Seasonal Variations in 25-Hydroxyvitamin D Levels among Pediatric Patients Attending the Healthcare Centre
Abstract
:1. Introduction
- -
- Investigate whether seasons have an impact on vitamin D concentrations and determine the 25(OH)D trend and seasonal variations in serum 25(OH)D levels.
- -
- Identify the predictors of this change in pediatric patients visiting polyclinics.
2. Materials and Methods
2.1. Study Design and Settings
2.2. Participants
2.3. Biochemical Analysis
2.4. Outcome Measures
2.5. Statistical Analysis
3. Results
3.1. The Overall 25(OH) Vitamin D Status and Pediatric Patients’ Characteristics
3.2. Serum 25(OH) Levels in Pediatric Patients Aged 0–21 Years, Stratified by Outpatient Characteristics
3.3. 25-Hydroxyvitamin D Status Stratified by Nationality
3.4. 25(OH) Vitamin D Status Stratified by Gender
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holick, M.F. Shedding New Light on the Role of the Sunshine Vitamin D for Skin Health: The LncRNA-Skin Cancer Connection. Exp. Dermatol. 2014, 23, 391–392. [Google Scholar] [CrossRef] [PubMed]
- Stroud, M.L.; Stilgoe, S.; Stott, V.E.; Alhabian, O.; Salman, K. Vitamin D—A Review. Aust. Fam. Physician 2008, 37, 1002–1005. [Google Scholar] [PubMed]
- Braegger, C.; Campoy, C.; Colomb, V.; Decsi, T.; Domellof, M.; Fewtrell, M.; Hojsak, I.; Mihatsch, W.; Molgaard, C.; Shamir, R.; et al. Vitamin D in the Healthy European Paediatric Population. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F. The Vitamin D Deficiency Pandemic: Approaches for Diagnosis, Treatment and Prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef]
- Harel, Z.; Cromer, B.; DiVasta, A.D.; Gordon, C.M.; Pitts, S. Recommended Vitamin D Intake and Management of Low Vitamin D Status in Adolescents: A Position Statement of the Society for Adolescent Health and Medicine. J. Adolesc. Health 2013, 52, 801–803. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef]
- Charoenngam, N.; Holick, M.F. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef]
- Hollams, E.M. Vitamin D and atopy and asthma phenotypes in children. Curr. Opin. Allergy Clin Immunol. 2012, 12, 228–234. [Google Scholar] [CrossRef]
- Hyppönen, E. Vitamin D and increasing incidence of type 1 diabetes-evidence for an association? Diabetes Obes. Metab. 2010, 12, 737–743. [Google Scholar] [CrossRef]
- Hilger, J.; Friedel, A.; Herr, R.; Rausch, T.; Roos, F.; Wahl, D.A.; Pierroz, D.D.; Weber, P.; Hoffmann, K. A Systematic Review of Vitamin D Status in Populations Worldwide. Br. J. Nutr. 2014, 111, 23–45. [Google Scholar] [CrossRef] [PubMed]
- Palacios, C.; Gonzalez, L. Is Vitamin D Deficiency a Major Global Public Health Problem? J. Steroid Biochem. Mol. Biol. 2014, 144, 138–145. [Google Scholar] [CrossRef]
- Thacher, T.D.; Pludowski, P.; Shaw, N.J.; Mughal, M.Z.; Munns, C.F.; Högler, W. Nutritional Rickets in Immigrant and Refugee Children. Public Health Rev. 2016, 37, 3. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Leonardi, A.; Lanciotti, L.; Cofini, M.; Muzi, G.; Penta, L. Vitamin D and Growth Hormone in Children: A Review of the Current Scientific Knowledge. J. Transl. Med. 2019, 17, 87. [Google Scholar] [CrossRef] [PubMed]
