Influence of Androgen Deprivation Therapy on the Development of Sarcopenia in Patients with Prostate Cancer: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategies
2.2. Study Selection
2.3. Data Extraction and Analysis
2.4. Risk of Bias
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sathianathen, N.J.; Oestreich, M.C.; Brown, S.J.; Gupta, S.; Konety, B.R.; Dahm, P.; Kunath, F. Abiraterone acetate in combination with androgen deprivation therapy compared to androgen deprivation therapy only for metastatic hormone-sensitive prostate cancer. Cochrane Database Syst. Rev. 2020, 12, CD013245. [Google Scholar] [CrossRef]
- Lopez, P.; Newton, R.U.; Taaffe, D.R.; Singh, F.; Buffart, L.M.; Spry, N.; Tang, C.; Saad, F.; Galvão, D.A. Associations of Fat and Muscle Mass with Overall Survival in Men with Prostate Cancer: A Systematic Review with Meta-Analysis. Prostate Cancer Prostatic Dis. 2022, 25, 615–626. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Ussing, A.; Mikkelsen, M.; Villumsen, B.; Wejlgaard, J.; Bistrup, P.; Birkefoss, K.; Bandholm, T. Supervised Exercise Therapy Compared with No Exercise Therapy to Reverse Debilitating Effects of Androgen Deprivation Therapy in Patients with Prostate Cancer: A Systematic Review and Meta-Analysis. Prostate Cancer Prostatic Dis. 2022, 25, 491–506. [Google Scholar] [CrossRef]
- Shao, W.; Zhang, H.; Qi, H.; Zhang, Y. The Effects of Exercise on Body Composition of Prostate Cancer Patients Receiving Androgen Deprivation Therapy: An Update Systematic Review and Meta-Analysis. PLoS ONE 2022, 17, e0263918. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- ICD-10 Version: 2019. Available online: https://icd.who.int/browse10/2019/en#/M62.5 (accessed on 18 May 2023).
- ICD-11 Coding Tool Mortality and Morbidity Statistics (MMS). Available online: https://icd.who.int/ct11/icd11_mms/en/release (accessed on 18 May 2023).
- Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [CrossRef]
- Clay, C.A.; Perera, S.; Wagner, J.M.; Miller, M.E.; Nelson, J.B.; Greenspan, S.L. Physical Function in Men with Prostate Cancer on Androgen Deprivation Therapy. Phys. Ther. 2007, 87, 1325–1333. [Google Scholar] [CrossRef]
- Galvão, D.A.; Taaffe, D.R.; Spry, N.; Joseph, D.; Turner, D.; Newton, R.U. Reduced Muscle Strength and Functional Performance in Men with Prostate Cancer Undergoing Androgen Suppression: A Comprehensive Cross-Sectional Investigation. Prostate Cancer Prostatic Dis. 2009, 12, 198–203. [Google Scholar] [CrossRef]
- Alibhai, S.M.H.; Breunis, H.; Timilshina, N.; Johnston, C.; Tomlinson, G.; Tannock, I.; Krahn, M.; Fleshner, N.E.; Warde, P.; Canning, S.D.; et al. Impact of Androgen-Deprivation Therapy on Physical Function and Quality of Life in Men with Nonmetastatic Prostate Cancer. J. Clin. Oncol. 2010, 28, 5038–5045. [Google Scholar] [CrossRef]
