Associations between Neck Circumference, Mid-Upper Arm Circumference, Wrist Circumference, and High Blood Pressure among Lithuanian Children and Adolescents: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Blood Pressure Measurements
2.3. Anthropometric Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robinson, C.H.; Chanchlani, R. High Blood Pressure in Children and Adolescents: Current Perspectives and Strategies to Improve Future Kidney and Cardiovascular Health. Kidney Int. Rep. 2022, 7, 954–970. [Google Scholar] [CrossRef] [PubMed]
- Haseler, E.; Sinha, M.D. Hypertension in Children and Young Adults. Pediatr. Clin. N. Am. 2022, 69, 1165–1180. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Sun, J.; Zhao, M.; Liang, Y.; Bovet, P.; Xi, B. Elevated blood pressure in childhood and hypertension risk in adulthood: A systematic review and meta-analysis. J. Hypertens. 2020, 38, 2346–2355. [Google Scholar] [CrossRef] [PubMed]
- Urbina, E.M.; Khoury, P.R.; Bazzano, L.; Burns, T.L.; Daniels, S.; Dwyer, T.; Hu, T.; Jacobs, D.R., Jr.; Juonala, M.; Prineas, R.; et al. Relation of Blood Pressure in Childhood to Self-Reported Hypertension in Adulthood. Hypertension. 2019, 73, 1224–1230. [Google Scholar] [CrossRef]
- Hardy, S.T.; Urbina, E.M. Blood Pressure in Childhood and Adolescence. Am. J. Hypertens. 2021, 34, 242–249. [Google Scholar] [CrossRef]
- Meher, M.; Pradhan, S.; Pradhan, S.R. Risk Factors Associated with Hypertension in Young Adults: A Systematic Review. Cureus 2023, 15, e37467. [Google Scholar] [CrossRef]
- Piqueras, P.; Ballester, A.; Durá-Gil, J.V.; Martinez-Hervas, S.; Redón, J.; Real, J.T. Anthropometric Indicators as a Tool for Diagnosis of Obesity and Other Health Risk Factors: A Literature Review. Front. Psychol. 2021, 12, 631179. [Google Scholar] [CrossRef]
- Valencia-Sosa, E.; González-Pérez, G.J.; Martinez-Lopez, E.; Rodriguez-Echevarria, R. Neck and Wrist Circumferences as Indicators of Metabolic Alterations in the Pediatric Population: A Scoping Review. Children 2021, 8, 297. [Google Scholar] [CrossRef]
- Kim, K.Y.; Moon, H.R.; Yun, J.M. Neck Circumference as a Predictor of Metabolic Syndrome in Koreans: A Cross-Sectional Study. Nutrients 2021, 13, 3029. [Google Scholar] [CrossRef]
- Ataie-Jafari, A.; Namazi, N.; Djalalinia, S.; Chaghamirzayi, P.; Abdar, M.E.; Zadehe, S.S.; Asayesh, H.; Zarei, M.; Gorabi, A.M.; Mansourian, M.; et al. Neck circumference and its association with cardiometabolic risk factors: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2018, 10, 72. [Google Scholar] [CrossRef]
- Turkay, E.; Kabaran, S. Neck circumference cut-off points for detecting overweight and obesity among school children in Northern Cyprus. BMC Pediatr. 2022, 22, 594. [Google Scholar] [CrossRef]
- Gomez-Arbelaez, D.; Camacho, P.A.; Cohen, D.D.; Saavedra-Cortes, S.; Lopez-Lopez, C.; Lopez-Jaramillo, P. Neck circumference as a predictor of metabolic syndrome, insulin resistance and low-grade systemic inflammation in children: The ACFIES study. BMC Pediatr. 2016, 16, 31. [Google Scholar] [CrossRef]
- Payab, M.; Qorbani, M.; Shahbal, N.; Motlagh, M.E.; Hasani-Ranjbar, S.; Zahedi, H.; Shafiee, G.; Ziaodini, H.; Pourmirzaiee, M.A.; Heshmat, R.; et al. Association of Anthropometric Indices with Metabolic Phenotypes of Obesity in Children and Adolescents: The CASPIAN-V Study. Front. Endocrinol. 2019, 10, 786. [Google Scholar] [CrossRef]
- Kelishadi, R.; Heidari-Beni, M.; Qorbani, M.; Motamed-Gorji, N.; Motlagh, M.E.; Ziaodini, H.; Taheri, M.; Ahadi, Z.; Aminaee, T.; Heshmat, R. Association between neck and wrist circumferences and cardiometabolic risk in children and adolescents: The CASPIAN-V study. Nutrition 2017, 43–44, 32–38. [Google Scholar] [CrossRef]
