Creating a Framework for Treating Autoimmune Gastritis—The Case for Replacing Lost Acid
Abstract
:1. Background
2. Presentation and Diagnosis of AIG
3. Functions of Gastric Acid and Effects of Hypochlorhydria
Effects of pH on Vitamin C and Fate of Gastric Nitrites
4. The Effects of Parietal Cell Loss in AIG
4.1. Near Achlorhydria
4.2. Upper GI Symptoms
4.3. Immune Insult
4.3.1. Gastric Dysbiosis
4.3.2. Cancer
4.4. Micronutrient Deficiencies
4.5. The AIG Stomach
5. Replace, Don’t Reduce, Mealtime Gastric Acid
5.1. Avoid PPIs
5.2. Historic Use of Gastric Acidification with HCL
5.3. The Evidence for Acidification with Betaine Hydrochloride
5.4. How to Use Betaine Hydrochloride
5.5. Considerations for the Use of Betaine Hydrochloride in AIG
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carabotti, M.; Annibale, B.; Lahner, E. Common Pitfalls in the Management of Patients with Micronutrient Deficiency: Keep in Mind the Stomach. Nutrients 2021, 13, 208. [Google Scholar] [CrossRef]
- Carabotti, M.; Lahner, E.; Esposito, G.; Sacchi, M.C.; Severi, C.; Annibale, B. Upper Gastrointestinal Symptoms in Autoimmune Gastritis: A Cross-Sectional Study. Medicine 2017, 96, e5784. [Google Scholar] [CrossRef]
- Lahner, E.; Carabotti, M.; Annibale, B. Atrophic Body Gastritis: Clinical Presentation, Diagnosis, and Outcome. EMJ Gastroenterol. 2017, 6, 75–82. [Google Scholar] [CrossRef]
- Esposito, G.; Dottori, L.; Pivetta, G.; Ligato, I.; Dilaghi, E.; Lahner, E. Pernicious Anemia: The Hematological Presentation of a Multifaceted Disorder Caused by Cobalamin Deficiency. Nutrients 2022, 14, 1672. [Google Scholar] [CrossRef]
- Conti, L.; Annibale, B.; Lahner, E. Autoimmune Gastritis and Gastric Microbiota. Microorganisms 2020, 8, 1827. [Google Scholar] [CrossRef]
- Lenti, M.V.; Rugge, M.; Lahner, E.; Miceli, E.; Toh, B.-H.; Genta, R.M.; De Block, C.; Hershko, C.; Di Sabatino, A. Autoimmune Gastritis. Nat. Rev. Dis. Primer 2020, 6, 56. [Google Scholar] [CrossRef]
- Hershko, C.; Ronson, A.; Souroujon, M.; Maschler, I.; Heyd, J.; Patz, J. Variable Hematologic Presentation of Autoimmune Gastritis: Age-Related Progression from Iron Deficiency to Cobalamin Depletion. Blood 2006, 107, 1673–1679. [Google Scholar] [CrossRef]
- Kulnigg-Dabsch, S.; Resch, M.; Oberhuber, G.; Klinglmueller, F.; Gasche, A.; Gasche, C. Iron Deficiency Workup Reveals High Incidence of Autoimmune Gastritis with Parietal Cell Antibody as Reliable Screening Test. Semin. Hematol. 2018, 55, 256–261. [Google Scholar] [CrossRef]
- Wolffenbuttel, B.H.R.; Owen, P.J.; Ward, M.; Green, R. Vitamin B12. BMJ 2023, 383, e071725. [Google Scholar] [CrossRef]
- Orgler, E.; Dabsch, S.; Malfertheiner, P.; Schulz, C. Autoimmune Gastritis: Update and New Perspectives in Therapeutic Management. Curr. Treat. Options Gastroenterol. 2023, 21, 64–77. [Google Scholar] [CrossRef]
- Lukens, M.V.; Koelman, C.A.; Curvers, J.; Roozendaal, C.; Bakker-Jonges, L.E.; Damoiseaux, J.G.M.C.; Kroesen, B.-J. Comparison of Different Immunoassays for the Detection of Antibodies against Intrinsic Factor and Parietal Cells. J. Immunol. Methods 2020, 487, 112867. [Google Scholar] [CrossRef] [PubMed]
- Carmel, R. Reassessment of the Relative Prevalences of Antibodies to Gastric Parietal Cell and to Intrinsic Factor in Patients with Pernicious Anaemia: Influence of Patient Age and Race. Clin. Exp. Immunol. 1992, 89, 74–77. [Google Scholar] [CrossRef]