- Alibhai, S.M.H.; Breunis, H.; Timilshina, N.; Naglie, G.; Tannock, I.; Krahn, M.; Warde, P.; Fleshner, N.E.; Canning, S.D.; Tomlinson, G. Long-Term Impact of Androgen-Deprivation Therapy on Physical Function and Quality of Life. Cancer 2015, 121, 2350–2357. [Google Scholar] [CrossRef]
- Basaria, S.; Lieb, J., 2nd; Tang, A.M.; DeWeese, T.; Carducci, M.; Eisenberger, M.; Dobs, A.S. Long-Term Effects of Androgen Deprivation Therapy in Prostate Cancer Patients. Clin. Endocrinol. 2002, 56, 779–786. [Google Scholar] [CrossRef]
- Overkamp, M.; Houben, L.H.P.; van der Meer, S.; van Roermund, J.G.H.; Bos, R.; Kokshoorn, A.P.J.; Larsen, M.S.; van Loon, L.J.C.; Beelen, M.; Beijer, S. Onset of Androgen Deprivation Therapy Leads to Rapid Deterioration of Body Composition, Physical Performance, Cardiometabolic Health and Quality-of-Life in Prostate Cancer Patients. Scand J. Urol. 2023, 57, 60–66. [Google Scholar] [CrossRef]
- Chang, D.; Joseph, D.J.; Ebert, M.A.; Galvão, D.A.; Taaffe, D.R.; Denham, J.W.; Newton, R.U.; Spry, N.A. Effect of Androgen Deprivation Therapy on Muscle Attenuation in Men with Prostate Cancer. J. Med. Imaging Radiat. Oncol. 2014, 58, 223–228. [Google Scholar] [CrossRef]
- Smith, M.R.; Saad, F.; Egerdie, B.; Sieber, P.R.; Tammela, T.L.J.; Ke, C.; Leder, B.Z.; Goessl, C. Sarcopenia during Androgen-Deprivation Therapy for Prostate Cancer. J. Clin. Oncol. 2012, 30, 3271–3276. [Google Scholar] [CrossRef]
- Parker, C.; Castro, E.; Fizazi, K.; Heidenreich, A.; Ost, P.; Procopio, G.; Tombal, B.; Gillessen, S. Prostate Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up†. Ann. Oncol. 2020, 31, 1119–1134. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 20 July 2023).
- McGrath, S.; Zhao, X.; Steele, R.; Benedetti, A. Estmeansd: Estimating the Sample Mean and Standard Deviation from Commonly Reported Quantiles in Meta-Analysis 2022. Stat. Methods Med. Res. 2020, 9, 2520–2537. [Google Scholar] [CrossRef]
- Companion R Package for the Guide Doing Meta-Analysis in R. Available online: https://dmetar.protectlab.org/ (accessed on 20 July 2023).
- Korczak, J.; Mardas, M.; Litwiniuk, M.; Bogdański, P.; Stelmach-Mardas, M. Androgen Deprivation Therapy for Prostate Cancer Influences Body Composition Increasing Risk of Sarcopenia. Nutrients 2023, 15, 1631. [Google Scholar] [CrossRef]
- Sheean, P.M.; O’Connor, P.; Joyce, C.; Vasilopoulos, V.; Badami, A.; Stolley, M. Clinical Features and Body Composition in Men with Hormone-Sensitive Metastatic Prostate Cancer: A Pilot Study Examining Differences by Race. Prostate Cancer 2022, 2022, 9242243. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G. Quantifying Heterogeneity in a Meta-Analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Chiang, P.-K.; Tsai, W.-K.; Chiu, A.W.-H.; Lin, J.-B.; Yang, F.-Y.; Lee, J. Muscle Loss During Androgen Deprivation Therapy Is Associated With Higher Risk of Non-Cancer Mortality in High-Risk Prostate Cancer. Front. Oncol. 2021, 11, 722652. [Google Scholar] [CrossRef]