- Namazi, N.; Djalalinia, S.; Mahdavi-Gorabi, A.; Asayesh, H.; Mansourian, M.; Noroozi, M.; Qorbani, M. Association of wrist circumference with cardio-metabolic risk factors: A systematic review and meta-analysis. Eat. Weight Disord. 2020, 25, 151–161. [Google Scholar] [CrossRef]
- Luordi, C.; Maddaloni, E.; Bizzarri, C.; Pedicelli, S.; Zampetti, S.; D’Onofrio, L.; Moretti, C.; Cappa, M.; Buzzetti, R. Wrist circumference is a biomarker of adipose tissue dysfunction and cardiovascular risk in children with obesity. J. Endocrinol. Investig. 2020, 43, 101–107. [Google Scholar] [CrossRef]
- Capizzi, M.; Leto, G.; Petrone, A.; Zampetti, S.; Papa, R.E.; Osimani, M.; Spoletini, M.; Lenzi, A.; Osborn, J.; Mastantuono, M.; et al. Wrist circumference is a clinical marker of insulin resistance in overweight and obese children and adolescents. Circulation 2011, 123, 1757–1762. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Yang, Z.; Niu, Y.; Zhang, W.; Li, X.; Zhang, H.; Lin, N.; Gu, H.; Wen, J.; Ning, G.; et al. Large mid-upper arm circumference is associated with metabolic syndrome in middle-aged and elderly individuals: A community-based study. BMC Endocr. Disord. 2020, 20, 78. [Google Scholar] [CrossRef] [PubMed]
- Musa, I.R.; Omar, S.M.; AlEed, A.; Al-Nafeesah, A.; Adam, I. Mid-upper arm circumference as a screening tool for identifying underweight adolescents. Front. Nutr. 2023, 10, 1200077. [Google Scholar] [CrossRef] [PubMed]
- Rerksuppaphol, S.; Rerksuppaphol, L. Mid-Upper-Arm Circumference and Arm-to-Height Ratio to Identify Obesity in School-Age Children. Clin. Med. Res. 2017, 15, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Sisay, B.G.; Hassen, H.Y.; Jima, B.R.; Atlantis, E.; Gebreyesus, S.H. The performance of mid-upper arm circumference for identifying children and adolescents with overweight and obesity: A systematic review and meta-analysis. Public Health Nutr. 2022, 25, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Mazıcıoğlu, M.M.; Hatipoğlu, N.; Oztürk, A.; Ciçek, B.; Ustünbaş, H.B.; Kurtoğlu, S. Waist circumference and mid-upper arm circumference in evaluation of obesity in children aged between 6 and 17 years. J. Clin. Res. Pediatr. Endocrinol. 2010, 2, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Szczepanska, N.; Gomula, A.; Koziel, S. Mid-upper arm circumference and body mass index as different screening tools of nutritional and weight status in Polish schoolchildren across socio-political changes. Sci. Rep. 2019, 9, 12399. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Jia, X.; Xuan, L.; Zhu, W.; Deng, C.; Wang, L.; Zhao, Z.; Li, M.; Lu, J.; Xu, Y.; et al. Association between mid-upper arm circumference and cardiometabolic risk in Chinese population: A cross-sectional study. BMJ Open. 2019, 9, e028904. [Google Scholar] [CrossRef] [PubMed]
- Zaborskis, A.; Petrauskiene, A.; Gradeckiene, S.; Vaitkaitiene, E.; Bartasiūte, V. Overweight and increased blood pressure in preschool-aged children. Medicina 2003, 39, 1200–1207. [Google Scholar]
- Kuciene, R.; Dulskiene, V. Associations of maternal gestational hypertension with high blood pressure and overweight/obesity in their adolescent offspring: A retrospective cohort study. Sci. Rep. 2022, 12, 3800. [Google Scholar] [CrossRef]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; de Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2017, 140, e20171904. [Google Scholar] [CrossRef]
- Flynn, J.T.; Falkner, B.E. New Clinical Practice Guideline for the Management of High Blood Pressure in Children and Adolescents. Hypertension 2017, 70, 683–686. [Google Scholar] [CrossRef]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef]
