Is the Habitual Dietary Intake of Foods of Plant or Animal Origin Associated with Circulating Hemostatic Factors?—Results of the Population-Based KORA-Fit Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sample
2.2. Measurements of Exposures
2.3. Statistical Analyses
3. Results
4. Discussion
4.1. Main Findings
4.2. Butter, Dairy Products and Cheese
4.3. Fish, Eggs and Meat
4.4. Fruits and Vegetables
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization Noncommunicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 15 September 2023).
- Robert-Koch-Institut Internationale Zusammenarbeit im Bereich der Nicht-Übertragbaren Erkrankungen (Non-Communicable Diseases). Available online: https://www.rki.de/DE/Content/Institut/Internationales/NCD/NCD.html (accessed on 15 September 2023).
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef]
- Di Daniele, N.; Noce, A.; Vidiri, M.F.; Moriconi, E.; Marrone, G.; Annicchiarico-Petruzzelli, M.; D’Urso, G.; Tesauro, M.; Rovella, V.; De Lorenzo, A. Impact of Mediterranean diet on metabolic syndrome, cancer and longevity. Oncotarget 2017, 8, 8947–8979. [Google Scholar] [CrossRef]
- Passaro, A.; Calzavarini, S.; Volpato, S.; Caruso, P.; Poli, A.; Fellin, R.; Bernardi, F. Reduced factor VII and factor VIII levels and prolonged thrombin-generation times during a healthy diet in middle-aged women with mild to moderate cardiovascular disease risk. J. Thromb. Haemost. 2008, 6, 2088–2094. [Google Scholar] [CrossRef] [PubMed]
- Badimon, L.; Chagas, P.; Chiva-Blanch, G. Diet and Cardiovascular Disease: Effects of Foods and Nutrients in Classical and Emerging Cardiovascular Risk Factors. Curr. Med. Chem. 2019, 26, 3639–3651. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, E.; Leopoulou, M.; Theofilis, P.; Antonopoulos, A.S.; Siasos, G.; Latsios, G.; Mystakidi, V.C.; Antoniades, C.; Tousoulis, D. A link between inflammation and thrombosis in atherosclerotic cardiovascular diseases: Clinical and therapeutic implications. Atherosclerosis 2020, 309, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Palta, S.; Saroa, R.; Palta, A. Overview of the coagulation system. Indian. J. Anaesth. 2014, 58, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Shahar, E.; Folsom, A.R.; Wu, K.K.; Dennis, B.H.; Shimakawa, T.; Conlan, M.G.; Davis, C.E.; Williams, O.D. Associations of fish intake and dietary n-3 polyunsaturated fatty acids with a hypocoagulable profile. The Atherosclerosis Risk in Communities (ARIC) Study. Arterioscler. Thromb. 1993, 13, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Kalogeropoulos, N.; Panagiotakos, D.B.; Pitsavos, C.; Chrysohoou, C.; Rousinou, G.; Toutouza, M.; Stefanadis, C. Unsaturated fatty acids are inversely associated and n-6/n-3 ratios are positively related to inflammation and coagulation markers in plasma of apparently healthy adults. Clin. Chim. Acta 2010, 411, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Conquer, J.A.; Cheryk, L.A.; Chan, E.; Gentry, P.A.; Holub, B.J. Effect of supplementation with dietary seal oil on selected cardiovascular risk factors and hemostatic variables in healthy male subjects. Thromb. Res. 1999, 96, 239–250. [Google Scholar] [CrossRef]
- Freese, R.; Mutanen, M. Alpha-linolenic acid and marine long-chain n-3 fatty acids differ only slightly in their effects on hemostatic factors in healthy subjects. Am. J. Clin. Nutr. 1997, 66, 591–598. [Google Scholar] [CrossRef]
- Mezzano, D.; Muñoz, X.; Martínez, C.; Cuevas, A.; Panes, O.; Aranda, E.; Guasch, V.; Strobel, P.; Muñoz, B.; Rodríguez, S.; et al. Vegetarians and cardiovascular risk factors: Hemostasis, inflammatory markers and plasma homocysteine. Thromb. Haemost. 1999, 81, 913–917. [Google Scholar]
- Pieters, M.; Swanepoel, A.C. The effect of plant-based diets on thrombotic risk factors. Pol. Arch. Intern. Med. 2021, 131, 16123. [Google Scholar] [CrossRef] [PubMed]
- Pieters, M.; de Maat, M.P. Diet and haemostasis—A comprehensive overview. Blood Rev. 2015, 29, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Holle, R.; Happich, M.; Löwel, H.; Wichmann, H.E. KORA-a research platform for population based health research. Gesundheitswesen 2005, 67 (Suppl. S1), S19–S25. [Google Scholar] [CrossRef]
- The Research Institute of the McGill University Health Centre Cooperative Health Research in the Augsburg Region. Available online: https://www.maelstrom-research.org/study/kora (accessed on 15 September 2023).