- Couderc, A.L.; Muracciole, X.; Nouguerede, E.; Rey, D.; Schneider, S.; Champsaur, P.; Lechevallier, E.; Lalys, L.; Villani, P. HoSAGE: Sarcopenia in Older Patients before and after Treatment with Androgen Deprivation Therapy and Radiotherapy for Prostate Cancer. J. Nutr. Health Aging 2020, 24, 205–209. [Google Scholar] [CrossRef]
- Sheikhbahaei, S.; Reyes, D.K.; Rowe, S.P.; Pienta, K.J. CT-Based Assessment of Body Composition Following Neoadjuvant Chemohormonal Therapy in Patients with Castration-Naïve Oligometastatic Prostate Cancer. Prostate 2021, 81, 127–134. [Google Scholar] [CrossRef]
- Owen, P.J.; Daly, R.M.; Dalla Via, J.; Mundell, N.L.; Livingston, P.M.; Rantalainen, T.; Fraser, S.F. Does Use of Androgen Deprivation Therapy (ADT) in Men with Prostate Cancer Increase the Risk of Sarcopenia? Calcif. Tissue Int. 2019, 105, 403–411. [Google Scholar] [CrossRef]
- Kimura, Y.; Yamada, M.; Ohji, S.; Ishiyama, D.; Nishio, N.; Otobe, Y.; Koyama, S.; Suzuki, M.; Ichikawa, T.; Ito, D.; et al. Presence of Sarcopenic Obesity and Evaluation of the Associated Muscle Quality in Japanese Older Men with Prostate Cancer Undergoing Androgen Deprivation Therapy. J. Geriatr. Oncol. 2019, 10, 835–838. [Google Scholar] [CrossRef]
- Narici, M.V.; Maffulli, N. Sarcopenia: Characteristics, mechanisms and functional significance. Br. Med. Bull. 2010, 95, 139–159. [Google Scholar] [CrossRef]
- Nam, Y.S.; Lee, G.; Yun, J.M.; Cho, B. Testosterone Replacement, Muscle Strength, and Physical Function. World J. Mens Health 2018, 36, 110–122. [Google Scholar] [CrossRef]
- Griggs, R.C.; Kingston, W.; Jozefowicz, R.F.; Herr, B.E.; Forbes, G.; Halliday, D. Effect of testosterone on muscle mass and muscle protein synthesis. J. Appl. Physiol. 1989, 66, 498–503. [Google Scholar] [CrossRef]
- Kaluźniak-Szymanowska, A.; Krzymińska-Siemaszko, R.; Deskur-Śmielecka, E.; Lewandowicz, M.; Kaczmarek, B.; Wieczorowska-Tobis, K. Malnutrition, Sarcopenia, and Malnutrition-Sarcopenia Syndrome in Older Adults with COPD. Nutrients 2021, 14, 44. [Google Scholar] [CrossRef]
- Son, S.W.; Song, D.S.; Chang, U.I.; Yang, J.M. Definition of Sarcopenia in Chronic Liver Disease. Life 2021, 11, 349. [Google Scholar] [CrossRef]
- de Pablos-Rodríguez, P.; Del Pino-Sedeño, T.; Infante-Ventura, D.; de Armas-Castellano, A.; Ramírez Backhaus, M.; Ferrer, J.F.L.; de Pablos-Velasco, P.; Rueda-Domínguez, A.; Trujillo-Martín, M.M. Prognostic Impact of Sarcopenia in Patients with Advanced Prostate Carcinoma: A Systematic Review. J. Clin. Med. 2022, 12, 57. [Google Scholar] [CrossRef]
- Smith, M.R. Changes in fat and lean body mass during androgen-deprivation therapy for prostate cancer. Urology 2004, 63, 742–745. [Google Scholar] [CrossRef]
- Shahinian, V.B.; Kuo, Y.F.; Freeman, J.L.; Goodwin, J.S. Risk of fracture after androgen deprivation for prostate cancer. N. Engl. J. Med. 2005, 352, 154–164. [Google Scholar] [CrossRef]