- Fernández, J.R.; Redden, D.T.; Pietrobelli, A.; Allison, D.B. Waist circumference percentiles in nationally representative samples of African-American, European-American, and Mexican-American children and adolescents. J. Pediatr. 2004, 145, 439–444. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Krakauer, J.C. A new body shape index predicts mortality hazard independently of body mass index. PLoS ONE 2012, 7, e39504. [Google Scholar] [CrossRef] [PubMed]
- Nahm, F.S. Receiver operating characteristic curve: Overview and practical use for clinicians. Korean J. Anesthesiol. 2022, 75, 25–36. [Google Scholar] [CrossRef]
- He, X.; Zhu, Z.; Zang, J.; Wang, Z.; Liao, P.; Wang, W.; Shi, Y.; Fu, C. Percent body fat, but not body mass index, is associated with cardiometabolic risk factors in children and adolescents. Chronic Dis. Transl. Med. 2023, 9, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Teng, Y.; Wang, L.; Jia, L.; Chen, Z.; Ding, S. Analysis of the prevalence and related factors of primary hypertension among adolescents and children in the Taicang area. BMC Pediatr. 2023, 23, 265. [Google Scholar] [CrossRef]
- Rajagopalan, A.; Balaji, N. Association of Neck Circumference and Obesity with Blood Pressure among Adolescents in Urban and Rural Population in North Tamil Nadu. J. Nat. Sci. Biol. Med. 2017, 8, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Castro-Piñero, J.; Delgado-Alfonso, A.; Gracia-Marco, L.; Gómez-Martínez, S.; Esteban-Cornejo, I.; Veiga, O.L.; Marcos, A.; Segura-Jiménez, V.; UP&DOWN Study Group. Neck circumference and clustered cardiovascular risk factors in children and adolescents: Cross-sectional study. BMJ Open 2017, 7, e016048. [Google Scholar] [CrossRef] [PubMed]
- Katamba, G.; Agaba, D.C.; Migisha, R.; Namaganda, A.; Namayanja, R.; Turyakira, E. Prevalence of hypertension in relation to anthropometric indices among secondary adolescents in Mbarara, Southwestern Uganda. Ital. J. Pediatr. 2020, 46, 76. [Google Scholar] [CrossRef] [PubMed]
- Ejtahed, H.S.; Qorbani, M.; Motlagh, M.E.; Angoorani, P.; Hasani-Ranjbar, S.; Ziaodini, H.; Taheri, M.; Ahadi, Z.; Beshtar, S.; Aminaee, T.; et al. Association of anthropometric indices with continuous metabolic syndrome in children and adolescents: The CASPIAN-V study. Eat Weight Disord. 2018, 23, 597–604. [Google Scholar] [CrossRef]
- Da Silva, C.C.; Zambon, M.P.; Vasques, A.C.; Rodrigues, A.M.; Camilo, D.F.; Antonio, M.Â.; Cassani, R.S.; Geloneze, B. Neck circumference as a new anthropometric indicator for prediction of insulin resistance and components of metabolic syndrome in adolescents: Brazilian Metabolic Syndrome Study. Rev. Paul. Pediatr. 2014, 32, 221–229. [Google Scholar] [CrossRef]
- González-Cortés, C.A.; Téran-García, M.; Luevano-Contreras, C.; Portales-Pérez, D.P.; Vargas-Morales, J.M.; Cubillas-Tejeda, A.C.; Cossío-Torres, P.E.; Aradillas-García, C. Neck Circumference and Its Association with Cardiometabolic Risk Factors in Pediatric Population. Medicina 2019, 55, 183. [Google Scholar] [CrossRef]
- Androutsos, O.; Grammatikaki, E.; Moschonis, G.; Roma-Giannikou, E.; Chrousos, G.P.; Manios, Y.; Kanaka-Gantenbein, C. Neck circumference: A useful screening tool of cardiovascular risk in children. Pediatr. Obes. 2012, 7, 187–195. [Google Scholar] [CrossRef]
- Nafiu, O.O.; Zepeda, A.; Curcio, C.; Prasad, Y. Association of neck circumference and obesity status with elevated blood pressure in children. J. Hum. Hypertens. 2014, 28, 263–268. [Google Scholar] [CrossRef]
- Moradi, S.; Mohammadi, H.; Ghavami, A.; Rouhani, M.H. Neck circumference and blood pressure among children: A systematic review and meta-analysis. J. Am. Soc. Hypertens. 2018, 12, 822–832. [Google Scholar] [CrossRef]