- Daskalopoulou, M.; Pylli, M.; Giannakou, K. Vitamin D Deficiency as a Possible Cause of Type 1 Diabetes in Children and Adolescents up to 15 Years Old: A Systematic Review. Rev. Diabet. Stud. 2022, 18, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D Deficiency 2.0: An Update on the Current Status Worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef] [PubMed]
- Creo, A.L.; Tebben, P.J.; Fischer, P.R.; Thacher, T.D.; Pittock, S.T. Cardiac Arrest in a Vitamin D–Deficient Infant. Glob. Pediatr. Health 2018, 5, 2333794X1876506. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Guidelines for preventing and treating vitamin D deficiency and insufficiency revisited. J. Clin. Endocrinol. Metab. 2012, 97, 1153–1158. [Google Scholar] [CrossRef]
- Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.D.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Mäkitie, O.; et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J. Clin. Endocrinol. Metab. 2016, 101, 394–415. [Google Scholar] [CrossRef]
- Tsiaras, W.; Weinstock, M. Factors Influencing Vitamin D Status. Acta Derm. Venereol. 2011, 91, 115–124. [Google Scholar] [CrossRef]
- Fink, C.; Peters, R.; Koplin, J.; Brown, J.; Allen, K. Factors Affecting Vitamin D Status in Infants. Children 2019, 6, 7. [Google Scholar] [CrossRef]
- Zittermann, A.; Pilz, S. Vitamin D and Cardiovascular Disease: An Update. Anticancer Res. 2019, 39, 4627–4635. [Google Scholar] [CrossRef]
- Uday, S.; Högler, W. Nutritional Rickets and Osteomalacia in the Twenty-First Century: Revised Concepts, Public Health, and Prevention Strategies. Curr. Osteoporos. Rep. 2017, 15, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Pál, É.; Ungvári, Z.; Benyó, Z.; Várbíró, S. Role of Vitamin D Deficiency in the Pathogenesis of Cardiovascular and Cerebrovascular Diseases. Nutrients 2023, 15, 334. [Google Scholar] [CrossRef] [PubMed]
- Maiya, S.; Sullivan, I.; Allgrove, J. Hypocalcaemia and Vitamin D Deficiency: An Important, but Preventable, Cause of Life-Threatening Infant Heart Failure. Heart 2008, 94, 581–584. [Google Scholar] [CrossRef]
- Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S.; Moreno, L.; Damsgaard, C.T.; Michaelsen, K.F.; Mølgaard, C.; et al. Vitamin D Deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016, 103, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Beauchesne, A.R.; Cara, K.C.; Krobath, D.M.; Penkert, L.P.; Shertukde, S.P.; Cahoon, D.S.; Prado, B.; Li, R.; Yao, Q.; Huang, J.; et al. Vitamin D Intakes and Health Outcomes in Infants and Preschool Children: Summary of an Evidence Report. Ann. Med. 2022, 54, 2277–2300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Z.; Wei, Y.; Fu, J.; Feng, Y.; Chen, D.; Xu, D. Status and Influential Factors of Vitamin D among Children Aged 0 to 6 Years in a Chinese Population. BMC Public Health 2020, 20, 429. [Google Scholar] [CrossRef] [PubMed]
- Thacher, T.D. Evaluating the Evidence in Clinical Studies of Vitamin D in COVID-19. Nutrients 2022, 14, 464. [Google Scholar] [CrossRef]
- Arabi, A.; El Rassi, R.; El-Hajj Fuleihan, G. Hypovitaminosis D in Developing Countries—Prevalence, Risk Factors and Outcomes. Nat. Rev. Endocrinol. 2010, 6, 550–561. [Google Scholar] [CrossRef]