- Meisinger, C.; Thorand, B.; Schneider, A.; Stieber, J.; Döring, A.; Löwel, H. Sex Differences in Risk Factors for Incident Type 2 Diabetes Mellitus: The MONICA Augsburg Cohort Study. Arch. Intern. Med. 2002, 162, 82–89. [Google Scholar] [CrossRef]
- Zahn, K.; Linseisen, J.; Heier, M.; Peters, A.; Thorand, B.; Nairz, F.; Meisinger, C. Body fat distribution and risk of incident ischemic stroke in men and women aged 50 to 74 years from the general population. The KORA Augsburg cohort study. PLoS ONE 2018, 13, e0191630. [Google Scholar] [CrossRef] [PubMed]
- Mitry, P.; Wawro, N.; Six-Merker, J.; Zoller, D.; Jourdan, C.; Meisinger, C.; Thierry, S.; Nöthlings, U.; Knüppel, S.; Boeing, H.; et al. Usual Dietary Intake Estimation Based on a Combination of Repeated 24-H Food Lists and a Food Frequency Questionnaire in the KORA FF4 Cross-Sectional Study. Front. Nutr. 2019, 6, 145. [Google Scholar] [CrossRef]
- Illner, A.K.; Harttig, U.; Tognon, G.; Palli, D.; Salvini, S.; Bower, E.; Amiano, P.; Kassik, T.; Metspalu, A.; Engeset, D.; et al. Feasibility of innovative dietary assessment in epidemiological studies using the approach of combining different assessment instruments. Public. Health Nutr. 2011, 14, 1055–1063. [Google Scholar] [CrossRef]
- Siegert, G. Bedeutung von Quick, partieller Thromboplastinzeit und Co. Der. Internist. 2014, 55, 506–513. [Google Scholar] [CrossRef]
- Thachil, J.; Favaloro, E.J.; Lippi, G. D-dimers-”Normal” Levels versus Elevated Levels Due to a Range of Conditions, Including “D-dimeritis,” Inflammation, Thromboembolism, Disseminated Intravascular Coagulation, and COVID-19. Semin. Thromb. Hemost. 2022, 48, 672–679. [Google Scholar] [CrossRef]
- Weitz, J.I.; Fredenburgh, J.C.; Eikelboom, J.W. A Test in Context: D-Dimer. J. Am. Coll. Cardiol. 2017, 70, 2411–2420. [Google Scholar] [CrossRef]
- Iglesias Morcillo, M.; Freuer, D.; Peters, A.; Heier, M.; Teupser, D.; Meisinger, C.; Linseisen, J. Association between fatty liver index and blood coagulation markers: A population-based study. Lipids Health Dis. 2023, 22, 83. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef]
- Klüppelholz, B.; Thorand, B.; Koenig, W.; de Las Heras Gala, T.; Meisinger, C.; Huth, C.; Giani, G.; Franks, P.W.; Roden, M.; Rathmann, W.; et al. Association of subclinical inflammation with deterioration of glycaemia before the diagnosis of type 2 diabetes: The KORA S4/F4 study. Diabetologia 2015, 58, 2269–2277. [Google Scholar] [CrossRef]
- Schumann, G.; Bonora, R.; Ceriotti, F.; Férard, G.; Ferrero, C.A.; Franck, P.F.H.; Gella, F.-J.; Hoelzel, W.; Jørgensen, P.J.; Kanno, T.; et al. IFCC Primary Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes at 37C. Part 6. Reference Procedure for the Measurement of Catalytic Concentration of γ-Glutamyltransferase. Clin. Chem. Lab. Med. 2002, 40, 734–738. [Google Scholar] [CrossRef]
- Dorgalaleh, A.; Favaloro, E.J.; Bahraini, M.; Rad, F. Standardization of Prothrombin Time/International Normalized Ratio (PT/INR). Int. J. Lab. Hematol. 2021, 43, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Chopra, N.; Doddamreddy, P.; Grewal, H.; Kumar, P.C. An elevated D-dimer value: A burden on our patients and hospitals. Int. J. Gen. Med. 2012, 5, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Biong, A.S.; Müller, H.; Seljeflot, I.; Veierød, M.B.; Pedersen, J.I. A comparison of the effects of cheese and butter on serum lipids, haemostatic variables and homocysteine. Br. J. Nutr. 2004, 92, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, M.; Krogh, V.; Freudenheim, J.; Blake, A.; Muti, P.; Panico, S.; Farinaro, E.; Mancini, M.; Menotti, A.; Ricci, G. Consumption of olive oil, butter, and vegetable oils and coronary heart disease risk factors. The Research Group ATS-RF2 of the Italian National Research Council. JAMA 1990, 263, 688–692. [Google Scholar] [CrossRef] [PubMed]
