Immuno-Enhancing Effects of Galium aparine L. in Cyclophosphamide-Induced Immunosuppressed Animal Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Animals
2.3. Experimental Design
2.4. Blood and Immune Organ Collection
2.5. Proliferative Effect of Splenocytes
2.6. NK Cell Activity against YAC-1 Cells
2.7. Splenocyte Proliferation Cytokine
2.8. RNA-seq
2.9. Statistical Analysis
3. Results
3.1. Changes in Mouse Body Weight, Spleen Weight, and Spleen Cell Index
3.2. WBC Number and WBC Differential Count
3.3. Splenocyte Proliferation
3.4. NK Cell Activity
3.5. The Impact of Galium Aparine Extract on Cytokine Levels
3.6. Identification of Differentially Expressed Genes (DEGs) in the GAE Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, G.; Liu, J.; Zhao, W.; Liu, Y.; Tian, X. Separation and purification and in vitro anti-proliferative activity of leukemia cell K562 of Galium aparine L. petroleum ether phase. Saudi Pharm. J. 2016, 24, 241–244. [Google Scholar] [CrossRef]
- Dei Cas, L.; Pugni, F.; Fico, G. Tradition of use on medicinal species in Valfurva (Sondrio, Italy). J. Ethnopharmacol. 2015, 163, 113–134. [Google Scholar] [CrossRef] [PubMed]
- Romero, C.D.; Chopin, S.F.; Buck, G.; Martinez, E.; Garcia, M.; Bixby, L. Antibacterial properties of common herbal remedies of the southwest. J. Ethnopharmacol. 2005, 99, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, M. Medicinal Plants. Plants 2021, 10, 1355. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, F.J. Galium aparine as a remedy for chronic ulcers. Br. Med. J. 1883, 1, 1173–1174. [Google Scholar] [CrossRef] [PubMed]
- Sahin, B.; Karabulut, S.; Filiz, A.K.; Özkaraca, M.; Gezer, A.; Akpulat, H.A.; Ataseven, H. Galium aparine L. protects against acetaminophen-induced hepatotoxicity in rats. Chem. Biol. Interact. 2022, 1, 110119. [Google Scholar] [CrossRef] [PubMed]
- Bokhari, J.; Khan, M.R.; Shabbir, M.; Rashid, U.; Jan, S.; Zai, J.A. Evaluation of diverse antioxidant activities of Galium aparine. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2013, 102, 24–29. [Google Scholar] [CrossRef]
- Ilina, T.; Kashpur, N.; Granica, S.; Bazylko, A.; Shinkovenko, I.; Kovalyova, A.; Goryacha, O.; Koshovyi, O. Phytochemical profiles and in vitro immunomodulatory activity of ethanolic extracts from Galium aparine L. Plants 2019, 8, 541. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, C.; Gencer, M.; Coksu, I.; Ozbek, T.; Derman, S. A new strategy to achieve high antimicrobial activity: Green synthesised silver nanoparticle formulations with Galium aparine and Helichrysum arenarium. Arh. Hig. Rada Toksikol. 2023, 74, 90–98. [Google Scholar] [CrossRef]
- Round, J.L.; Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 2009, 9, 313–323. [Google Scholar] [CrossRef]
- Prager, I.; Watzl, C. Mechanisms of natural killer cell-mediated cellular cytotoxicity. J. Leukoc. Biol. 2019, 105, 1319–1329. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Galat, V.; Galat, Y.; Lee, Y.K.A.; Wainwright, D.; Wu, J. NK cell-based cancer immunotherapy: From basic biology to clinical development. J. Hematol. Oncol. 2021, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Gamliel, M.; Goldman-Wohl, D.; Isaacson, B.; Gur, C.; Stein, N.; Yamin, R.; Berger, M.; Grunewald, M.; Keshet, E.; Rais, Y.; et al. Trained memory of human uterine NK cells enhances their function in subsequent pregnancies. Immunity 2018, 48, 951–962.e5. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, M.; Roos, W.P.; Kaina, B. Apoptotic death induced by the cyclophosphamide analogue mafosfamide in human lymphoblastoid cells: Contribution of DNA replication, transcription inhibition and Chk/p53 signaling. Toxicol. Appl. Pharmacol. 2008, 229, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tong, X.; Li, P.; Cao, H.; Su, W. Immuno-enhancement effects of Shenqi Fuzheng Injection on cyclophosphamide-induced immunosuppression in Balb/c mice. J. Ethnopharmacol. 2012, 139, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Dong, Z.; Sun, Y.; Li, S.; Zhao, Z. Protective effect of bergenin against cyclophosphamide-induced immunosuppression by immunomodulatory effect and antioxidation in Balb/c mice. Molecules 2018, 23, 2668. [Google Scholar] [CrossRef]
- Cesta, M.F. Normal structure, function, and histology of the spleen. Toxicol. Pathol. 2006, 34, 455–465. [Google Scholar] [CrossRef]
- Lee, I.H.; Kwon, D.H.; Lee, S.H.; Lee, S.D.; Kim, D.W.; Lee, J.H.; Hyun, S.K.; Kang, K.H.; Kim, C.M.; Kim, B.W.; et al. Immune-modulation effect of Ulmus macrocarpa hance water extract on BALB/c mice. J. Life Sci. 2014, 24, 1151–1156. [Google Scholar] [CrossRef]
- Artym, J.; Zimecki, M.; Kruzel, M. Normalization of peripheral blood cell composition by lactoferrin in cyclophosphamide-treated mice. Med. Sci. Monit. 2004, 10, 84–89. [Google Scholar]
- Vivier, E.; Nunes, J.A.; Vely, F. Natural killer cell signaling pathway. Science 2004, 306, 1517–1519. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kwon, H.S.; Kim, D.H.; Park, I.H.; Park, S.J.; Shin, H.K.; Kim, J.K. Immunomodulatory effects of propolis and fermented-propolis in BALB/c mice. Korean J. Food Sci. Technol. 2008, 40, 574–579. [Google Scholar] [CrossRef]
- Hughes, E.; Scurr, M.; Campbell, E.; Jones, E.; Godkin, A.; Gallimore, A. T-cell modulation by cyclophosphamide for tumour therapy. Immunology 2018, 154, 62–68. [Google Scholar] [CrossRef]
- Madondo, M.T.; Quinn, M.; Plebanski, M. Low dose cyclophosphamide: Mechanisms of T cell modulation. Cancer Treat. Rev. 2016, 42, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qi, Q.; Li, A.; Yang, M.; Huang, W.; Xu, H.; Zhao, Z.; Li, S. Immuno-enhancement effects of Yifei Tongluo Granules on cyclophosphamide-induced immunosuppression in Balb/c mice. J. Ethnopharmacol. 2016, 194, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.D.; Kim, J.C.; Lim, T.G.; Song, Y.R.; Cho, C.W.; Jang, M. Mixing ratio optimization for functional complex extracts of Rhodiola crenulata, Panax quinquefolius, and Astragalus membranaceus using mixture design and verification of immune functional efficacy in animal models. J. Funct. Foods 2018, 40, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hu, X.; Wang, S.; Jiao, Z.; Sun, T.; Liu, T.; Song, K. Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation. Int. J. Biol. Macromol. 2020, 145, 985–997. [Google Scholar] [CrossRef] [PubMed]
- Mao, G.H.; Ren, Y.; Li, Q.; Wu, H.Y.; Jin, D.; Zhao, T.; Xu, C.Q.; Zhang, D.H.; Jia, Q.D.; Bai, Y.P.; et al. Anti-tumor and immunomodulatory activity of selenium (Se)-polysaccharide from Se-enriched Grifola frondosa. Int. J. Biol. Macromol. 2016, 82, 607–613. [Google Scholar] [CrossRef]
- Han, J.; Xia, J.; Zhang, L.; Cai, E.; Zhao, Y.; Fei, X.; Jia, X.; Yang, H.; Liu, S. Studies of the effects and mechanisms of ginsenoside Re and Rk3 on myelosuppression induced by cyclophosphamide. J. Ginseng Res. 2019, 43, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Wang, J.; Wang, Y.; Pang, L.; Wang, Y.; Xu, W.; Xue, C. Study of the radio-protective effect of cuttlefish ink on hemopoietic injury. Asia Pac. J. Clin. Nutr. 2007, 16 (Suppl. S1), 239–243. [Google Scholar] [PubMed]