- Kuciene, R.; Dulskiene, V.; Medzioniene, J. Association of neck circumference and high blood pressure in children and adolescents: A case-control study. BMC Pediatr. 2015, 15, 127. [Google Scholar] [CrossRef]
- Peña-Vélez, R.; Garibay-Nieto, N.; Cal-Y-Mayor-Villalobos, M.; Laresgoiti-Servitje, E.; Pedraza-Escudero, K.; García-Blanco, M.D.C.; Heredia-Nieto, O.A.; Villanueva-Ortega, E. Association between neck circumference and non-alcoholic fatty liver disease in Mexican children and adolescents with obesity. J. Pediatr. Endocrinol. Metab. 2020, 33, 205–213. [Google Scholar] [CrossRef]
- Li, D.; Zhao, Y.; Zhang, L.; You, Q.; Jiang, Q.; Yin, X.; Cao, S. Association between neck circumference and diabetes mellitus: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2023, 15, 133. [Google Scholar] [CrossRef]
- LaBerge, R.C.; Vaccani, J.P.; Gow, R.M.; Gaboury, I.; Hoey, L.; Katz, S.L. Inter- and intra-rater reliability of neck circumference measurements in children. Pediatr. Pulmonol. 2009, 44, 64–69. [Google Scholar] [CrossRef]
- Kajale, N.A.; Khadilkar, A.V.; Chiplonkar, S.A.; Khadilkar, V.V. Body fat indices for identifying risk of hypertension in Indian children. Indian Pediatr. 2014, 51, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Zampetti, S.; Campagna, G.; Lucantoni, F.; Marandola, L.; D’Onofrio, L.; Chiesa, C.; Pacifico, L.; Vania, A.; Buzzetti, R.; Leto, G. Wrist circumference is associated with increased systolic blood pressure in children with overweight/obesity. Hypertens. Res. 2018, 41, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Zampetti, S.; Campagna, G.; Leto, G.; Lucantoni, F.; D’Onofrio, L.; Marandola, L.; Moretti, C.; Chiesa, C.; Pacifico, L.; Buzzetti, R. Relation between Wrist Circumference and Left Ventricular Structure in Overweight Children. Am. J. Cardiol. 2018, 121, 1624–1628. [Google Scholar] [CrossRef] [PubMed]
- Kalantari, S.; Khalili, D.; Asgari, S.; Fahimfar, N.; Hadaegh, F.; Tohidi, M.; Azizi, F. Predictors of early adulthood hypertension during adolescence: A population-based cohort study. BMC Public Health 2017, 17, 915. [Google Scholar] [CrossRef]
- Öztürk, A.; Çiçek, B.; Mazıcıoğlu, M.M.; Zararsız, G.; Kurtoğlu, S. Wrist Circumference and Frame Size Percentiles in 6-17-Year-Old Turkish Children and Adolescents in Kayseri. J. Clin. Res. Pediatr. Endocrinol. 2017, 9, 329–336. [Google Scholar] [CrossRef]
- Campagna, G.; Zampetti, S.; Gallozzi, A.; Giansanti, S.; Chiesa, C.; Pacifico, L.; Buzzetti, R. Excellent Intra and Inter-Observer Reproducibility of Wrist Circumference Measurements in Obese Children and Adolescents. PLoS ONE 2016, 11, e0156646. [Google Scholar] [CrossRef]
- Khadilkar, V.; Chiplonkar, S.; Ekbote, V.; Kajale, N.; Mandlik, R.; Khadilkar, A. Reference centile curves for wrist circumference for Indian children aged 3–18 years. J. Pediatr. Endocrinol. Metab. 2018, 31, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Ahilan, V.; Krishna, V.G.; Prasad, H.K.; Narayanasamy, K.; Krishnamoorthy, N. Utility of wrist circumference in recognition of metabolic syndrome in overweight and obese South Indian children and adolescents. J. Pediatr. Endocrinol. Metab. 2021, 35, 65–71. [Google Scholar] [CrossRef]
- Mazicioglu, M.M.; Yalcin, B.M.; Ozturk, A.; Ustunbas, H.B.; Kurtoglu, S. Anthropometric risk factors for elevated blood pressure in adolescents in Turkey aged 11–17. Pediatr. Nephrol. 2010, 25, 2327–2334. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.M.; Li, Y.; Gao, G.Q.; Yin, F.Z.; Wang, R.; Liu, X.L.; Lu, Q. Mid-upper arm circumference as a screening measure for identifying children with hypertension. Blood Press. Monit. 2015, 20, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Mphahlele, T.P.; Monyeki, K.D.; Dibakwane, W.M.; Mokgoatšana, S. The Relationship between Under-Nutrition and Hypertension among Ellisras Children and Adolescents Aged 9 to 17 Years. Int. J. Environ. Res. Public Health 2020, 17, 8926. [Google Scholar] [CrossRef]