- Temme, E.H.; Mensink, R.P.; Hornstra, G. Effects of diets enriched in lauric, palmitic or oleic acids on blood coagulation and fibrinolysis. Thromb. Haemost. 1999, 81, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Lista, J.; Lopez-Miranda, J.; Cortés, B.; Perez-Martinez, P.; Lozano, A.; Gomez-Luna, R.; Gomez, P.; Gomez, M.J.; Criado, J.; Fuentes, F.; et al. Chronic dietary fat intake modifies the postprandial response of hemostatic markers to a single fatty test meal. Am. J. Clin. Nutr. 2008, 87, 317–322. [Google Scholar] [CrossRef]
- Bhupathi, V.; Mazariegos, M.; Cruz Rodriguez, J.B.; Deoker, A. Dairy Intake and Risk of Cardiovascular Disease. Curr. Cardiol. Rep. 2020, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Geleijnse, J.M.; Vermeer, C.; Grobbee, D.E.; Schurgers, L.J.; Knapen, M.H.; van der Meer, I.M.; Hofman, A.; Witteman, J.C. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: The Rotterdam Study. J. Nutr. 2004, 134, 3100–3105. [Google Scholar] [CrossRef] [PubMed]
- Zhubi-Bakija, F.; Bajraktari, G.; Bytyçi, I.; Mikhailidis, D.P.; Henein, M.Y.; Latkovskis, G.; Rexhaj, Z.; Zhubi, E.; Banach, M. The impact of type of dietary protein, animal versus vegetable, in modifying cardiometabolic risk factors: A position paper from the International Lipid Expert Panel (ILEP). Clin. Nutr. 2021, 40, 255–276. [Google Scholar] [CrossRef] [PubMed]
- Marcone, S.; Belton, O.; Fitzgerald, D.J. Milk-derived bioactive peptides and their health promoting effects: A potential role in atherosclerosis. Br. J. Clin. Pharmacol. 2017, 83, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Mennen, L.I.; Balkau, B.; Vol, S. Tissue-type plasminogen activator antigen and consumption of dairy products. DESIR Study Data Epidemiol. Study Insul. Resist. Syndrome. Thromb. Res. 1999, 94, 381–388. [Google Scholar] [CrossRef]
- Schurgers, L.J.; Vermeer, C. Determination of phylloquinone and menaquinones in food. Eff. Food Matrix Circ. Vitam. K. Conc. Haemost. 2000, 30, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.C.; Wang, Y.; Tong, X.; Szeto, I.M.Y.; Smit, G.; Li, Z.N.; Qin, L.Q. Cheese consumption and risk of cardiovascular disease: A meta-analysis of prospective studies. Eur. J. Nutr. 2017, 56, 2565–2575. [Google Scholar] [CrossRef]
- Sofi, F.; Buccioni, A.; Cesari, F.; Gori, A.M.; Minieri, S.; Mannini, L.; Casini, A.; Gensini, G.F.; Abbate, R.; Antongiovanni, M. Effects of a dairy product (pecorino cheese) naturally rich in cis-9, trans-11 conjugated linoleic acid on lipid, inflammatory and haemorheological variables: A dietary intervention study. Nutr. Metab. Cardiovasc. Dis. 2010, 20, 117–124. [Google Scholar] [CrossRef]
- Haro, C.; Villena, J.; Zelaya, H.; Alvarez, S.; Agüero, G. Lactobacillus casei modulates the inflammation-coagulation interaction in a pneumococcal pneumonia experimental model. J. Inflamm. 2009, 6, 28. [Google Scholar] [CrossRef]
- Esmon, C.T. Inflammation and the activated protein C anticoagulant pathway. Semin. Thromb. Hemost. 2006, 32 (Suppl. S1), 49–60. [Google Scholar] [CrossRef]