- Shin, J.S.; Chung, S.H.; Lee, W.S.; Lee, J.Y.; Kim, J.L.; Lee, K.T. Immunostimulatory effects of cordycepin-enriched WIB-801CE from Cordyceps militaris in splenocytes and cyclophosphamide-induced immunosuppressed mice. Phytother. Res. 2018, 32, 132–139. [Google Scholar] [CrossRef]
- Monmai, C.; You, S.; Park, W.J. Immune-enhancing effects of anionic macromolecules extracted from Codium fragile on cyclophosphamide-treated mice. PLoS ONE 2019, 14, e0211570. [Google Scholar] [CrossRef]
- Lori, A.; Perrotta, M.; Lembo, G.; Carnevale, D. The spleen: A hub connecting nervous and immune systems in cardiovascular and metabolic diseases. Int. J. Mol. Sci. 2017, 18, 1216. [Google Scholar] [CrossRef]
- Sarangi, I.; Ghosh, D.; Bhutia, S.K.; Mallick, S.K.; Maiti, T.K. Anti-tumor and immunomodulating effects of Pleurotus ostreatus mycelia-derived proteoglycans. Int. Immunopharmacol. 2006, 6, 1287–1297. [Google Scholar] [CrossRef]
- Wahyuningsih, S.P.A.; Pramudya, M.; Putri, I.P.; Winarni, D.; Savira, N.I.I.; Darmanto, W. Crude polysaccharides from okra pods (Abelmoschus esculentus) grown in Indonesia enhance the immune response due to bacterial infection. Adv. Pharmacol. Sci. 2018, 2018, 8505383. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, H.; Diao, Y. Natural killer cells and current applications of chimeric antigen receptor-modified NK-92 cells in tumor immunotherapy. Int. J. Mol. Sci. 2019, 20, 317. [Google Scholar] [CrossRef]
- Campbell, K.S.; Hasegawa, J. Natural killer cell biology: An update and future directions. J. Allergy Clin. Immunol. 2013, 132, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Cerwenka, A.; Lanier, L.L. Natural killer cell memory in infection, inflammation and cancer. Nat. Rev. Immunol. 2016, 16, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Hammer, Q.; Ruckert, T.; Romagnani, C. Natural killer cell specificity for viral infections. Nat. Immunol. 2018, 19, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Pech, M.F.; Fong, L.E.; Villalta, J.E.; Chan, L.J.; Kharbanda, S.; O’Brien, J.J.; McAllister, F.E.; Firestone, A.J.; Jan, C.H.; Settleman, J. Systematic identification of cancer cell vulnerabilities to natural killer cell-mediated immune surveillance. eLife 2019, 8, e47362. [Google Scholar] [CrossRef] [PubMed]
- Melaiu, O.; Lucarini, V.; Cifaldi, L.; Fruci, D. Influence of the tumor microenvironment on NK cell function in solid tumors. Front. Immunol. 2020, 21, 3038. [Google Scholar] [CrossRef] [PubMed]
- Tomaipitinca, L.; Russo, E.; Bernardini, G. NK cell surveillance of hematological malignancies. Therapeutic implications and regulation by chemokine receptors. Mol. Asp. Med. 2021, 80, 100968. [Google Scholar] [CrossRef] [PubMed]
- Ferlazzo, G.; Münz, C. NK cell compartments and their activation by dendritic cells. J. Immunol. 2004, 172, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Zitvogel, L.; Terme, M.; Borg, C.; Trinchieri, G. Dendritic cell-NK cell cross-talk: Regulation and physiopathology. Curr. Top. Microbiol. Immunol. 2006, 298, 157–174. [Google Scholar] [CrossRef] [PubMed]
- Chijioke, O.; Munz, C. Dendritic cell derived cytokines in human natural killer cell differentiation and activation. Front. Immunol. 2013, 4, 365. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Lal, G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front. Immunol. 2017, 8, 1124. [Google Scholar] [CrossRef] [PubMed]