- Storer, T.W.; Miciek, R.; Travison, T.G. Muscle function, physical performance and body composition changes in men with prostate cancer undergoing androgen deprivation therapy. Asian J. Androl. 2012, 2, 204–221. [Google Scholar] [CrossRef]
- McGovern, J.; Dolan, R.D.; Horgan, P.G.; Laird, B.J.; McMillan, D.C. Computed tomography-defined low skeletal muscle index and density in cancer patients: Observations from a systematic review. J. Cachexia Sarcopenia Muscle 2021, 12, 1408–1417. [Google Scholar] [CrossRef]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; AlkaMeSy Study Group. Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010, 33, 920–922. [Google Scholar] [CrossRef]
- Di Bella, C.M.; Howard, L.E.; Oyekunle, T.; De Hoedt, A.M.; Salama, J.K.; Song, H.; Freedland, S.J.; Allott, E.H. Abdominal and pelvic adipose tissue distribution and risk of prostate cancer recurrence after radiation therapy. Prostate 2020, 80, 1244–1252. [Google Scholar] [CrossRef]
Study | Year | Country | Study Design | Study Population | Control Population | Baseline | Follow Up | ADT Implementation: Prior/Post Baseline |
---|---|---|---|---|---|---|---|---|
SARCOPENIA ASSESSED AT BASELINE AND FOLLOW-UP | ||||||||
Chiang et al. [25] | 2021 | Italy | Retrospective observational study, single center | 125 | No | Before initiation of ADT+radiotherapy | Within one year after treatment initiation | Post |
Korczak et al. [22] | 2023 | Poland | Prospective observational study, single center | HSPC 34 CRPC 30 | No | HSCPC: before initiation of ADT+docetaxel±radiotherapy CRPC: during ADT+abiraterone or enzalutamide±radiotherapy±prostatectomy | At the moment of biochemical progression | HSPC post CRPC prior+post; no information about prior treatment |
Sheean et al. [23] | 2022 | USA | Retrospective observational study | 74 Subgroup at baseline: 54 Subgroup at follow-up: 19 | No | Before initiation of ADT±docetaxel | At the moment of death or last contact | Post |
Couderc et al. [26] | 2020 | France | Prospective observational study, single center | 31 Subgroup at follow-up: 6 | No | Before initiation of ADT+radiotherapy | At the end of the treatment | Post |
Sheikhbahaei et al. [27] | 2020 | USA | Retrospective observational study, single center | 22 | No | Before initiation of neoadjuvant therapy: ADT+docetaxel | I: 1 month after the completion of neoadjuvant therapy II: approximately 1 year after initiation of neoadjuvant therapy | Post |
SARCOPENIA ASSESSED AS A SINGLE MEASURMENT DURING ADT | ||||||||
Owen et al. [28] | 2019 | Australia | Cross-sectional study | 70 | Non-ADT prostate cancer: 52 Healthy: 70 | During ADT treatment ± chemotherapy | Prior | |
Kimura et al. [29] | 2019 | Japan | Cross-sectional study | 89 | No | During ADT | Prior |
Study | Age [Years] | PSA [ng/mL] | Gleason Score | Albumin [g/L] | Hb [mmol/l] | Performance Status | Comorbidities | BMI [kg/m2] | BMI Category |