- Muller, A.D.; van Houwelingen, A.C.; van Dam-Mieras, M.C.; Bas, B.M.; Hornstra, G. Effect of a moderate fish intake on haemostatic parameters in healthy males. Thromb. Haemost. 1989, 61, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Nelson, G.J.; Schmidt, P.C.; Corash, L. The effect of a salmon diet on blood clotting, platelet aggregation and fatty acids in normal adult men. Lipids 1991, 26, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Archer, S.L.; Green, D.; Chamberlain, M.; Dyer, A.R.; Liu, K. Association of dietary fish and n-3 fatty acid intake with hemostatic factors in the coronary artery risk development in young adults (CARDIA) study. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 1119–1123. [Google Scholar] [CrossRef]
- Vorster, H.H.; Benadé, A.J.; Barnard, H.C.; Locke, M.M.; Silvis, N.; Venter, C.S.; Smuts, C.M.; Engelbrecht, G.P.; Marais, M.P. Egg intake does not change plasma lipoprotein and coagulation profiles. Am. J. Clin. Nutr. 1992, 55, 400–410. [Google Scholar] [CrossRef]
- Kouvari, M.; Damigou, E.; Florentin, M.; Kosti, R.I.; Chrysohoou, C.; Pitsavos, C.S.; Panagiotakos, D.B. Egg Consumption, Cardiovascular Disease and Cardiometabolic Risk Factors: The Interaction with Saturated Fatty Acids. Results from the ATTICA Cohort Study (2002–2012). Nutrients 2022, 14, 5291. [Google Scholar] [CrossRef]
- Andersen, C.J. Bioactive Egg Components and Inflammation. Nutrients 2015, 7, 7889–7913. [Google Scholar] [CrossRef]
- Miranda, J.M.; Anton, X.; Redondo-Valbuena, C.; Roca-Saavedra, P.; Rodriguez, J.A.; Lamas, A.; Franco, C.M.; Cepeda, A. Egg and egg-derived foods: Effects on human health and use as functional foods. Nutrients 2015, 7, 706–729. [Google Scholar] [CrossRef]
- Soliman, G.A. Dietary Cholesterol and the Lack of Evidence in Cardiovascular Disease. Nutrients 2018, 10, 780. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Iso, H.; Naito, Y.; Kiyama, M.; Kitamura, A.; Iida, M.; Shimamoto, T.; Komachi, Y. Plasma fibrinogen and its correlates in urban Japanese men. Int. J. Epidemiol. 1996, 25, 521–527. [Google Scholar] [CrossRef]
- Hodgson, J.M.; Ward, N.C.; Burke, V.; Beilin, L.J.; Puddey, I.B. Increased lean red meat intake does not elevate markers of oxidative stress and inflammation in humans. J. Nutr. 2007, 137, 363–367. [Google Scholar] [CrossRef]
- Kulczyński, B.; Sidor, A.; Gramza-Michałowska, A. Characteristics of Selected Antioxidative and Bioactive Compounds in Meat and Animal Origin Products. Antioxidants 2019, 8, 335. [Google Scholar] [CrossRef]
- Zurbau, A.; Au-Yeung, F.; Blanco Mejia, S.; Khan, T.A.; Vuksan, V.; Jovanovski, E.; Leiter, L.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Sievenpiper, J.L. Relation of Different Fruit and Vegetable Sources with Incident Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J. Am. Heart Assoc. 2020, 9, e017728. [Google Scholar] [CrossRef] [PubMed]
- Corley, J.; Kyle, J.A.; Starr, J.M.; McNeill, G.; Deary, I.J. Dietary factors and biomarkers of systemic inflammation in older people: The Lothian Birth Cohort 1936. Br. J. Nutr. 2015, 114, 1088–1098. [Google Scholar] [CrossRef]
- Recio-Rodriguez, J.I.; Gomez-Marcos, M.A.; Patino-Alonso, M.C.; Puigdomenech, E.; Notario-Pacheco, B.; Mendizabal-Gallastegui, N.; de la Fuente Ade, L.; Otegui-Ilarduya, L.; Maderuelo-Fernandez, J.A.; de Cabo Laso, A.; et al. Effects of kiwi consumption on plasma lipids, fibrinogen and insulin resistance in the context of a normal diet. Nutr. J. 2015, 14, 97. [Google Scholar] [CrossRef] [PubMed]
- Haytowitz, D.B.; Bhagwat, S. USDA Database for the Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods, Release 2; US Department of Agriculture: Beltsville, MD, USA, 2010; Volume 3, pp. 10–48.