- Alzaheb, R.A. The Prevalence of Hypovitaminosis D and Its Associated Risk Factors Among Women of Reproductive Age in Saudi Arabia: A Systematic Review and Meta-Analysis. Clin. Med. Insights Womens Health 2018, 11, 1179562X18767884. [Google Scholar] [CrossRef] [PubMed]
- Mithal, A.; Wahl, D.A.; Bonjour, J.-P.; Burckhardt, P.; Dawson-Hughes, B.; Eisman, J.A.; El-Hajj Fuleihan, G.; Josse, R.G.; Lips, P.; Morales-Torres, J.; et al. Global Vitamin D Status and Determinants of Hypovitaminosis D. Osteoporos. Int. 2009, 20, 1807–1820. [Google Scholar] [CrossRef]
- Al-Daghri, N.M.; Al-Saleh, Y.; Aljohani, N.; Sulimani, R.; Al-Othman, A.M.; Alfawaz, H.; Fouda, M.; Al-Amri, F.; Shahrani, A.; Alharbi, M.; et al. Vitamin D Status Correction in Saudi Arabia: An Experts’ Consensus under the Auspices of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis, and Musculoskeletal Diseases (ESCEO). Arch. Osteoporos. 2017, 12, 1. [Google Scholar] [CrossRef]
- Benameur, T.; Kaliyadan, F.; Saidi, N.; Porro, C. A Retrospective Chart Review Evaluating Changes in 25-Hydroxyvitamin D Levels among Patients Attending the University Healthcare Centre during the COVID-19 Pandemic. Nutrients 2023, 15, 2345. [Google Scholar] [CrossRef]
- Abdel-Wareth, L.; Haq, A.; Turner, A.; Khan, S.; Salem, A.; Mustafa, F.; Hussein, N.; Pallinalakam, F.; Grundy, L.; Patras, G.; et al. Total Vitamin D Assay Comparison of the Roche Diagnostics “Vitamin D Total” Electrochemiluminescence Protein Binding Assay with the Chromsystems HPLC Method in a Population with Both D2 and D3 Forms of Vitamin D. Nutrients 2013, 5, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Sempos, C.T.; Williams, E.L.; Krueger, D.C.; Binkley, N.C.; Chun, R.F. Chapter 49—Measurement and quality assessment of total and free 25-hydroxyvitamin D. In Feldman and Pike’ s Vitamin D, 5th ed.; Hewison, M., Bouillon, R., Giovannucci, E., Goltzman, D., Meyer, M., Welsh, J., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 1085–1113. ISBN 9780323913867. [Google Scholar] [CrossRef]
- Van Schoor, N.; Lips, P. Global Overview of Vitamin D Status. Endocrinol. Metab. Clin. N. Am. 2017, 46, 845–870. [Google Scholar] [CrossRef] [PubMed]
- Green, R.J.; Samy, G.; Miqdady, M.S.; El-Hodhod, M.; Akinyinka, O.O.; Saleh, G.; Haddad, J.; Alsaedi, S.A.; Mersal, A.Y.; Edris, A.; et al. Vitamin D Deficiency and Insufficiency in Africa and the Middle East, despite Year-Round Sunny Days. S. Afr. Med. J. 2015, 105, 603–605. [Google Scholar] [CrossRef]
- Chang, S.W.; Lee, H.C. Vitamin D and health—The missing vitamin in humans. Pediatr. Neonatol. 2019, 60, 237–244. [Google Scholar] [CrossRef]
- Corsello, A.; Spolidoro, G.C.I.; Milani, G.P.; Agostoni, C. Vitamin D in Pediatric Age: Current Evidence, Recommendations, and Misunderstandings. Front. Med. 2023, 10, 1107855. [Google Scholar] [CrossRef]
- Al-Shaikh, G.K.; Ibrahim, G.H.; Fayed, A.A.; Al-Mandeel, H. Impact of Vitamin D Deficiency on Maternal and Birth Outcomes in the Saudi Population: A Cross-Sectional Study. BMC Pregnancy Childbirth 2016, 16, 119. [Google Scholar] [CrossRef]