---|---|---|---|---|---|---|---|---|---|
SARCOPENIA ASSESSED AT BASELINE AND FOLLOW-UP | |||||||||
Chiang et al. [25] | 73 median, 67–78 IQR | 27.8 median, 21.2–60.5 IQR | N/A | N/A | N/A | N/A | Age-adjusted CCI: 4 median, 3–5 IQR | 24.2 ± 3.5 | N/A |
Korczak et al. [22] | HSPC: 68.6 ± 7.1 CRPC: 72.0 ± 7.5 | HSPC: 206.3 ± 547.6 CRPC: 82 ± 155.5 | HSPC: 8 median, 5–9 rangeCRPC: 7 median, 4–9 range | N/A | HSPC: 8.176 ± 0.8370 CRPC: 8.778 ± 1.406 | WHO HSPC: 0, 6%; 1, 70%; 2, 24%CRPC: 0, 100% | Diabetes HSPC: 26.5; CRPC: 16.6 Hypertension HSPC: 61.8; CRPC: 66.7 Ischemic heart disease HSPC: 14.7; CRPC: 46.76 Other HSPC: 44.1; CRPC: 40.0 | HSPC: 28.5 ± 4.9 CRPC: 29.3 ± 4.4 | HSPC: underweight 3%; normal: 20%; overweight: 35%; obesity: 42% CRPC: underweight 0%; normal: 19%; overweight: 37%; obesity: 44% |
Sheean et al. [23] | 71 median, 63–79 IQR | N = 51 1 110 median, IQR 35–677 | 7, 36% 8–10, 64% | N = 70 1 36 median, 34.0–41.0 IQR g/dL | N = 71 1 7.76 median, 6.83–8.5 IQR | ECOG 0, 80% ≥1, 20% | 2 median, 1–3 IQR 28% diabetes | N = 71 1 27.6 median, 24.8–31.1 IQR | N = 55 1 Normal 22%, overweight 46%, obesity 32% |
Couderc et al. [26] | 80.5 ± 4.3, 70–88 range | N/A | N/A | 41.8 ± 2.5, 37.6–47.9 range | N/A | N/A | Number of comorbidities 3.4 ± 1.6, 0–7 range ≥5 drugs 58.1% | 26.6 ± 3.6, 21–42 range | N/A |
Sheikhbahaei et al. [27] | 58 median, 54.3–64.3 IQR, 48–75 range | 14 median, 7.2–44 IQR | 8 median, 8–9 IQR, 7–10 range | N/A | N/A | N/A | N/A | 29.3 median, 25.1–33.4 IQR | Normal 22.7%; overweight 27.3%; obese 50% |
SARCOPENIA ASSESSED AS A SINGLE MEASURMENT DURING ADT | |||||||||
Owen et al. [28] | 71 ± 6 | N/A | N/A | N/A | N/A | N/A | Yes 88.6% If yes, mean 3 ± 1 | 28.8 ± 5.0 | N/A |
Kimura et al. [29] | 79.8 ± 6.4 | 0.67 ± 1.69 | ≤6, 16.8% ≤7, 27.0% ≥8, 56.2% | N/A | N/A | N/A | ≥3, 16.9% | 23.1 ± 3.0 | N/A |
Study | Cancer | Metastasis Sites | Current Therapy | ADT Drug | ADT Duration | Other Drugs or Interventions |
---|---|---|---|---|---|---|
SARCOPENIA ASSESSED AT BASELINE AND FOLLOW-UP | ||||||
Chiang et al. [25] | NCCN: high-risk 72.0%; very high-risk 28.0% | N/A | ADT+EBRT; 72-76Gy Followed by 2–3 years of adjuvant ADT | N/A | N/A | N/A |
Korczak et al. [22] | Metastatic HSPC and CRPC | Bones HSPC: 94%; CRPC: 70%Lymph nodes HSPC: 74%; CRPC: 53% Parenchymal organs HSPC: 3%; CRPC: 0 | HSPC: ADT+docetaxel 75 mg/m2 79.5%/docetaxel 50 mg/m2 20.5%, with radiotherapy 11.8%, prostatectomy 0 CRPC: ADT+abiraterone +predniosne 70%/enzalutamide 30% with radiotherapy 63.3%, prostatectomy 13.3% | N/A | N/A | Dietary consultation HSPC: 20%; CRPC: 38%; ONS 2 for approx. 50% of them if NRS ≥ 3 |
Sheean et al. [23] | Metastatic HSPC | Total distant metastases 1 median, 1–2 IQR Bone metastases 76% | ADT±docetaxel 34% | Androgen receptor inhibitors; gonadotropin-releasing hormone analogues; gonadotropin-releasing hormone antagonists | N/A | N/A |