- Carlsen, M.H.; Halvorsen, B.L.; Holte, K.; Bøhn, S.K.; Dragland, S.; Sampson, L.; Willey, C.; Senoo, H.; Umezono, Y.; Sanada, C.; et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr. J. 2010, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Di Noia, J. Defining powerhouse fruits and vegetables: A nutrient density approach. Prev. Chronic Dis. 2014, 11, E95. [Google Scholar] [CrossRef]
Laboratory Parameter | Method | Testing Device | Reference Value |
---|---|---|---|
Adjustment variables | |||
Total cholesterol (TC) | Enzymatic method | Cobas 8000 c702 Roche chemistry analyzer, Hoffman-La Roche AG Basel | <200 mg/dL |
High-density lipoprotein cholesterol (HDLc) | Enzymatic method | >45 mg/dL | |
Triglycerides (TG) | Enzymatic method | <200 mg/dL | |
Gamma-glutamyl transferase (GGT) | IFCC method a | Males: <60 U/L Females: <40 U/L | |
Hemostatic variables (dependent variables) | |||
Antithrombin III | Chromogenic activity assay | Innovance Antithrombin, SCS cleaner, Siemens Eschborn | 83–118% |
D-dimers | Particle-enhanced immunoturbidimetric assay | Innovance D-Dimer Kit, Siemens Eschborn | <500 μg/L |
Factor VIII | Photometry | Coagulation factor VIII deficient plasma, Pathromtin SL, CaCl2, Siemens Eschborn | 70–150% |
Fibrinogen | Photometry and turbidimetry | Multifibern U, Siemens Eschborn | 210–400 mg/dL |
Protein C | Photometry | Berichrom Protein C, Siemens Healthcare | 70–140% |
Protein S | Photometry | Hemoclot Protein S, OVB buffer, CaCl2, SCS cleaner | Males: 73–130% Females: 52–126% |
Activated partial thromboplastin time (aPTT) | Photometry | Pathromtin SL, CaCl2 solution, Actin FS, Siemens Eschborn | 26–36 s |
Quick value | Photometry | Thromborel S, Siemens Eschborn | 82–125% |
International thromboplastin time (INR) | Prothrombin ratio (calculated) b | 0.9–1.15 | |
High-sensitivity C-reactive Protein (hs-CRP) | High-sensitivity latex-enhanced nephelometric assay | BN II System analyzer, Dade Behring | <3 mg/L c |
Total | Males | Females | ||
---|---|---|---|---|
n = 595 | n = 263 | n = 332 | ||
Characteristics | Median (25th and 75th Percentiles) | p-Value | ||
Age [years] | 63 | 64 | 63 | 0.842 |
(58; 68) | (58; 68) | (59; 68) | ||
BMI [kg/m2] | 27.12 | 27.78 | 26.4 | <0.001 * |
(23.98; 30.32) | (25.33; 30.67) | (23.3; 29.77) | ||
Waist circumference [cm] | 93.1 | 99.4 | 86.05 | <0.001 * |
(82.5; 102.35) | (91.75; 107.5) | (78; 96.32) | ||
Energy (kilocalories) [kcal/d] | 1723.6 | 2049.9 | 1532.85 | <0.001 * |
(1487.4; 2052.25) | (1809.9; 2298.1) | (1380.55; 1704.88) | ||
Alcohol consumption [g/d] | 5.17 | 14.71 | 2.59 | <0.001 * |
(2.19; 14.19) | (6.77; 25.94) | (1.59; 5.02) | ||
Non-HDL [mg/dL] | 146.2 | 145 | 147.28 | 0.384 |
(121; 171.84) | (115; 172.59) | (124.83; 170.56) | ||
FLI | 51.88 | 79.85 | 34.28 | <0.001 * |
(23.19; 88.33) | (42.88; 96.59) | (15.67; 72.6) | ||
hs-CRP [mg/L] | 1 (1; 3) | 1 (1; 2.5) | 1 (1; 3) | 0.25 |
n (%) | ||||
Education [years] | ||||
≤12 years | 359 (60.34%) | 144 (54.75%) | 215 (64.76%) | <0.001 * |
>12 years | 236 (39.66%) | 119 (45.25%) | 117 (35.24%) | |
Physical activity | ||||
≥2 h/week | 229 (38.49%) | 103 (39.16%) | 126 (37.95%) | 0.867 |