- Bassareo, P.P.; Marras, A.R.; Barbanti, C.; Mercuro, G. Comparison between waist and mid-upper arm circumferences in influencing systolic blood pressure in adolescence: The SHARP (Sardinian Hypertensive Adolescent Research Programme) study. J. Pediatr. Neonatal Individ. Med. 2013, 2, e020207. [Google Scholar]
- Xiao, X.; Yu, X.; Zhu, H.; Zhai, X.; Li, S.; Ma, W.; Ouyang, M.; Liu, K.; Eshak, E.S.; Cao, J. Arm Circumference, Arm-to-Waist Ratio in Relation to Cardiovascular and All-Cause Mortality among Patients with Diabetes Mellitus. Nutrients 2023, 15, 961. [Google Scholar] [CrossRef]
- Zhu, Y.; Lin, Q.; Zhang, Y.; Deng, H.; Hu, X.; Yang, X.; Yao, B. Mid-upper arm circumference as a simple tool for identifying central obesity and insulin resistance in type 2 diabetes. PLoS ONE 2020, 15, e0231308. [Google Scholar] [CrossRef] [PubMed]
- Musa, I.R.; Omar, S.M.; Adam, I. Mid-upper arm circumference as a substitute for body mass index in the assessment of nutritional status among adults in eastern Sudan. BMC Public Health 2022, 22, 2056. [Google Scholar] [CrossRef]
- Chaput, J.P.; Katzmarzyk, P.T.; Barnes, J.D.; Fogelholm, M.; Hu, G.; Kuriyan, R.; Kurpad, A.; Lambert, E.V.; Maher, C.; Maia, J.; et al. Mid-upper arm circumference as a screening tool for identifying children with obesity: A 12-country study. Pediatr. Obes. 2017, 12, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Matjuda, E.N.; Engwa, G.A.; Letswalo, P.B.; Mungamba, M.M.; Sewani-Rusike, C.R.; Nkeh-Chungag, B.N. Association of Hypertension and Obesity with Risk Factors of Cardiovascular Diseases in Children Aged 6–9 Years Old in the Eastern Cape Province of South Africa. Children 2020, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Ebbert, J.O.; Jensen, M.D. Fat depots, free fatty acids, and dyslipidemia. Nutrients 2013, 5, 498–508. [Google Scholar] [CrossRef]
- Lee, J.J.; Pedley, A.; Therkelsen, K.E.; Hoffmann, U.; Massaro, J.M.; Levy, D.; Long, M.T. Upper Body Subcutaneous Fat Is Associated with Cardiometabolic Risk Factors. Am. J. Med. 2017, 130, 958–966.e1. [Google Scholar] [CrossRef]
- Alzeidan, R.; Fayed, A.; Hersi, A.S.; Elmorshedy, H. Performance of neck circumference to predict obesity and metabolic syndrome among adult Saudis: A cross-sectional study. BMC Obes. 2019, 6, 13. [Google Scholar] [CrossRef]
- Arias-Tellez, M.J.; Acosta, F.M.; Garcia-Rivero, Y.; Pascual-Gamarra, J.M.; Merchan-Ramirez, E.; Martinez-Tellez, B.; Silva, A.M.; Lopez, J.A.; Llamas-Elvira, J.M.; Ruiz, J.R. Neck adipose tissue accumulation is associated with higher overall and central adiposity, a higher cardiometabolic risk, and a pro-inflammatory profile in young adults. Int. J. Obes. 2021, 45, 733–745. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, J.; Zhao, X.; Cheng, H.; Huang, G.; Mi, J. China Child and Adolescent Cardiovascular Health study (CCACH) research group. Abdominal visceral and subcutaneous adipose tissues in association with cardiometabolic risk in children and adolescents: The China Child. and Adolescent Cardiovascular Health (CCACH) study. BMJ Open Diabetes Res. Care 2019, 7, e000824. [Google Scholar] [CrossRef]
- Chomtho, S.; Fewtrell, M.S.; Jaffe, A.; Williams, J.E.; Wells, J.C. Evaluation of arm anthropometry for assessing pediatric body composition: Evidence from healthy and sick children. Pediatr. Res. 2006, 59, 860–865. [Google Scholar] [CrossRef]