Couderc et al. [26] | High-risk 45.2%; intermediate 45.2% | N/A | N = 19 1 ADT+radiotherapy mean 75.6 Gy | N/A | N = 19 1 6 months 42.11% 15 months 52.63% 18 months 5.26% | N/A |
Sheikhbahaei et al. [27] | Castration-naïve oligometastatic cancer | N/A | Neoadjuvant ADT+docetaxel 75/55/35 mg/m2+dexamethasone 2/day, beginning the day before chemotherapy, for 3 days 45,45%: concurrent abiraterone+prednisone for 1–16 weeks N = 21 1 radical prostatectomy+radiation therapy to the prostatic/pelvic bed+consolidative stereotactic radiation to metastases | Luteinizing hormone-releasing hormone agonists | Neoadjuvant therapy 9 weeks median, 9–11 IQR From neoadjuvant therapy to prostatectomy 9 weeks median, 7–10 IQR N = 21 1 ADT for 12 months after prostatectomy | N/A |
SARCOPENIA ASSESSED AS A SINGLE MEASURMENT DURING ADT | ||||||
Owen et al. [28] | Localized/removed 64.3%; advanced 7.1%; unknown 28.6% | N/A | ADT±prior therapy | Goserelin 57.1% Leuprorelin 20% Goserelin+bicalutamide 7.1% Leuprorelin+bicalutamide 4.3% Triptorelin 4.3% Degarelix 2.9% Abiraterone 1.4% Degarelix+bicalutamide 1.4% Enzalutamide 1.4% | Min 12 weeks; 25 ± 36 months | Previous prostatectomy 48.6% Previous radiotherapy 68.6% Previous chemotherapy 15.7% |
Kimura et al. [29] | T1 10.1%; T2 39.3%; T3/T4 50.6% | N/A | ADT±prior therapy | N/A | 83.6 ± 57.6 months | Prostatectomy 6.7% Radiation 21.3% |
Study | BMI [kg/m2] Baseline | BMI [kg/m2] Follow Up | Appendicular Mass [kg/m2] | PMI [cm2/m2] Baseline | PMI [Cm2/M2] Follow Up | SMI [cm2/m2] Baseline | SMI [cm2/m2] Follow Up | SMD [HU] Baseline | SMD [HU] Follow Up | SATI [cm2/m2] Baseline | SATI [cm2/m2] Follow Up | VATI [cm2/m2] Baseline | VATI [cm2/m2] Follow Up | TATI [cm2/m2] Baseline | TATI [cm2/m2] Follow Up |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SARCOPENIA ASSESSED AT BASELINE AND FOLLOW-UP | |||||||||||||||
Chiang et al. [25] | 24.2 ± 3.5 | 24.5 ± 3.5 | N/A | N/A | N/A | 47.2 ± 7.4 | 44.5 ± 7.3 | 37.8 ± 5.6 | 34.9 ± 5.9 | 39.9 ± 13.6 | 44.7 ± 14.7 | 55.2 ± 28.0 | 60.1 ± 29.6 | 95.1 ± 37.7 | 104.6 ± 40.4 |
Korczak et al. [22] | HSPC: 28.5 ± 4.9 CRPC: 29.3 ± 4.4 | N/A | N/A | N/A | N/A | HSPC: 54.01 ± 9.85 CRPC: 52.0 ± 8.311 | HSPC: 50.4 ± 9.61 CRPC: 47.4 ± 6.46 | N/A | N/A | HSPC: 66.47 ± 33.36 CRPC: 86.1 ± 29.7 | HSPC: 78.2 ± 39.2 CRPC: 92.01 ± 40.2 | HSPC: 90.40 ± 44.2CRPC: 110.2 ± 37.9 | HSPC: 101.7 ± 42.6 CRPC: 112.4 ± 39.89 | N/A | N/A |
Sheean et al. [23] | N = 71 1 27.6 median, 24.8–31.1 IQR | N/A | N/A | N/A | N/A | N = 55 1 49.8 median, 40.2–56.2 IQR | Non-Black N = 14 1: −3.7 median, (−8.5)–(−0.4) IQR (7% loss) Black N = 5 1: −1.2 median, (−1.8)–12.5) IQR (2% gain) | N = 55 1 33.8, median 26.3–41.8 IQR | Non-Black N = 14 1: −5.7 median, (−9.6)−(3.2) IQR (14%) Black N = 5 1: −5.3 median, (−7.2)−(−1.4) IQR (12%) | N = 55 1 51.9 median, 33.3–69.4 IQR | Subcutaneous adipose tissue change [cm2] Non-Black N = 14 1: 23.2 median, (−6.5)−51.5 IQR (5% gain) Black N = 5 1: 95.2 median, (89.4–172.3) IQR (8% gain) | N = 55 1 61.6 median, 33.6–98.9 IQR | Visceral adipose tissue change [cm2] Non-Black N = 14 1: −16.0 median, (−32.2)−3.5 IQR (1% gain) Black N = 5 1: median 40.1, 29.4–41.0 IQR (2% gain) | N/A | N/A |