1 h/week | 198 (33.28%) | 84 (31.94%) | 114 (34.34%) | |
<1 h/week | 71 (11.93%) | 34 (12.93%) | 37 (11.14%) | |
(almost) no activity | 97 (16.30%) | 42 (15.97%) | 55 (16.57%) | |
Smoking | ||||
Current smoker | 72 (12.10%) | 33 (12.55%) | 39 (11.75%) | 0.066 |
Former smoker | 259 (43.53%) | 127 (48.29%) | 132 (39.76%) | |
Never smoker | 264 (44.37%) | 103 (39.16%) | 161 (48.49%) | |
Hypertension | ||||
Yes | 272 (45.71%) | 147 (55.89%) | 125 (37.65%) | <0.001 * |
No | 323 (54.29%) | 116 (44.11%) | 207 (62.35%) | |
Diabetes | ||||
Yes | 43 (7.23%) | 20 (7.65%) | 23 (6.93%) | 0.753 |
No | 552 (92.77%) | 243 (92.4%) | 309 (93.07%) | |
BMI | ||||
<18.5 | 3 (0.50%) | 0 (0.00%) | 3 (0.90%) | <0.001 * |
18.5–24.9 | 186 (31.26%) | 61 (23.19%) | 125 (37.65%) | |
25–29.9 | 246 (41.34%) | 122 (46.39%) | 124 (37.35%) | |
>30 | 160 (26.89%) | 80 (30.41%) | 80 (24.10%) |
Total | Males | Females | ||
---|---|---|---|---|
n = 595 | n = 263 | n = 332 | ||
Coagulation Factors | Median (25th and 75th Percentiles) | p-Value | ||
Antithrombin III [mg/dL] | 102.9 | 98.8 | 105.2 | <0.001 * |
(96.15; 109) | (93.35; 105.55) | (99.1; 110.8) | ||
D-dimers [µg/L] | 403 | 405 | 402 | 0.407 |
(305; 544.5) | (315.5; 561) | (301.25; 532.25) | ||
Factor VIII [%] | 120.3 | 118.4 | 123.5 | 0.13 |
(96.6; 143.1) | (93.95; 140.2) | (99.92; 145.02) | ||
Fibrinogen [mg/dL] | 293.5 | 285.7 | 299.15 | 0.054 |
(261.05; 328.7) | (258.95; 322.1) | (262.92; 332.72) | ||
Protein C [%] | 124.2 | 117.5 | 129.1 | <0.001 * |
(111.45; 139.45) | (109.2; 131.7) | (116.12; 142.65) | ||
Protein S [%] | 125.1 | 131.7 | 119.4 | <0.001 * |
(105.6; 145.7) | (112.05; 157.7) | (101.3; 137.62) | ||
aPTT [s] | 30.7 | 31.1 | 30.3 | 0.004 |
(28.7; 32.9) | (29.4; 33.35) | (28.5; 32.7) | ||
Quick value [%] | 108.7 | 106.7 | 110.45 | <0.001 * |
(102.15; 114.9) | (100.25; 112.4) | (104.08; 115.82) | ||
INR | 0.96 | 0.97 | 0.94 | <0.001 * |
(0.92; 1) | (0.93; 1.01) | (0.91; 0.98) |
Total | Males | Females | ||
---|---|---|---|---|
n = 595 | n = 263 | n = 332 | ||
Food Groups [g/d] | Median (25th and 75th Percentiles) | p-Value | ||
Total fruits | 144.8 | 134.2 | 150.3 | 0.008 |
(88.15; 213.55) | (75; 211.6) | (102.97; 216.5) | ||
Total vegetables | 163.9 | 147.4 | 178.4 | <0.001 * |
(134.5; 200.65) | (122.6; 178.05) | (148.7; 217.5) | ||
Green leafy vegetables | 23.9 | 24.4 | 23.8 | 0.085 |
(17.5; 32.35) | (18.15; 32.35) | (16.7; 32.2) | ||
Total meat | 99 | 133.7 | 77.6 | <0.001 * |
(73.5; 131.9) | (111.05; 160.05) | (64.57; 94.95) | ||
Total fish | 18.2 | 19 | 17.35 | 0.001 |
(12.35; 25.9) | (13.65; 27) | (11.67; 24.95) | ||
Total eggs | 15.7 | 15.9 | 14.6 | 0.301 |
(11.3; 22.2) | (11.6; 22.7) | (11.07; 21.63) | ||
Dairy products (w/o butter) | 179.2 (120.85; 260) | 154.4 (103.8; 228.9) | 200.4 (135.2; 281.33) | <0.001 * |
Cheese | 27.8 | 29 | 26.85 | 0.062 |
(19.3; 37.5) | (19.65; 41.4) | (19.17; 35.8) | ||
Butter | 14.3 | 16.2 | 12.65 | <0.001 * |
(8.95; 17.1) | (10.35; 21.5) | (7.68; 15.43) |
ß-Estimate | 95% CI | p-Value | FDR Adjusted p-Value | |
---|---|---|---|---|
Total fruit consumption [per 100 g/d] | ||||
Antithrombin III [mg/dL] | 0.125 | −0.943; 1.192 | 0.819 | 1 |