- Abosamra, M.; Bateman, A.C.; Jalal, M. Chronic Atrophic Gastritis—An Overlooked Association with Severe Vitamin B12 Deficiency: A Case Report and Rapid Review of Literature. J. R. Coll. Physicians Edinb. 2023, 53, 176–178. [Google Scholar] [CrossRef]
- Soykan, I.; Yakut, M.; Keskin, O.; Bektas, M. Clinical Profiles, Endoscopic and Laboratory Features and Associated Factors in Patients with Autoimmune Gastritis. Digestion 2012, 86, 20–26. [Google Scholar] [CrossRef]
- Shah, S.C.; Piazuelo, M.B.; Kuipers, E.J.; Li, D. AGA Clinical Practice Update on the Diagnosis and Management of Atrophic Gastritis: Expert Review. Gastroenterology 2021, 161, 1325–1332.e7. [Google Scholar] [CrossRef]
- Antico, A.; Tampoia, M.; Villalta, D.; Tonutti, E.; Tozzoli, R.; Bizzaro, N. Clinical Usefulness of the Serological Gastric Biopsy for the Diagnosis of Chronic Autoimmune Gastritis. Clin. Dev. Immunol. 2012, 2012, 520970. [Google Scholar] [CrossRef]
- Martinsen, T.C.; Fossmark, R.; Waldum, H.L. The Phylogeny and Biological Function of Gastric Juice—Microbiological Consequences of Removing Gastric Acid. Int. J. Mol. Sci. 2019, 20, 6031. [Google Scholar] [CrossRef]
- Kassarjian, Z.; Russell, R.M. Hypochlorhydria: A Factor in Nutrition. Annu. Rev. Nutr. 1989, 9, 271–285. [Google Scholar] [CrossRef]
- Hunt, R.H.; Camilleri, M.; Crowe, S.E.; El-Omar, E.M.; Fox, J.G.; Kuipers, E.J.; Malfertheiner, P.; McColl, K.E.L.; Pritchard, D.M.; Rugge, M.; et al. The Stomach in Health and Disease. Gut 2015, 64, 1650–1668. [Google Scholar] [CrossRef]
- Correa, P. Human Gastric Carcinogenesis: A Multistep and Multifactorial Process—First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention1. Cancer Res. 1992, 52, 6735–6740. [Google Scholar]
- Martinsen, T.C.; Bergh, K.; Waldum, H.L. Gastric Juice: A Barrier against Infectious Diseases. Basic Clin. Pharmacol. Toxicol. 2005, 96, 94–102. [Google Scholar] [CrossRef]
- Gropper, S.S.; Smith, J.L.; Carr, T.P. Advanced Nutrition and Human Metabolism; Cengage Learning: Boston, MA, USA, 2016; ISBN 978-1-305-62785-7. [Google Scholar]
- Heda, R.; Toro, F.; Tombazzi, C.R. Physiology, Pepsin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Iwai, W.; Abe, Y.; Iijima, K.; Koike, T.; Uno, K.; Asano, N.; Imatani, A.; Shimosegawa, T. Gastric Hypochlorhydria Is Associated with an Exacerbation of Dyspeptic Symptoms in Female Patients. J. Gastroenterol. 2013, 48, 214–221. [Google Scholar] [CrossRef]
- Waldron, B.; Cullen, P.T.; Kumar, R.; Smith, D.; Jankowski, J.; Hopwood, D.; Sutton, D.; Kennedy, N.; Campbell, F.C. Evidence for Hypomotility in Non-Ulcer Dyspepsia: A Prospective Multifactorial Study. Gut 1991, 32, 246–251. [Google Scholar] [CrossRef]
- Carabotti, M.; Esposito, G.; Lahner, E.; Pilozzi, E.; Conti, L.; Ranazzi, G.; Severi, C.; Bellini, M.; Annibale, B. Gastroesophageal Reflux Symptoms and Microscopic Esophagitis in a Cohort of Consecutive Patients Affected by Atrophic Body Gastritis: A Pilot Study. Scand. J. Gastroenterol. 2019, 54, 35–40. [Google Scholar] [CrossRef]
- DiGregorio, N.; Sharma, S. Physiology, Secretin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Carmel, R. Malabsorption of Food Cobalamin. Baillieres Clin. Haematol. 1995, 8, 639–655. [Google Scholar] [CrossRef]
- Piskin, E.; Cianciosi, D.; Gulec, S.; Tomas, M.; Capanoglu, E. Iron Absorption: Factors, Limitations, and Improvement Methods. ACS Omega 2022, 7, 20441–20456. [Google Scholar] [CrossRef]
- Annibale, B.; Capurso, G.; Chistolini, A.; D’Ambra, G.; DiGiulio, E.; Monarca, B.; DelleFave, G. Gastrointestinal Causes of Refractory Iron Deficiency Anemia in Patients without Gastrointestinal Symptoms. Am. J. Med. 2001, 111, 439–445. [Google Scholar] [CrossRef]