Couderc et al. [26] | N = 19 1 26.1 ± 2.6, 21–32 range | N = 19 1 25.5 ± 3.2, 18–31.9 range | ASSM/height2 < 7.0 for 2 patients | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Sheikhbahaei et al. [27] | 29.3 median, 25.1–33.4 IQR | N/A | N/A | 8.7 median, 8.11–11.3 IQR Psoas muscle mass 27.5 median, 24.6–36.7 IQR | Psoas muscle areaI: −13.9% (−7.6, −16.5)II: −13.2(−6, −11.2)) | N/A | N/A | N/A | N/A | 72.4 median, 51.0–107.1 IQR Subcutaneous adiposity [cm2]: 217 median, 159.8–340.9 IQR | Subcutaneous fat [cm2] I: +8.9(+5.1, +21.5) II: +18.9(+6.1, +33.8) | 81.6 median, 46.4–102.9 IQR Visceral adiposity [cm2]: 261.3 median, 142.4–326.9 IQR | Visceral fat [cm2] I: −1.6(−9.9, +18.7) II: +8.4(−1.7, +23.8) | Total adiposity [cm2] 476.8 median, 389.8–685 IQR | Total adiposity [cm2] I: +5.7(+0.8, +15.2)II: +10.3(+2.7, +28.5) |
SARCOPENIA ASSESSED AS A SINGLE MEASURMENT DURING ADT | |||||||||||||||
Owen et al. [28] | 28.8 ± 5.0 | ALMI 8.07 ± 0.95 ALMBMI 0.875 ± 0.117 | N/A | N/A | N/A | N/A | N/A | N/A | |||||||
Kimura et al. [29] | 23.1 ± 3.0 | N/A | N/A | 7.23 ± 1.10 [kg/m2] | 0.20 ± 0.04 | N/A | N/A | N/A |
Study | Sarcopenia Definition | Assessment | Assessment Methodology | Sarcopenia at Baseline | Sarcopenia at Follow Up | Time to Follow Up | Significance of Outcomes | Correlation Between Survival and Sarcopenia |
---|---|---|---|---|---|---|---|---|
SARCOPENIA ASSESSED AT BASELINE AND FOLLOW-UP | ||||||||
Chiang et al. [25] | SMI: <43.2 cm2/m2 | CT: L3 level | One blinded researcher | 33.6% | 48.0% | 180 days median, 146–223 IQR | p = 0.001 | Sarcopenia at baseline was not associated with 3-year non-cancer-specific survival and 3-year prostate cancer-specific survival |
Korczak et al. [22] | SMI: 1. 53 cm2/m2 2. 43 cm2/m2 for BMI < 25 kg/m2 3. Sarcopenic obesity: <53 cm2/m2 for BMI > 30 kg/m2 | CT: L3 level | Software CoreSlicer.com. Manual correction | HSPC: 47.06% CRPC: 46.67% | HSPC: 58% CRPC: 79.3% | 12.33 months median, 5.4–26 range | HSPC: NS CRPC: p = 0.015 | Sarcopenia was not correlated with progression-free survival |
Sheean et al. [23] | SMI: 1. 53 cm2/m2 2. 43 cm2/m2 for BMI < 25 kg/m2 3. Sarcopenic obesity: <53 cm2/m2 for BMI > 30 kg/m2 | CT: L3 level | Automated tissue demarcation. Manual correction. 10 images were assessed for quality assurance | N = 55 49% (15% of N = 55 had sarcopenic obesity) | N = 8 0% | 12.5 months median | N/A | Sarcopenia was not correlated with overall survival |