Ln D-dimers [µg/L] | 0.033 | −0.022; 0.088 | 0.238 | 0.916 |
Ln Factor VIII [%] | −0.001 | −0.034; 0.032 | 0.949 | 1 |
Ln Fibrinogen D [mg/dL] | −0.004 | −0.023; 0.016 | 0.726 | 1 |
Protein C [%] | 0.559 | −1.305; 2.424 | 0.556 | 1 |
Ln Protein S [%] | −0.007 | −0.034; 0.019 | 0.586 | 1 |
aPTT [s] | 0.387 | 0.024; 0.75 | 0.036 b | 0.583 |
Quick value [%] | 0.171 | −0.832; 1.173 | 0.738 | 1 |
INR | −0.001 | −0.007; 0.005 | 0.743 | 1 |
Total vegetable consumption [per 100 g/d] | ||||
Antithrombin III [mg/dL] | −0.98 | −2.676; 0.717 | 0.257 | 0.916 |
Ln D-dimers [µg/L] | 0.023 | −0.066; 0.113 | 0.609 | 1 |
Ln Factor VIII [%] | −0.005 | −0.057; 0.047 | 0.856 | 1 |
Ln Fibrinogen D [mg/dL] | −0.012 | −0.044; 0.02 | 0.47 | 1 |
Protein C [%] | −1.387 | −4.357; 1.583 | 0.36 | 1 |
Ln Protein S [%] | −0.005 | −0.048; 0.038 | 0.822 | 1 |
aPTT [s] | −0.302 | −0.889; 0.284 | 0.312 | 0.972 |
Quick value [%] | 0.03 | −1.568; 1.628 | 0.97 | 1 |
INR | 0 | −0.01; 0.009 | 0.996 | 1 |
Green leafy vegetables consumption [per 100 g/d] | ||||
Antithrombin III [mg/dL] | −2.192 | −9.639; 5.254 | 0.563 | 1 |
Ln D-dimers [µg/L] | −0.045 | −0.438; 0.349 | 0.823 | 1 |
Ln Factor VIII [%] | −0.131 | −0.359; 0.097 | 0.26 | 0.916 |
Ln Fibrinogen D [mg/dL] | −0.09 | −0.23; 0.05 | 0.209 | 0.916 |
Protein C [%] | −0.835 | −13.861; 12.191 | 0.9 | 1 |
Ln Protein S [%] | −0.164 | −0.352; 0.025 | 0.089 | 0.714 |
aPTT [s] | −0.705 | −3.299; 1.888 | 0.594 | 1 |
Quick value [%] | 0.826 | −6.255; 7.906 | 0.819 | 1 |
INR | −0.005 | −0.047; 0.037 | 0.807 | 1 |
ß-Estimate | 95% CI | p-Value | FDR Adjusted p-Value | |
---|---|---|---|---|
Total meat consumption [per 100 g/d] | ||||
Antithrombin III [mg/dL] | 2.838 | −0.466; 6.143 | 0.092 | 0.714 |
Ln D-dimers [µg/L] | −0.074 | −0.25; 0.102 | 0.41 | 1 |
Ln Factor VIII [%] | 0.014 | −0.086; 0.114 | 0.785 | 1 |
Ln Fibrinogen D [mg/dL] | 0.014 | −0.048; 0.077 | 0.65 | 1 |
Protein C [%] | 1.745 | −4.047; 7.537 | 0.554 | 1 |
Ln Protein S [%] | −0.024 | −0.109; 0.06 | 0.568 | 1 |
aPTT [s] | 0.075 | −1.067; 1.218 | 0.897 | 1 |
Quick value [%] | −1.943 | −5.089; 1.203 | 0.226 | 0.916 |
INR | 0.011 | −0.007; 0.03 | 0.235 | 0.916 |
Total fish consumption [per 100 g/d] | ||||
Antithrombin III [mg/dL] | −3.373 | −8.922; 2.176 | 0.233 | 0.916 |
Ln D-dimers [µg/L] | −0.038 | −0.337; 0.26 | 0.8 | 1 |
Ln Factor VIII [%] | −0.011 | −0.18; 0.157 | 0.895 | 1 |
Ln Fibrinogen D [mg/dL] | −0.061 | −0.166; 0.044 | 0.253 | 0.916 |
Protein C [%] | −0.124 | −9.845; 9.598 | 0.98 | 1 |
Ln Protein S [%] | −0.047 | −0.188; 0.094 | 0.514 | 1 |
aPTT [s] | −0.251 | −2.187; 1.685 | 0.799 | 1 |
Quick value [%] | −0.041 | −5.328; 5.246 | 0.988 | 1 |
INR | 0 | −0.031; 0.032 | 0.976 | 1 |
Total egg consumption [per 100 g/d] | ||||
Antithrombin III [mg/dL] | 5.191 | −1.551; 11.933 | 0.131 | 0.884 |
Ln D-dimers [µg/L] | 0.018 | −0.339; 0.375 | 0.92 | 1 |
Ln Factor VIII [%] | 0.039 | −0.168; 0.246 | 0.711 | 1 |
Ln Fibrinogen D [mg/dL] | −0.022 | −0.151; 0.107 | 0.739 | 1 |
Protein C [%] | 3.827 | −7.978; 15.633 | 0.525 | 1 |
Ln Protein S [%] | −0.002 | −0.173; 0.169 | 0.985 | 1 |
aPTT [s] | −1.265 | −3.624; 1.094 | 0.293 | 0.972 |