- Sobala, G.M.; Schorah, C.J.; Sanderson, M.; Dixon, M.F.; Tompkins, D.S.; Godwin, P.; Axon, A.T.R. Ascorbic Acid in the Human Stomach. Gastroenterology 1989, 97, 357–363. [Google Scholar] [CrossRef]
- Rathbone, B.J.; Johnson, A.W.; Wyatt, J.I.; Kelleher, J.; Heatley, R.V.; Losowsky, M.S. Ascorbic Acid: A Factor Concentrated in Human Gastric Juice. Clin. Sci. 1989, 76, 237–241. [Google Scholar] [CrossRef]
- Waring, A.; Drake, I.; Schorah, C.; White, K.L.M.; Lynch, D.A.F.; Axon, A.T.R.; Dixon, M. Ascorbic Acid and Total Vitamin-C Concentrations in Plasma, Gastric Juice, and Gastrointestinal Mucosa: Effect of Gastritis and Oral Supplementation. Gut 1996, 38, 171–176. [Google Scholar] [CrossRef]
- Bryan, N.S. Functional Nitric Oxide Nutrition to Combat Cardiovascular Disease. Curr. Atheroscler. Rep. 2018, 20, 21. [Google Scholar] [CrossRef]
- Kolios, G.; Valatas, V.; Ward, S.G. Nitric Oxide in Inflammatory Bowel Disease: A Universal Messenger in an Unsolved Puzzle. Immunology 2004, 113, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Mowat, C.; McColl, K.E. Alterations in Intragastric Nitrite and Vitamin C Levels during Acid Inhibitory Therapy. Best Pract. Res. Clin. Gastroenterol. 2001, 15, 523–537. [Google Scholar] [CrossRef] [PubMed]
- Mirvish, S.S. Effects of Vitamins C and E on N-Nitroso Compound Formation, Carcinogenesis, and Cancer. Cancer 1986, 58, 1842–1850. [Google Scholar] [CrossRef]
- Mackerness, C.W.; Leach, S.A.; Thompson, M.H.; Hill, M.J. The Inhibition of Bacterially Mediated N-Nitrosation by Vitamin C: Relevance to the Inhibition of Endogenous N-Nitrosation in the Achlorhydric Stomach. Carcinogenesis 1989, 10, 397–399. [Google Scholar] [CrossRef] [PubMed]
- Cifuentes, J.D.G.; Sparkman, J.; Graham, D.Y. Management of Upper Gastrointestinal Symptoms in Patients with Autoimmune Gastritis. Curr. Opin. Gastroenterol. 2022, 38, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Tenca, A.; Massironi, S.; Pugliese, D.; Consonni, D.; Mauro, A.; Cavalcoli, F.; Franchina, M.; Spampatti, M.; Conte, D.; Penagini, R. Gastro-Esophageal Reflux and Antisecretory Drugs Use among Patients with Chronic Autoimmune Atrophic Gastritis: A Study with pH-Impedance Monitoring. Neurogastroenterol. Motil. 2016, 28, 274–280. [Google Scholar] [CrossRef]
- Tack, J.; Talley, N.J.; Camilleri, M.; Holtmann, G.; Hu, P.; Malagelada, J.-R.; Stanghellini, V. Functional Gastroduodenal Disorders. Gastroenterology 2006, 130, 1466–1479. [Google Scholar] [CrossRef]
- Miceli, E.; Lenti, M.V.; Padula, D.; Luinetti, O.; Vattiato, C.; Monti, C.M.; Di Stefano, M.; Corazza, G.R. Common Features of Patients with Autoimmune Atrophic Gastritis. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2012, 10, 812–814. [Google Scholar] [CrossRef]
- Kalkan, Ç.; Soykan, I.; Soydal, Ç.; Özkan, E.; Kalkan, E. Assessment of Gastric Emptying in Patients with Autoimmune Gastritis. Dig. Dis. Sci. 2016, 61, 1597–1602. [Google Scholar] [CrossRef]
- Stockbruegger, R.W.; Cotton, P.B.; Menon, G.G.; Beilby, J.O.W.; Bartholomew, B.A.; Hill, M.J.; Walters, C.L. Pernicious Anaemia, Intragastric Bacterial Overgrowth, and Possible Consequences. Scand. J. Gastroenterol. 1984, 19, 355–364. [Google Scholar] [CrossRef]