Couderc et al. [26] | EWGSOP2 guidelines Hand-grip < 27 kg DXA ASSM/height2 < 7.0 kg/m2 | Baseline: hand-grip strengthFollow-up: DXA | Hand-grip strength test was performed according to ASHT recommendations | N = 31 1 Probable sarcopenia 25% | N = 6 1 1 patient | N/A | N/A | N/A |
Sheikhbahaei et al. [27] | PMI < 5.7 cm2/m2 Sarcopenic obesity: PMI < 5.7 cm2/m2 for BMI > 30 kg/m2 | CT: L3–L4 level | Manual analysis of anonymized images twice at different time points. Third reviewer assessed differences | Sarcopenic obesity 9.1% | No change at both follow up CTs | First: 3 months median, 2–3 IQR Second: 12 months median, 10.5–17.5 IQR | N/A | N/A |
SARCOPENIA ASSESSED AS A SINGLE MEASURMENT | ||||||||
Owen et al. [28] | ALMHFM ≤−1.816 and weak handgrip strength and/ or slow gait speed based on EWGSOP1, EWGSOP2, FNIH and IWGS | Handgrip dynamometer 4 m walk test DXA | Six tests, three for each hand, were performed for dynamometry (the highest). Dynamometer Jamar Plus Digital Three tests for gait speed were performed (the fastest) For DXA researchers were blinded. Software 12.30.008 (Lunar iDXA, GE Lunar Corp., Madison, WI, USA) | ADT group: FNIH 1.0% EWGSOP1 1.0% EGSOP2 or IWGS 0 No-ADT group: EWGSOP1 1.92% Healthy group EWGSOP1 1.43% | N/A | N/A | N/A | |
Kimura et al. [29] | Walking speed < 0.8 m/s and/or handgrip strength < 26 kg+ SMI < 7.0 kg/m2 Sarcopenic obesity: sarcopenic criteria+body fat ≥ 25% | Handgrip dynamometer 5 m walkingBIA | Two tests were performed for dynamometry (the highest) and walking test (average) Dynamometer TKK 5401. BMI system MC-780A | Sarcopenia non-obese 15.7% Sarcopenic obesity 13.5% | N/A | N/A | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stelmach-Mardas, M.; Warchoł, W.; Garczyk, A.; Warchoł, E.; Korczak, J.; Litwiniuk, M.; Brajer-Luftmann, B.; Mardas, M. Influence of Androgen Deprivation Therapy on the Development of Sarcopenia in Patients with Prostate Cancer: A Systematic Review. Nutrients 2024, 16, 656. https://doi.org/10.3390/nu16050656
Stelmach-Mardas M, Warchoł W, Garczyk A, Warchoł E, Korczak J, Litwiniuk M, Brajer-Luftmann B, Mardas M. Influence of Androgen Deprivation Therapy on the Development of Sarcopenia in Patients with Prostate Cancer: A Systematic Review. Nutrients. 2024; 16(5):656. https://doi.org/10.3390/nu16050656
Chicago/Turabian StyleStelmach-Mardas, Marta, Wojciech Warchoł, Aleksandra Garczyk, Emilia Warchoł, Jolanta Korczak, Maria Litwiniuk, Beata Brajer-Luftmann, and Marcin Mardas. 2024. "Influence of Androgen Deprivation Therapy on the Development of Sarcopenia in Patients with Prostate Cancer: A Systematic Review" Nutrients 16, no. 5: 656. https://doi.org/10.3390/nu16050656
APA StyleStelmach-Mardas, M., Warchoł, W., Garczyk, A., Warchoł, E., Korczak, J., Litwiniuk, M., Brajer-Luftmann, B., & Mardas, M. (2024). Influence of Androgen Deprivation Therapy on the Development of Sarcopenia in Patients with Prostate Cancer: A Systematic Review. Nutrients, 16(5), 656. https://doi.org/10.3390/nu16050656