Quick value [%] | 1.142 | −5.261; 7.544 | 0.726 | 1 |
INR | −0.007 | −0.045; 0.032 | 0.734 | 1 |
ß-Estimate | 95% CI | p-Value | FDR Adjusted p-Value | |
---|---|---|---|---|
Dairy products (w/o butter) consumption [per 100 g/d] | ||||
Antithrombin III [mg/dL] | −1.132 | −1.99; −0.275 | 0.01 b | 0.27 |
Ln D-dimers [µg/L] | 0.049 | 0.004; 0.094 | 0.032 b | 0.583 |
Ln Factor VIII [%] | 0.003 | −0.023; 0.029 | 0.808 | 1 |
Ln Fibrinogen D [mg/dL] | 0.002 | −0.014; 0.018 | 0.782 | 1 |
Protein C [%] | −2.644 | −4.137; −1.152 | 0.001 b | 0.04 b |
Ln Protein S [%] | 0.015 | −0.007; 0.036 | 0.19 | 0.916 |
aPTT [s] | 0.029 | −0.265; 0.324 | 0.845 | 1 |
Quick value [%] | −0.083 | −0.896; 0.73 | 0.841 | 1 |
INR | 0.001 | −0.004; 0.005 | 0.791 | 1 |
Cheese consumption [per 100 g/d] | ||||
Antithrombin III [mg/dL] | 1.359 | −4.932; 7.649 | 0.672 | 1 |
Ln D-dimers [µg/L] | 0.173 | −0.16; 0.507 | 0.308 | 0.972 |
Ln Factor VIII [%] | 0.069 | −0.122; 0.26 | 0.478 | 1 |
Ln Fibrinogen D [mg/dL] | −0.016 | −0.135; 0.103 | 0.786 | 1 |
Protein C [%] | 2.31 | −8.705; 13.324 | 0.681 | 1 |
Ln Protein S [%] | −0.115 | −0.274; 0.045 | 0.159 | 0.916 |
aPTT [s] | 0.438 | −1.758; 2.633 | 0.695 | 1 |
Quick value [%] | 0.001 | −5.913; 5.915 | 1 | 1 |
INR | −0.001 | −0.037; 0.034 | 0.94 | 1 |
Butter consumption [per 100 g/d] | ||||
Antithrombin III [mg/dL] | 8.939 | −5.68; 23.558 | 0.23 | 0.916 |
Ln D-dimers [µg/L] | 1.429 | 0.669; 2.19 | <0.001 b | <0.001 b |
Ln Factor VIII [%] | 0.145 | −0.304; 0.595 | 0.526 | 1 |
Ln Fibrinogen D [mg/dL] | 0.231 | −0.042; 0.504 | 0.097 | 0.714 |
Protein C [%] | 25.909 | 0.367; 51.451 | 0.047 b | 0.59 |
Ln Protein S [%] | −0.111 | −0.483; 0.261 | 0.559 | 1 |
aPTT [s] | −1.503 | −6.504; 3.498 | 0.555 | 1 |
Quick value [%] | 13.207 | −0.529; 26.943 | 0.059 | 0.597 |
INR | −0.082 | −0.163; 0 | 0.051 | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schepp, M.; Freuer, D.; Peters, A.; Heier, M.; Teupser, D.; Meisinger, C.; Linseisen, J. Is the Habitual Dietary Intake of Foods of Plant or Animal Origin Associated with Circulating Hemostatic Factors?—Results of the Population-Based KORA-Fit Study. Nutrients 2024, 16, 432. https://doi.org/10.3390/nu16030432
Schepp M, Freuer D, Peters A, Heier M, Teupser D, Meisinger C, Linseisen J. Is the Habitual Dietary Intake of Foods of Plant or Animal Origin Associated with Circulating Hemostatic Factors?—Results of the Population-Based KORA-Fit Study. Nutrients. 2024; 16(3):432. https://doi.org/10.3390/nu16030432
Chicago/Turabian StyleSchepp, Michael, Dennis Freuer, Annette Peters, Margit Heier, Daniel Teupser, Christine Meisinger, and Jakob Linseisen. 2024. "Is the Habitual Dietary Intake of Foods of Plant or Animal Origin Associated with Circulating Hemostatic Factors?—Results of the Population-Based KORA-Fit Study" Nutrients 16, no. 3: 432. https://doi.org/10.3390/nu16030432
APA StyleSchepp, M., Freuer, D., Peters, A., Heier, M., Teupser, D., Meisinger, C., & Linseisen, J. (2024). Is the Habitual Dietary Intake of Foods of Plant or Animal Origin Associated with Circulating Hemostatic Factors?—Results of the Population-Based KORA-Fit Study. Nutrients, 16(3), 432. https://doi.org/10.3390/nu16030432