- Chakhtoura, M.; Rahme, M.; Chamoun, N.; El-Hajj Fuleihan, G. Vitamin D in the Middle East and North Africa. Bone Rep. 2018, 8, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Bassil, D.; Rahme, M.; Hoteit, M.; Fuleihan, G.E.-H. Hypovitaminosis D in the Middle East and North Africa: Prevalence, Risk Factors and Impact on Outcomes: Prevalence, Risk Factors and Impact on Outcomes. Derm.-Endocrinol. 2013, 5, 274–298. [Google Scholar] [CrossRef] [PubMed]
- Lips, P.; Cashman, K.D.; Lamberg-Allardt, C. Management of Endocrine Disease: Current Vitamin D Status in European and Middle East Countries and Strategies to Prevent Vitamin D Deficiency; a Position Statement of the European Calcified Tissue Society. Eur. J. Endocrinol. 2019, 180, 23–54. [Google Scholar] [CrossRef]
- Cui, A.; Zhang, T.; Xiao, P.; Fan, Z.; Wang, H.; Zhuang, Y. Global and Regional Prevalence of Vitamin D Deficiency in Population-Based Studies from 2000 to 2022: A Pooled Analysis of 7.9 Million Participants. Front. Nutr. 2023, 10, 1070808. [Google Scholar] [CrossRef] [PubMed]
- AlBishi, L.A.; Prabahar, K.; Albalawi, Y.M.; Albalawi, S.A.; Abosalem, A.A.; Alqarni, W.A.; Almarhapi, S.A.; Albalawi, M.M. Knowledge, Attitude and Practice of Health Care Practitioners in Saudi Arabia, with Regard to Prevention of Vitamin D Deficiency in Infancy. Saudi Med. J. 2018, 39, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Alshahrani, F.M.; Almalki, M.H.; Aljohani, N.; Alzahrani, A.; Alsaleh, Y.; Holick, M.F. Vitamin D: Light Side and Best Time of Sunshine in Riyadh, Saudi Arabia. Derm.-Endocrinol. 2013, 5, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Wacker, M.; Holick, M.F. Sunlight and Vitamin D: A Global Perspective for Health. Derm.-Endocrinol. 2013, 5, 51–108. [Google Scholar] [CrossRef]
- Engelsen, O. The Relationship between Ultraviolet Radiation Exposure and Vitamin D Status. Nutrients 2010, 2, 482–495. [Google Scholar] [CrossRef]
- Arshad, S.; Zaidi, S.J.A. Vitamin D Levels among Children, Adolescents, Adults, and Elders in Pakistani Population: A Cross-Sectional Study. BMC Public Health 2022, 22, 2040. [Google Scholar] [CrossRef]
- Farhat, K.H.; Arafa, M.A.; Rabah, D.M.; Amin, H.S.; Ibrahim, N.K. Vitamin D Status and Its Correlates in Saudi Male Population. BMC Public Health 2019, 19, 211. [Google Scholar] [CrossRef]
- Aljassim, H.; Jradi, H. Childhood overweight and obesity among the Saudi population: A case-control study among school children. J. Health Popul. Nutr. 2021, 40, 15. [Google Scholar] [CrossRef] [PubMed]
- Nichols, E.K.; Khatib, I.M.D.; Aburto, N.J.; Serdula, M.K.; Scanlon, K.S.; Wirth, J.P.; Sullivan, K.M. Vitamin D Status and Associated Factors of Deficiency among Jordanian Children of Preschool Age. Eur. J. Clin. Nutr. 2015, 69, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Krause, D.; Margetts, C.; Roupas, P. Whole of Diet Approaches. In Diet and Nutrition in Dementia and Cognitive Decline; Martin, C.R., Preedy, V.R., Eds.; Elsevier: San Diego, CA, USA, 2015; pp. 253–263. ISBN 9780124078246. [Google Scholar]
- Dresp-Langley, B. Children’s Health in the Digital Age. Int. J. Environ. Res. Public Health 2020, 17, 3240. [Google Scholar] [CrossRef] [PubMed]