- Capellino, S.; Claus, M.; Watzl, C. Regulation of natural killer cell activity by glucocorticoids, serotonin, dopamine, and epinephrine. Cell. Mol. Immunol. 2020, 17, 705–711. [Google Scholar] [CrossRef]
- Manosroi, A.; Saraphanchotiwitthaya, A.; Manosroi, J. Immunomodulatory activities of Clausena excavata Burm. f. wood extracts. J. Ethnopharmacol. 2003, 89, 155–160. [Google Scholar] [CrossRef]
- Mosser, D.M. The many faces of macrophage activation. J. Leukoc. Biol. 2003, 73, 209–212. [Google Scholar] [CrossRef]
- Fernández-Ortega, C.; Dubed, M.; Ramos, Y.; Navea, L.; Alvarez, G.; Lobaina, L.; López, L.; Casillas, D.; Rodríguez, L. Non-induced leukocyte extract reduces HIV replication and TNF secretion. Biochem. Biophys. Res. Commun. 2004, 325, 1075–1081. [Google Scholar] [CrossRef]
- Letsch, A.; Scheibenbogen, C. Quantification and characterization of specific T-cells by antigen-specific cytokine production using ELISPOT assay or intracellular cytokine staining. Methods 2003, 31, 143–149. [Google Scholar] [CrossRef]
- Li, J.; Cheng, Y.; Zhang, X.; Zheng, L.; Han, Z.; Li, P.; Xiao, Y.; Zhang, Q.; Wang, F. The in vivo immunomodulatory and synergistic anti-tumor activity of thymosin α1- thymopentin fusion peptide and its binding to TLR2. Cancer Lett. 2013, 337, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Bastid, J.; Cottalorda-Regairaz, A.; Alberici, G.; Bonnefoy, N.; Eliaou, J.F.; Bensussan, A. ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene 2013, 32, 1743–1751. [Google Scholar] [CrossRef] [PubMed]
- Albonici, L.; Giganti, M.G.; Modesti, A.; Manzari, V.; Bei, R. Multifaceted role of the placental growth factor (PlGF) in the antitumor immune response and cancer progression. Int. J. Mol. Sci. 2019, 20, 2970. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Wang, S.; Du, Y.; Dai, Y.; Huai, Q.; Li, X.; Du, Y.; Dai, H.; Yuan, W.; Yin, S.; et al. Tumor microenvironment-related gene selenium-binding protein 1 (SELENBP1) is associated with immunotherapy efficacy and survival in colorectal cancer. BMC Gastroenterol. 2022, 22, 437. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.M.F.; Cheng, Y.Y.; Tang, T.W.H.; Shih, C.; Chen, J.H.; Hsieh, P.C.H. Prostaglandin E2 receptor 2 modulates macrophage activity for cardiac repair. J. Am. Heart Assoc. 2018, 7, e009216. [Google Scholar] [CrossRef]
- Becker, S.M.; Delamarre, L.; Mellman, I.; Andrews, N.W. Differential role of the Ca2+ sensor synaptotagmin VII in macrophages and dendritic cells. Immunobiology 2009, 214, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Greenlee-Wacker, M.C.; Galvan, M.D.; Bohlson, S.S. CD93: Recent advances and implications in disease. Curr. Drug Targets 2012, 13, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Greenlee, M.C.; Sullivan, S.A.; Bohlson, S.S. CD93 and related family members: Their role in innate immunity. Curr. Drug Targets 2008, 9, 130–138. [Google Scholar] [CrossRef]
- Chung, E.H.; Jia, Y.; Ohnishi, H.; Takeda, K.; Leung, D.Y.; Sutherland, E.R.; Dakhama, A.; Martin, R.J.; Gelfand, E.W. Leukotriene B4 receptor 1 is differentially expressed on peripheral T cells of steroid-sensitive and -resistant asthmatics. Ann. Allergy Asthma Immunol. 2014, 112, 211–216.e1. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Pathak, S.K.; Kumar, A.; Sai Kumar, B.A.A.; Bashir, A.; Singh, A.; Sahoo, N.R.; Mishra, B.P. Selection and validation of differentially expressed metabolic and immune genes in weaned Ghurrah versus crossbred piglets. Trop. Anim. Health Prod. 2020, 53, 14. [Google Scholar] [CrossRef]