- Dave, C.; Agarwal, N.; Patel, R.; Shukla, R.; Bajpai, A. Determinants and Predictors of Body Fat in Indian Children and Adolescents. Indian J. Pediatr. 2022, 89, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Liu, J.; Ma, Y.; Li, Y.; Gao, D.; Chen, L.; Ma, T.; Dong, Y.; Ma, J. Association between Body Fat and Elevated Blood Pressure among Children and Adolescents Aged 7–17 Years: Using Dual-Energy X-ray Absorptiometry (DEXA) and Bioelectrical Impedance Analysis (BIA) from a Cross-Sectional Study in China. Int. J. Environ. Res. Public Health 2021, 18, 9254. [Google Scholar] [CrossRef] [PubMed]
- Shariq, O.A.; McKenzie, T.J. Obesity-related hypertension: A review of pathophysiology, management, and the role of metabolic surgery. Gland. Surg. 2020, 9, 80–93. [Google Scholar] [CrossRef] [PubMed]
Variables | Total (n = 3668) | Boys (n = 1928) | Girls (n = 1740) | p * |
---|---|---|---|---|
Age (years) | 10.83 ± 2.76 | 10.85 ± 2.75 | 10.81 ± 2.78 | 0.528 |
Weight (kg) | 42.98 ± 16.08 | 44.27 ± 17.33 | 41.56 ± 14.44 | <0.001 |
Height (cm) | 149.27 ± 16.98 | 150.68 ± 18.07 | 147.71 ± 15.53 | <0.001 |
HC (cm) | 78.72 ± 11.40 | 79.20 ± 11.56 | 78.19 ± 11.21 | 0.017 |
NC (cm) | 28.94 ± 3.00 | 29.68 ± 3.22 | 28.12 ± 2.49 | <0.001 |
MUAC (cm) | 21.84 ± 3.23 | 22.13 ± 3.43 | 21.53 ± 2.97 | <0.001 |
WC (cm) | 62.88 ± 9.95 | 64.60 ± 10.73 | 60.98 ± 8.61 | <0.001 |
WrC (cm) | 14.21 ± 1.52 | 14.52 ± 1.60 | 13.85 ± 1.34 | <0.001 |
ABSI | 0.074 ± 0.006 | 0.075 ± 0.006 | 0.072 ± 0.007 | <0.001 |
BMI (kg/m2) | 18.62 ± 3.71 | 18.76 ± 3.82 | 18.46 ± 3.59 | 0.055 |
WHR | 0.801 ± 0.07 | 0.816 ± 0.06 | 0.784 ± 0.07 | <0.001 |
WHtR | 0.422 ± 0.05 | 0.43 ± 0.05 | 0.414 ± 0.05 | <0.001 |
SBP (mm Hg) | 109.06 ± 13.40 | 110.20 ± 14.07 | 107.80 ± 12.51 | <0.001 |
DBP (mm Hg) | 62.35 ± 8.16 | 61.81 ± 8.09 | 62.94 ± 8.21 | <0.001 |
MAP (mm Hg) | 77.92 ± 8.58 | 77.94 ± 8.63 | 77.90 ± 8.52 | 0.873 |
PP (mm Hg) | 46.71 ± 11.76 | 48.39 ± 12.56 | 44.86 ± 10.50 | <0.001 |
Variables | Normal BP | Elevated BP | Hypertension | p * |
---|---|---|---|---|
Boys | ||||
NC percentile categories: | ||||
<90th | 1257 (92.0) | 220 (77.7) § | 202 (72.4) § | <0.001 |
≥90th | 109 (8.0) | 63 (22.3) § | 77 (27.6) § | |
MUAC percentile categories: | <0.001 | |||
<90th | 1279 (93.6) | 239 (84.5) § | 210 (75.3) §,# | |
≥90th | 87 (6.4) | 44 (15.5) § | 69 (24.7) §,# | |
WrC percentile categories: | <0.001 | |||
<90th | 1274 (93.3) | 241 (85.2) § | 205 (73.5) §,# | |
≥90th | 92 (6.7) | 42 (14.8) § | 74 (26.5) §,# | |
WC percentile categories: | <0.001 | |||
<90th | 1310 (95.9) | 261 (92.2) § | 235 (84.2) §,# | |
≥90th | 56 (4.1) | 22 (7.8) § | 44 (15.8) §,# | |
BMI categories: | <0.001 | |||
Normal weight | 1107 (81.0) | 187 (66.1) § | 157 (56.3) §,# | |
Overweight | 203 (14.9) | 71 (25.1) § | 70 (25.1) § | |
Obesity | 56 (4.1) | 25 (8.8) § | 52 (18.6) §,# | |
BMI categories: | <0.001 | |||
Normal weight | 1107 (81.0) | 187 (66.1) § | 157 (56.3) §,# | |
Overweight/obesity | 259 (19.0) | 96 (33.9) § | 122 (43.7) §,# | |
Weight (kg) | 38.44 ± 13.11 | 55.16 ± 16.27 a | 61.78 ± 19.37 a,b | <0.001 |
Height (cm) | 145.30 ± 15.30 | 162.10 ± 16.53 a | 165.42 ± 17.69 a,b | <0.001 |
HC (cm) | 75.24 ± 9.49 | 87.37 ± 9.39 a | 90.29 ± 11.21 a,b | <0.001 |
NC (cm) | 28.58 ± 2.53 | 31.87 ± 2.99 a | 32.84 ± 3.27 a,b | <0.001 |
MUAC (cm) | 20.99 ± 2.76 | 24.40 ± 2.97 a | 25.40 ± 3.57 a,b | <0.001 |
WrC (cm) | 14.01 ± 1.37 | 15.58 ± 1.35 a | 15.97 ± 1.47 a,b | <0.001 |
WC (cm) | 61.33 ± 8.63 | 70.88 ± 9.91 a | 74.26 ± 12.11 a,b | <0.001 |
ABSI | 0.0753 ± 0.006 | 0.0747 ± 0.007 a | 0.0739 ± 0.007 a | <0.001 |
BMI (kg/m2) | 17.70 ± 3.10 | 20.56 ± 3.56 a | 22.10 ± 4.60 a,b | <0.001 |
WHR | 0.82 ± 0.06 | 0.81 ± 0.06 a | 0.82 ± 0.06 | 0.069 |