- Mumena, W.A.; Alnezari, A.I.; Safar, H.I.; Alharbi, N.S.; Alahmadi, R.B.; Qadhi, R.I.; Faqeeh, S.F.; Kutbi, H.A. Media Use, Dietary Intake, and Diet Quality of Adolescents in Saudi Arabia. Pediatr. Res. 2023, 94, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Kashi, Z.; Saeedian, F.S.; Akha, O.; Gorgi, M.A.H.; Emadi, S.F.; Zakeri, H. Vitamin D Deficiency Prevalence in Summer Compared to Winter in a City with High Humidity and a Sultry Climate. Endokrynol. Pol. 2011, 62, 249–251. [Google Scholar] [PubMed]
- Sochorová, L.; Hanzlíková, L.; Černá, M.; Vosátková, M.; Grafnetterová, A.P.; Fialová, A.; Kubínová, R. Assessment of Vitamin D Status in Czech Children. Cent. Eur. J. Public Health 2018, 26, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, D.A.; Capatina, C.A.M.; Dusceac, R.; Caragheorgheopol, A.; Ghemigian, A.; Poiana, C. Seasonal Variation of Serum Vitamin D Levels in Romania. Arch. Osteoporos. 2017, 12, 1–7. [Google Scholar] [CrossRef]
- Costanzo, P.R.; Elías, N.O.; Kleiman Rubinsztein, J.; García Basavilbaso, N.X.; Piacentini, R.; Salerni, H.H. Ultraviolet radiation impact on seasonal variations of serum 25-hydroxy-vitamin D in healthy young adults in Buenos Aires. Medicina 2011, 71, 336–342, Erratum in Medicina 2011, 71, 453. [Google Scholar]
- Won, J.W.; Jung, S.K.; Jung, I.A.; Lee, Y. Seasonal Changes in Vitamin D Levels of Healthy Children in Mid-Latitude, Asian Urban Area. Pediatr. Gastroenterol. Hepatol. Nutr. 2021, 24, 207. [Google Scholar] [CrossRef]
- Khalifah, A.; Alnasser, R.A. Childhood Vitamin D Deficiency: Time for Policy Change. J. Nat. Sci. Med. 2021, 4, 336–342. [Google Scholar] [CrossRef]
- Alshamsan, F.M.; Bin-Abbas, B.S. Knowledge, Awareness, Attitudes and Sources of Vitamin D Deficiency and Sufficiency in Saudi Children. Saudi Med. J. 2016, 37, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Al-Saleh, Y.; Al-Daghri, N.M.; Khan, N.; Alfawaz, H.; Al-Othman, A.M.; Alokail, M.S.; Chrousos, G.P. Vitamin D Status in Saudi School Children Based on Knowledge. BMC Pediatr. 2015, 15, 53. [Google Scholar] [CrossRef] [PubMed]
- Al-Qahtani, S.M.; Shati, A.A.; Alqahtani, Y.A.; Dawood, S.A.; Siddiqui, A.F.; Zaki, M.S.A.; Khalil, S.N. Prevalence and Correlates of Vitamin D Deficiency in Children Aged Less than Two Years: A Cross-Sectional Study from Aseer Region, Southwestern Saudi Arabia. Healthcare 2022, 10, 1064. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.N.; Alkhenizan, A.H.; El Shaker, M.; Raef, H.; Gabr, A. Increasing Trends and Significance of Hypovitaminosis D: A Population-Based Study in the Kingdom of Saudi Arabia. Arch. Osteoporos. 2014, 9, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Al-Alyani, H.; Al-Turki, H.A.; Al-Essa, O.N.; Alani, F.M.; Sadat-Ali, M. Vitamin D Deficiency in Saudi Arabians: A Reality or Simply Hype: A Meta-Analysis (2008–2015). J. Fam. Community Med. 2018, 25, 1–4. [Google Scholar] [CrossRef]
- Coşkun, S.; Şimşek, Ş.; Camkurt, M.A.; Çim, A.; Çelik, S.B. Association of Polymorphisms in the Vitamin D Receptor Gene and Serum 25-Hydroxyvitamin D Levels in Children with Autism Spectrum Disorder. Gene 2016, 588, 109–114. [Google Scholar] [CrossRef]
- Pike, J.W.; Meyer, M.B.; Benkusky, N.A.; Lee, S.M.; St John, H.; Carlson, A.; Onal, M.; Shamsuzzaman, S. Genomic Determinants of Vitamin D-Regulated Gene Expression. Vitam. Horm. 2016, 100, 21–44. [Google Scholar] [CrossRef]