- Mitsui, T.; Kondo, T. Increased Breath Nitrous Oxide after Ingesting Nitrate in Patients with Atrophic Gastritis and Partial Gastrectomy. Clin. Chim. Acta Int. J. Clin. Chem. 2004, 345, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Nunn, J.F. Clinical Aspects of the Interaction between Nitrous Oxide and Vitamin B12. Br. J. Anaesth. 1987, 59, 3–13. [Google Scholar] [CrossRef]
- Parsons, B.N.; Ijaz, U.Z.; D’Amore, R.; Burkitt, M.D.; Eccles, R.; Lenzi, L.; Duckworth, C.A.; Moore, A.R.; Tiszlavicz, L.; Varro, A.; et al. Comparison of the Human Gastric Microbiota in Hypochlorhydric States Arising as a Result of Helicobacter Pylori-Induced Atrophic Gastritis, Autoimmune Atrophic Gastritis and Proton Pump Inhibitor Use. PLoS Pathog. 2017, 13, e1006653. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, M.; Niikura, R.; Hayakawa, Y.; Hirata, Y.; Ushiku, T.; Koike, K. Distinct Features of Autoimmune Gastritis in Patients with Open-Type Chronic Gastritis in Japan. Biomedicines 2020, 8, 419. [Google Scholar] [CrossRef] [PubMed]
- Arai, J.; Niikura, R.; Hayakawa, Y.; Suzuki, N.; Hirata, Y.; Ushiku, T.; Fujishiro, M. Clinicopathological Features of Gastric Cancer with Autoimmune Gastritis. Biomedicines 2022, 10, 884. [Google Scholar] [CrossRef]
- Bottone, E.J. Bacillus Cereus, a Volatile Human Pathogen. Clin. Microbiol. Rev. 2010, 23, 382–398. [Google Scholar] [CrossRef]
- Correa, P. A Human Model of Gastric Carcinogenesis1. Cancer Res. 1988, 48, 3554–3560. [Google Scholar] [PubMed]
- Stolte, M.; Meining, A. The Updated Sydney System: Classification and Grading of Gastritis as the Basis of Diagnosis and Treatment. Can. J. Gastroenterol. Hepatol. 2001, 15, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Pimentel-Nunes, P.; Libânio, D.; Marcos-Pinto, R.; Areia, M.; Leja, M.; Esposito, G.; Garrido, M.; Kikuste, I.; Megraud, F.; Matysiak-Budnik, T.; et al. Management of Epithelial Precancerous Conditions and Lesions in the Stomach (MAPS II): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG), European Society of Pathology (ESP), and Sociedade Portuguesa de Endoscopia Digestiva (SPED) Guideline Update 2019. Endoscopy 2019, 51, 365–388. [Google Scholar] [CrossRef]
- Cavalcoli, F.; Zilli, A.; Conte, D.; Massironi, S. Micronutrient Deficiencies in Patients with Chronic Atrophic Autoimmune Gastritis: A Review. World J. Gastroenterol. 2017, 23, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Antico, A.; Tozzoli, R.; Giavarina, D.; Tonutti, E.; Bizzaro, N. Hypovitaminosis D as Predisposing Factor for Atrophic Type A Gastritis: A Case–Control Study and Review of the Literature on the Interaction of Vitamin D with the Immune System. Clin. Rev. Allergy Immunol. 2012, 42, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Recker, R.R. Calcium Absorption and Achlorhydria. N. Engl. J. Med. 1985, 313, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Waring, A.J.; Schorah, C.J. Transport of Ascorbic Acid in Gastric Epithelial Cells In Vitro. Clin. Chim. Acta 1998, 275, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Vitamin C. In Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Lahner, E.; Zagari, R.M.; Zullo, A.; Di Sabatino, A.; Meggio, A.; Cesaro, P.; Lenti, M.V.; Annibale, B.; Corazza, G.R. Chronic Atrophic Gastritis: Natural History, Diagnosis and Therapeutic Management. A Position Paper by the Italian Society of Hospital Gastroenterologists and Digestive Endoscopists [AIGO], the Italian Society of Digestive Endoscopy [SIED], the Italian Society of Gastroenterology [SIGE], and the Italian Society of Internal Medicine [SIMI]. Dig. Liver Dis. 2019, 51, 1621–1632. [Google Scholar] [CrossRef]