- Wong, P.; Iwasaki, A. RAB15 empowers dendritic cells to drive antiviral immunity. Sci. Immunol. 2017, 2, eaan6448. [Google Scholar] [CrossRef] [PubMed]
- Aoki, J.I.; Muxel, S.M.; Zampieri, R.A.; Müller, K.E.; Nerland, A.H.; Floeter-Winter, L.M. Differential immune response modulation in early Leishmania amazonensis infection of BALB/c and C57BL/6 macrophages based on transcriptome profiles. Sci. Rep. 2019, 9, 19841. [Google Scholar] [CrossRef] [PubMed]
Group | Body Weight (g) | Spleen Weight (g) | Spleen Organ Index | |
---|---|---|---|---|
Initial | Final | |||
Control | 21.93 ± 0.93 | 22.80 ± 0.85 | 0.0856 ± 0.010 | 0.37 ± 0.03 |
CYP group | 21.90 ± 0.96 | 20.90 ± 1.37 | 0.0497 ± 0.002 | 0.24 ± 0.02 ** |
G5 (CYP + GA 5 ug/head) | 21.97 ± 0.86 | 21.17 ± 1.22 | 0.0573 ± 0.005 | 0.27 ± 0.02 ** |
G50 (CYP + GA50 ug/head) | 21.83 ± 0.99 | 21.27 ± 1.23 | 0.0575 ± 0.008 | 0.27 ± 0.03 ** |
G500 (CYP + GA500 ug/head) | 21.77 ± 1.01 | 21.07 ± 0.76 | 0.0648 ± 0.003 | 0.31 ± 0.02 |
Gene_Symbol | Description | Fold Change | p Value |
---|---|---|---|
Entpd1 | ectonucleoside triphosphate diphosphohydrolase 1 | 192.001412 | 8.53 × 10−104 |
Pgf | placental growth factor | 77.296374 | 3.53 × 10−78 |
Syt7 | synaptotagmin VII | 61.092434 | 8.08 × 10−85 |
Thbd | thrombomodulin | 57.921141 | 1.90 × 10−29 |
Cd93 | CD93 antigen | 51.973585 | 3.28 × 10−43 |
Rsc1a1 | regulatory solute carrier protein, family 1, member 1 | 49.77405 | 7.07 × 10−58 |
Mgarp | mitochondria localized glutamic acid rich protein | 49.049362 | 1.15 × 10−55 |
Ltb4r1 | leukotriene B4 receptor 1 | 45.572534 | 1.70 × 10−33 |
Selenbp1 | selenium binding protein 1 | 42.026476 | 2.07 × 10−65 |
Ptger2 | prostaglandin E receptor 2 (subtype EP2) | 38.651755 | 1.06 × 10−53 |
Atp9a | ATPase, class II, type 9A | 37.514388 | 1.96 × 10−41 |
Glipr2 | GLI pathogenesis-related 2 | 33.120953 | 1.47 × 10−74 |
Tmigd3 | transmembrane and immunoglobulin domain containing 3 | 32.502061 | 3.77 × 10−18 |
Gpr31b | G protein-coupled receptor 31, D17Leh66b region | 32.487318 | 8.17 × 10−8 |
Fcgr1 | Fc receptor, IgG, high affinity I | 32.281222 | 1.09 × 10−85 |
Selenbp2 | selenium binding protein 2 | 31.256647 | 8.50 × 10−28 |
Snora73a | small nucleolar RNA, H/ACA box 73a | −33.49652262 | 8.17 × 10−08 |
Ranbp3l | RAN binding protein 3-like | −45.13830628 | 3.08 × 10−47 |
Rab15 | RAB15, member RAS oncogene family | −58.7506144 | 9.63 × 10−79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-y.; Park, S.-y.; Park, H.-j. Immuno-Enhancing Effects of Galium aparine L. in Cyclophosphamide-Induced Immunosuppressed Animal Models. Nutrients 2024, 16, 597. https://doi.org/10.3390/nu16050597
Lee S-y, Park S-y, Park H-j. Immuno-Enhancing Effects of Galium aparine L. in Cyclophosphamide-Induced Immunosuppressed Animal Models. Nutrients. 2024; 16(5):597. https://doi.org/10.3390/nu16050597
Chicago/Turabian StyleLee, Seo-yeon, Seo-yeon Park, and Hee-jung Park. 2024. "Immuno-Enhancing Effects of Galium aparine L. in Cyclophosphamide-Induced Immunosuppressed Animal Models" Nutrients 16, no. 5: 597. https://doi.org/10.3390/nu16050597
APA StyleLee, S. -y., Park, S. -y., & Park, H. -j. (2024). Immuno-Enhancing Effects of Galium aparine L. in Cyclophosphamide-Induced Immunosuppressed Animal Models. Nutrients, 16(5), 597. https://doi.org/10.3390/nu16050597