WHtR | 0.42 ± 0.05 | 0.44 ± 0.06 a | 0.45 ± 0.07 a | <0.001 |
SBP (mm Hg) | 103.37 ± 8.90 | 121.24 ± 5.54 a | 132.41 ± 10.21 a,b | <0.001 |
DBP (mm Hg) | 59.59 ± 6.89 | 64.88 ± 7.16 a | 69.57 ± 8.61 a,b | <0.001 |
MAP (mm Hg) | 77.63 ± 6.31 | 88.10 ± 4.24 a | 95.46 ± 6.35 a,b | <0.001 |
PP (mm Hg) | 43.78 ± 9.25 | 56.36 ± 10.13 a | 62.84 ± 13.80 a,b | <0.001 |
Girls | ||||
NC percentile categories: | <0.001 | |||
<90th | 1172 (88.3) | 170 (77.3) § | 127 (65.8) §,# | |
≥90th | 155 (11.7) | 50 (22.7) § | 66 (34.2) §,# | |
MUAC percentile categories: | <0.001 | |||
<90th | 1237 (93.2) | 184 (83.6) § | 137 (71.0) §,# | |
≥90th | 90 (6.8) | 36 (16.4) § | 56 (29.0) §,# | |
WrC percentile categories: | <0.001 | |||
<90th | 1229 (92.6) | 184 (83.6) § | 139 (72.0) §,# | |
≥90th | 98 (7.4) | 36 (16.4) § | 54 (28.0) §,# | |
WC percentile categories: | <0.001 | |||
<90th | 1291 (97.3) | 211 (95.9) | 166 (86.0) §,# | |
≥90th | 36 (2.7) | 9 (4.1) | 27 (14.0) §,# | |
BMI categories: | <0.001 | |||
Normal weight | 1125 (84.8) | 161 (73.2) § | 117 (60.6) §,# | |
Overweight | 162 (12.2) | 44 (20.0) § | 50 (25.9) § | |
Obesity | 40 (3.0) | 15 (6.8) § | 26 (13.5) §,# | |
BMI categories: | <0.001 | |||
Normal weight | 1125 (84.8) | 161 (73.2) § | 117 (60.6) §,# | |
Overweight/obesity | 202 (15.2) | 59 (26.8) § | 76 (39.4) §,# | |
Weight (kg) | 38.94 ± 13.05 | 49.64 ± 15.91 a | 50.34 ± 14.99 a | <0.001 |
Height (cm) | 145.70 ± 15.27 | 154.75 ± 14.71 a | 153.46 ± 14.48 a | <0.001 |
HC (cm) | 76.10 ± 10.33 | 84.94 ± 12.03 a | 84.85 ± 10.46 a | <0.001 |
NC (cm) | 27.70 ± 2.33 | 29.27 ± 2.51 a | 29.70 ± 2.54 a | <0.001 |
MUAC (cm) | 21.00 ± 2.71 | 22.99 ± 3.12 a | 23.52 ± 3.14 a | <0.001 |
WrC (cm) | 13.63 ± 1.24 | 14.43 ± 1.36 a | 14.74 ± 1.38 a, b | <0.001 |
WC (cm) | 59.46 ± 7.58 | 65.05 ± 9.38 a | 66.78 ± 10.30 a | <0.001 |
ABSI | 0.0729 ± 0.007 | 0.0712 ± 0.007 a | 0.0714 ± 0.007 a | <0.001 |
BMI (kg/m2) | 17.81 ± 3.13 | 20.18 ± 4.01 a | 21.00 ± 4.23 a | <0.001 |
WHR | 0.79 ± 0.07 | 0.77 ± 0.07 a | 0.79 ± 0.08 b | 0.001 |
WHtR | 0.41 ± 0.05 | 0.42 ± 0.05 a | 0.44 ± 0.07 a, b | <0.001 |
SBP (mm Hg) | 103.20 ± 9.03 | 118.78 ± 7.76 a | 126.89 ± 11.57 a,b | <0.001 |
DBP (mm Hg) | 60.61 ± 6.94 | 68.26 ± 6.05 a | 72.90 ± 8.18 a,b | <0.001 |
MAP (mm Hg) | 78.16 ± 6.64 | 89.08 ± 4.32 a | 95.14 ± 6.74 a,b | <0.001 |
PP (mm Hg) | 42.59 ± 8.58 | 50.53 ± 10.70 a | 53.99 ± 14.24 a,b | <0.001 |
Boys | ||||
Age (years): | <0.001 | |||
7–12 | 1159 (84.8) | 119 (42.0) § | 116 (41.6) § | |
13–17 | 207 (15.2) | 164 (58.0) § | 163 (58.4) § | |
Age (years) | 10.07 ± 2.33 | 12.48 ± 2.60 a | 13.05 ± 2.88 a,b | <0.001 |
Girls | ||||
Age (years): | <0.001 | |||
7–12 | 1034 (77.9) | 112 (50.9) § | 117 (60.6) §,# | <0.001 |
13–17 | 293 (22.1) | 108 (49.1) § | 76 (39.4) §,# | <0.001 |
Age (years) | 10.46 ± 2.68 | 12.10 ± 2.90 a | 11.68 ± 2.69 a | <0.001 |
NC z-Score | MUAC z-Score | WrC z-Score | BMI z-Score | WC z-Score | ||
---|---|---|---|---|---|---|
SBP (mm Hg) | Boys | 0.701 ** | 0.671 ** | 0.679 ** | 0.554 ** | 0.620 ** |
Girls | 0.575 ** | 0.562 ** | 0.558 ** | 0.503 ** | 0.506 ** | |
Total | 0.649 ** | 0.630 ** | 0.632 ** | 0.533 ** | 0.579 ** | |
DBP (mm Hg) | Boys | 0.329 ** | 0.346 ** | 0.317 ** | 0.330 ** | 0.350 ** |
Girls | 0.363 ** | 0.366 ** | 0.344 ** | 0.381 ** | 0.332 ** | |
Total | 0.309 ** | 0.345 ** | 0.303 ** | 0.349 ** | 0.321 ** | |
MAP (mm Hg) | Boys | 0.586 ** | 0.581 ** | 0.567 ** | 0.507 ** | 0.555 ** |
Girls | 0.514 ** | 0.511 ** | 0.494 ** | 0.491 ** | 0.461 ** | |
Total | 0.535 ** | 0.547 ** | 0.521 ** | 0.499 ** | 0.505 ** | |
PP (mm Hg) | Boys | 0.574 ** | 0.529 ** | 0.557 ** | 0.408 ** | 0.470 ** |
Girls | 0.401 ** | 0.383 ** | 0.395 ** | 0.301 ** | 0.343 ** | |