- Hyppönen, E.; Vimaleswaran, K.S.; Zhou, A. Genetic Determinants of 25-Hydroxyvitamin D Concentrations and Their Relevance to Public Health. Nutrients 2022, 14, 4408. [Google Scholar] [CrossRef]
- Sadat-Ali, M.; Al-Turki, H.A.; Azam, M.Q.; Al-Elq, A.H. Genetic Influence on Circulating Vitamin D among Saudi Arabians. Saudi Med. J. 2016, 37, 996–1001. [Google Scholar] [CrossRef]
- Bu, F.-X.; Armas, L.; Lappe, J.; Zhou, Y.; Gao, G.; Wang, H.-W.; Recker, R.; Zhao, L.-J. Comprehensive Association Analysis of Nine Candidate Genes with Serum 25-Hydroxy Vitamin D Levels among Healthy Caucasian Subjects. Hum. Genet. 2010, 128, 549–556. [Google Scholar] [CrossRef]
- McGrath, J.J.; Saha, S.; Burne, T.H.J.; Eyles, D.W. A Systematic Review of the Association between Common Single Nucleotide Polymorphisms and 25-Hydroxyvitamin D Concentrations. J. Steroid Biochem. Mol. Biol. 2010, 121, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Crowe, F.L.; Steur, M.; Allen, N.E.; Appleby, P.N.; Travis, R.C.; Key, T.J. Plasma concentrations of 25-hydroxyvitamin D in meat eaters, fish eaters, vegetarians and vegans: Results from the EPIC-Oxford study. Public Health Nutr. 2011, 14, 340–346. [Google Scholar] [CrossRef] [PubMed]
- ALbuloshi, T.; Kamel, A.M.; Spencer, J.P.E. Factors Associated with Low Vitamin D Status among Older Adults in Kuwait. Nutrients 2022, 14, 3342. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.J.; Fleet, J.C. The Genetics of Osteoporosis: Vitamin D Receptor Polymorphisms. Annu. Rev. Nutr. 1998, 18, 233–258. [Google Scholar] [CrossRef] [PubMed]
- Al-Horani, H.; Abu Dayyih, W.; Mallah, E.; Hamad, M.; Mima, M.; Awad, R.; Arafat, T. Nationality, Gender, Age, and Body Mass Index Influences on Vitamin D Concentration among Elderly Patients and Young Iraqi and Jordanian in Jordan. Biochem. Res. Int. 2016, 2016, 8920503. [Google Scholar] [CrossRef]
- Trollfors, B. Ethnicity, Gender and Seasonal Variations All Play a Role in Vitamin D Deficiency. Acta Paediatr. 2022, 111, 1596–1602. [Google Scholar] [CrossRef]
- Wortsman, J.; Matsuoka, L.Y.; Chen, T.C.; Lu, Z.; Holick, M.F. Decreased Bioavailability of Vitamin D in Obesity. Am. J. Clin. Nutr. 2000, 72, 690–693. [Google Scholar] [CrossRef]
- Albaker, W.; Saklawi, R.; Bah, S.; Motawei, K.; Futa, B.; Al-Hariri, M. What Is the Current Status of Childhood Obesity in Saudi Arabia?: Evidence from 20,000 Cases in the Eastern Province: A Cross-Sectional Study. Medicine 2022, 101, e29800. [Google Scholar] [CrossRef]
- Al-Hussaini, A.; Bashir, M.; Khormi, M.; AlTuraiki, M.; Alkhamis, W.; Alrajhi, M.; Halal, T. Overweight and Obesity among Saudi Children and Adolescents: Where Do We Stand Today? Saudi J. Gastroenterol. 2019, 25, 229. [Google Scholar] [CrossRef]
- Al-Hazzaa, H.M.; Alrasheedi, A.A.; Alsulaimani, R.A.; Jabri, L.; Alhowikan, A.M.; Alhussain, M.H.; Bawaked, R.A.; Alqahtani, S.A. Prevalence of Overweight and Obesity among Saudi Children: A Comparison of Two Widely Used International Standards and the National Growth References. Front. Endocrinol. 2022, 13, 954755. [Google Scholar] [CrossRef]
- ALkharashi, N.A. Estimation of Vitamin D Deficiency Prevalence among Saudi Children in Armed Forces Hospital and Riyadh Care Hospital in Riyadh, Kingdom of Saudi Arabia and Its Relation to Type 1 Diabetes Mellitus. