.6) | 2427 (54.1) | 8244 (55.9) | 7388 (55.3) | 1672 (53.2) | ||
Always | 4746 (13.3) | 913 (12.3) | 1800 (13.1) | 1555 (14.2) | 478 (13.1) | 495 (11.0) | 1935 (13.1) | 1862 (13.9) | 454 (14.5) | ||
Sedentary time per day | <0.001 | <0.001 | |||||||||
<4 h | 16,761 (46.9) | 3461 (46.8) | 6612 (48.1) | 5036 (46.0) | 1652 (45.4) | 1852 (41.3) | 6903 (46.8) | 6411 (48.0) | 1595 (50.8) | ||
4–8 h | 17,804 (49.8) | 3677 (49.7) | 6741 (49.0) | 5522 (50.4) | 1864 (51.2) | 2444 (54.4) | 7387 (50.1) | 6523 (48.9) | 1450 (46.2) | ||
>8 h | 1174 (3.3) | 262 (3.5) | 397 (2.9) | 392 (3.6) | 123 (3.4) | 193 (4.3) | 468 (3.2) | 418 (3.1) | 95 (3.0) |
BMI Quartile Groups | ||||
Q1 (N = 8956) | Q2 (N = 8792) | Q3 (N = 9023) | Q4 (N = 8968) | |
BMI values at baseline, kg/m2 | 21.4 (17.6, 22.9) | 24.0 (22.9, 24.9) | 26.0 (24.9, 27.1) | 29.0 (27.1, 35.6) |
Cases/Person-years | 233/88,963 | 251/87,064 | 258/89,413 | 278/88,634 |
Model 1 | Ref. | 1.10 (0.92, 1.32) | 1.10 (0.92, 1.32) | 1.20 (1.01, 1.43) * |
Model 2 | Ref. | 1.05 (0.88, 1.25) | 1.04 (0.87, 1.24) | 1.16 (0.98, 1.38) |
Model 3 | Ref. | 1.04 (0.87, 1.25) | 1.04 (0.87, 1.24) | 1.15 (0.97, 1.37) |
WC Quartile Groups | ||||
Q1 (N = 8488) | Q2 (N = 8403) | Q3 (N = 8836) | Q4 (N = 10,012) | |
WC values at baseline, cm | 76.2 (62.0, 81.7) | 84.7 (82.0, 87.2) | 90.4 (88.0, 93.7) | 99.2 (94.0, 114.0) |
Cases/Person-years | 85/84,373 | 409/83,291 | 397/87,614 | 129/98,795 |
Model 1 | Ref. | 1.35 (1.11, 1.64) * | 1.40 (1.16, 1.69) * | 1.63 (1.36, 1.96) * |
Model 2 | Ref. | 1.14 (0.94, 1.39) | 1.12 (0.92, 1.36) | 1.22 (1.01, 1.46) * |
Model 3 | Ref. | 1.15 (0.95, 1.40) | 1.13 (0.93, 1.37) | 1.24 (1.03, 1.49) * |
BMI Trajectory | ||||
Low-Stable (N = 7400) | Moderate-Stable (N = 13,750) | Moderate-High-Stable (N = 10,950) | High-Stable (N = 3639) | |
Mean BMI values at baseline, kg/m2 | 21.4 | 24.3 | 27.0 | 30.1 |
Cases/Person-years | 194/73,405 | 376/136,257 | 339/108,368 | 111/36,043 |
Model 1 | Ref. | 1.05 (0.88, 1.24) | 1.18 (0.99, 1.41) | 1.17 (0.92, 1.47) |
Model 2 | Ref. | 0.96 (0.81, 1.15) | 1.09 (0.91, 1.30) | 1.14 (0.90, 1.44) |
Model 3 | Ref. | 0.96 (0.80, 1.14) | 1.08 (0.90, 1.29) | 1.12 (0.89, 1.42) |
WC Trajectory | ||||
Low-Stable (N = 4489) | Moderate-Stable (N = 14,758) | Moderate-High-Stable (N = 13,352) | High-Stable (N = 3140) | |
Mean WC values at baseline, cm | 75.3 | 84.5 | 93.3 | 101.7 |
Cases/Person-years | 85/44,653 | 409/146,225 | 397/132,325 | 129/30,870 |
Model 1 | Ref. | 1.47 (1.16, 1.85) * | 1.58 (1.25, 1.99) * | 2.20 (1.67, 2.89) * |
Model 2 | Ref. | 1.10 (0.87, 1.40) | 1.08 (0.85, 1.37) | 1.36 (1.03, 1.82) * |
Model 3 | Ref. | 1.11 (0.88, 1.41) | 1.09 (0.86, 1.39) | 1.40 (1.06, 1.86) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Chen, S.; Cao, X.; Yu, J.; Yang, Z.; Abdelrahman, Z.; Yang, G.; Wang, L.; Zhang, X.; Zhu, Y.; et al. Trajectories of Body Mass Index and Waist Circumference in Relation to the Risk of Cardiac Arrhythmia: A Prospective Cohort Study. Nutrients 2024, 16, 704. https://doi.org/10.3390/nu16050704
Zhang L, Chen S, Cao X, Yu J, Yang Z, Abdelrahman Z, Yang G, Wang L, Zhang X, Zhu Y, et al. Trajectories of Body Mass Index and Waist Circumference in Relation to the Risk of Cardiac Arrhythmia: A Prospective Cohort Study. Nutrients. 2024; 16(5):704. https://doi.org/10.3390/nu16050704
Chicago/Turabian StyleZhang, Liming, Shuohua Chen, Xingqi Cao, Jiening Yu, Zhenqing Yang, Zeinab Abdelrahman, Gan Yang, Liang Wang, Xuehong Zhang, Yimin Zhu, and et al. 2024. "Trajectories of Body Mass Index and Waist Circumference in Relation to the Risk of Cardiac Arrhythmia: A Prospective Cohort Study" Nutrients 16, no. 5: 704. https://doi.org/10.3390/nu16050704
APA StyleZhang, L., Chen, S., Cao, X., Yu, J., Yang, Z., Abdelrahman, Z., Yang, G., Wang, L., Zhang, X., Zhu, Y., Wu, S., & Liu, Z. (2024). Trajectories of Body Mass Index and Waist Circumference in Relation to the Risk of Cardiac Arrhythmia: A Prospective Cohort Study. Nutrients, 16(5), 704. https://doi.org/10.3390/nu16050704