Total | 0.525 ** | 0.478 ** | 0.510 ** | 0.365 ** | 0.437 ** |
Variables | Boys | Girls | Total | |||
---|---|---|---|---|---|---|
OR (95% CI) | aOR1 (95% CI) | OR (95% CI) | aOR1 (95% CI) | OR (95% CI) | aOR2 (95% CI) | |
NC percentile categories: | ||||||
<90th | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
≥90th | 3.83 (2.91–5.03) | 2.13 (1.47–3.07) | 2.95 (2.25–3.88) | 2.01 (1.43–2.82) | 3.28 (2.71–3.97) | 2.12 (1.66–2.72) |
NC (a continuous variable) | ||||||
Per-unit increase | 1.25 (1.23–1.28) | 1.20 (1.16–1.24) | 1.16 (1.14–1.19) | 1.10 (1.07–1.14) | 1.21 (1.19–1.22) | 1.16 (1.14–1.19) |
MUAC percentile categories: | ||||||
<90th | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
≥90th | 3.70 (2.74–4.99) | 2.46 (1.59–3.80) | 3.94 (2.87–5.40) | 2.36 (1.56–3.58) | 3.78 (3.05–4.70) | 2.33 (1.73–3.14) |
MUAC (a continuous variable) | ||||||
Per-unit increase | 1.22 (1.20–1.25) | 1.21 (1.17–1.24) | 1.14 (1.12–1.16) | 1.10 (1.07–1.13) | 1.19 (1.17–1.20) | 1.16 (1.13–1.18) |
WrC percentile categories: | ||||||
<90th | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
≥90th | 3.60 (2.68–4.83) | 2.48 (1.67–3.68) | 3.49 (2.56–4.77) | 2.09 (1.41–3.11) | 3.53 (2.85–4.37) | 2.23 (1.69–2.95) |
WrC (a continuous variable) | ||||||
Per-unit increase | 1.53 (1.47–1.60) | 1.37 (1.29–1.45) | 1.33 (1.27–1.39) | 1.21 (1.14–1.28) | 1.43 (1.38–1.47) | 1.31 (1.26–1.36) |
Sex/Age (Years) | Indices | AUC | (95% CI) | SE | p Value |
---|---|---|---|---|---|
Boys | |||||
7–12 | NC | 0.728 | 0.692–0.764 | 0.018 | <0.001 |
MUAC | 0.757 | 0.722–0.792 | 0.018 | <0.001 | |
WrC | 0.732 | 0.697–0.767 | 0.018 | <0.001 | |
BMI | 0.725 | 0.690–0.760 | 0.018 | <0.001 | |
WC | 0.744 | 0.708–0.780 | 0.018 | <0.001 | |
13–17 | NC | 0.762 | 0.721–0.802 | 0.021 | <0.001 |
MUAC | 0.754 | 0.713–0.796 | 0.021 | <0.001 | |
WrC | 0.745 | 0.702–0.787 | 0.022 | <0.001 | |
BMI | 0.697 | 0.652–0.743 | 0.023 | <0.001 | |
WC | 0.706 | 0.660–0.751 | 0.022 | <0.001 | |
Girls | |||||
7–12 | NC | 0.665 | 0.626–0.705 | 0.020 | <0.001 |
MUAC | 0.678 | 0.639–0.716 | 0.020 | <0.001 | |
WrC | 0.676 | 0.637–0.715 | 0.020 | <0.001 | |
BMI | 0.674 | 0.636–0.712 | 0.020 | <0.001 | |
WC | 0.679 | 0.639–0.718 | 0.020 | <0.001 | |
13–17 | NC | 0.647 | 0.596–0.698 | 0.026 | <0.001 |
MUAC | 0.642 | 0.591–0.694 | 0.026 | <0.001 | |
WrC | 0.612 | 0.559–0.665 | 0.027 | <0.001 | |
BMI | 0.657 | 0.606–0.708 | 0.026 | <0.001 | |
WC | 0.634 | 0.582–0.685 | 0.026 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stankute, I.; Dulskiene, V.; Kuciene, R. Associations between Neck Circumference, Mid-Upper Arm Circumference, Wrist Circumference, and High Blood Pressure among Lithuanian Children and Adolescents: A Cross-Sectional Study. Nutrients 2024, 16, 677. https://doi.org/10.3390/nu16050677
Stankute I, Dulskiene V, Kuciene R. Associations between Neck Circumference, Mid-Upper Arm Circumference, Wrist Circumference, and High Blood Pressure among Lithuanian Children and Adolescents: A Cross-Sectional Study. Nutrients. 2024; 16(5):677. https://doi.org/10.3390/nu16050677
Chicago/Turabian StyleStankute, Ieva, Virginija Dulskiene, and Renata Kuciene. 2024. "Associations between Neck Circumference, Mid-Upper Arm Circumference, Wrist Circumference, and High Blood Pressure among Lithuanian Children and Adolescents: A Cross-Sectional Study" Nutrients 16, no. 5: 677. https://doi.org/10.3390/nu16050677
APA StyleStankute, I., Dulskiene, V., & Kuciene, R. (2024). Associations between Neck Circumference, Mid-Upper Arm Circumference, Wrist Circumference, and High Blood Pressure among Lithuanian Children and Adolescents: A Cross-Sectional Study. Nutrients, 16(5), 677. https://doi.org/10.3390/nu16050677