- Waldum, H.L.; Hauso, Ø.; Fossmark, R. The Regulation of Gastric Acid Secretion—Clinical Perspectives. Acta Physiol. 2014, 210, 239–256. [Google Scholar] [CrossRef]
- Woolf, A.; Rose, R. Gastric Ulcer. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Guilliams, T.G.; Drake, L.E. Meal-Time Supplementation with Betaine HCl for Functional Hypochlorhydria: What Is the Evidence? Integr. Med. Clin. J. 2020, 19, 32–36. [Google Scholar]
- Yago, M.A.R.; Frymoyer, A.R.; Smelick, G.S.; Frassetto, L.A.; Budha, N.R.; Dresser, M.J.; Ware, J.A.; Benet, L.Z. Gastric Re-Acidification with Betaine HCl in Healthy Volunteers with Rabeprazole-Induced Hypochlorhydria. Mol. Pharm. 2013, 10, 4032–4037. [Google Scholar] [CrossRef] [PubMed]
- CFR—Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=310.540 (accessed on 22 January 2024).
- Yago, M.R.; Frymoyer, A.; Benet, L.Z.; Smelick, G.S.; Frassetto, L.A.; Ding, X.; Dean, B.; Salphati, L.; Budha, N.; Jin, J.Y.; et al. The Use of Betaine HCl to Enhance Dasatinib Absorption in Healthy Volunteers with Rabeprazole-Induced Hypochlorhydria. AAPS J. 2014, 16, 1358–1365. [Google Scholar] [CrossRef]
- Faber, K.P.; Wu, H.-F.; Yago, M.R.; Xu, X.; Kadiyala, P.; Frassetto, L.A.; Benet, L.Z. Meal Effects Confound Attempts to Counteract Rabeprazole-Induced Hypochlorhydria Decreases in Atazanavir Absorption. Pharm. Res. 2017, 34, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Surofchy, D.D.; Frassetto, L.A.; Benet, L.Z. Food, Acid Supplementation and Drug Absorption—A Complicated Gastric Mix: A Randomized Control Trial. Pharm. Res. 2019, 36, 155. [Google Scholar] [CrossRef] [PubMed]
- Forssmann, K.; Meier, L.; Uehleke, B.; Breuer, C.; Stange, R. A Non-Interventional, Observational Study of a Fixed Combination of Pepsin and Amino Acid Hydrochloride in Patients with Functional Dyspepsia. BMC Gastroenterol. 2017, 17, 123. [Google Scholar] [CrossRef] [PubMed]
- Carmel, R. Pepsinogens and Other Serum Markers in Pernicious Anemia. Am. J. Clin. Pathol. 1988, 90, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Zagari, R.M.; Rabitti, S.; Greenwood, D.C.; Eusebi, L.H.; Vestito, A.; Bazzoli, F. Systematic Review with Meta-Analysis: Diagnostic Performance of the Combination of Pepsinogen, Gastrin-17 and Anti-Helicobacter Pylori Antibodies Serum Assays for the Diagnosis of Atrophic Gastritis. Aliment. Pharmacol. Ther. 2017, 46, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Loy, J.A.; Sussman, F.; Tang, J. Conformational Instability of the N- and C-Terminal Lobes of Porcine Pepsin in Neutral and Alkaline Solutions. Protein Sci. Publ. Protein Soc. 1993, 2, 1383–1390. [Google Scholar] [CrossRef]
- Cattan, D.; Roucayrol, A.-M.; Launay, J.-M.; Callebert, J.; Charasz, N.; Nurit, Y.; Belaiche, J.; Kalifat, R. Circulating Gastrin, Endocrine Cells, Histamine Content, and Histidine Decarboxylase Activity in Atrophic Gastritis. Gastroenterology 1989, 97, 586–596. [Google Scholar] [CrossRef]
- Håkanson, R.; Chen, D.; Andersson, K.; Monstein, H.J.; Zhao, C.M.; Ryberg, B.; Sundler, F.; Mattsson, H. The Biology and Physiology of the ECL Cell. Yale J. Biol. Med. 1994, 67, 123–134. [Google Scholar]
- Nugent, C.C.; Falkson, S.R.; Terrell, J.M. H2 Blockers. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Kudaravalli, P.; John, S. Sucralfate. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
Function of Gastric Acid | Normal Gastric Function | Hypochlorhydria (pH > 4) |
---|---|---|
Immune functions | ||
Microbial barrier Gastric pH 1–2 | Kill ingested bacteria at a pH < 4 within 15 min [17] Reduce the amount of nitrosating bacteria coming from the oral cavity | Gastric, oral, and intestinal bacterial overgrowth [18,19] Increase in nitrosating bacteria; increased risk of gastric cancer [20] |
Inhibits nitrosamine formation and supports the production of constitutive nitric oxide | Acidic pH favors the conversion of oral nitrites to nitric oxide, limiting the formation of nitrosated compounds NO is needed to reduce intragastric pressure for gastric accommodation of food; stimulates mucus secretion | Increased N-nitroso compound formation; increased risk of gastric cancer [20] Poor gastric accommodation, dysmotility, early satiety, gastroparesis [19] |
Regulates the secretion of gastrin | Gastrin is not released at a pH < 4. Food intake increases gastric pH, causing the release of gastrin until the pH returns to <4 [21] | Hypergastrinemia, leading to the hyperplasia of adjacent enterochromaffin-like (ECL) cells. Increased risk of intestinal metaplasia and neuroendocrine tumors [19] |
Digestive functions | ||
Denaturation of proteins Activation of pepsin from pepsinogen | Breaks down 3° and 4° structure of proteins [22] Pepsin digests proteins at an acidic pH 1.5–2; inactive at a pH > 6 [23] | Incomplete breakdown of protein structure † Incomplete digestion of proteins † Delayed gastric emptying [18], dyspepsia [24,25], gastro-esophageal reflux disease (GERD) [26] |
Stimulates the activation and release of secretin | Secretin stimulates the pancreas to secrete water and HCO3−, creating a neutral pH for the small intestine(SI) [27] | Increased duodenal pH [18]; altered osmoregulation † |
Micronutrient-related functions | ||
Digestion of micronutrients | Remove B12, Fe from organic complexes | B12 [28], Fe [29], and other micronutrient deficiencies |
Maintains a reduced state for the bioavailability of micronutrients | Non-heme Fe3+ reduced to soluble Fe2+ by acid and ascorbate anion. Acidic pH allows the formation of an Fe3+ chelate with ascorbic acid that is stable at the alkaline pH of the SI [29] Vitamin C is kept primarily in an ascorbic acid form or as ascorbate as the pH rises with food intake. | Non-heme Fe3+ precipitates at a pH > 3; only Fe2+ or chelated Fe3+ can be absorbed [29]. Iron deficiency that is often refractory to oral therapy [30] Alkaline gastric juice oxidizes vitamin C making it unavailable as an antioxidant. Ascorbate unavailable to bind to Fe2+ for stabilization at a pH > 3 and subsequent absorption; also unavailable to prevent N-nitroso formation or act as an antioxidant [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, L.; McCaddon, A.; Wolffenbuttel, B.H.R. Creating a Framework for Treating Autoimmune Gastritis—The Case for Replacing Lost Acid. Nutrients 2024, 16, 662. https://doi.org/10.3390/nu16050662
Taylor L, McCaddon A, Wolffenbuttel BHR. Creating a Framework for Treating Autoimmune Gastritis—The Case for Replacing Lost Acid. Nutrients. 2024; 16(5):662. https://doi.org/10.3390/nu16050662
Chicago/Turabian StyleTaylor, Lori, Andrew McCaddon, and Bruce H. R. Wolffenbuttel. 2024. "Creating a Framework for Treating Autoimmune Gastritis—The Case for Replacing Lost Acid" Nutrients 16, no. 5: 662. https://doi.org/10.3390/nu16050662
APA StyleTaylor, L., McCaddon, A., & Wolffenbuttel, B. H. R. (2024). Creating a Framework for Treating Autoimmune Gastritis—The Case for Replacing Lost Acid. Nutrients, 16(5), 662. https://doi.org/10.3390/nu16050662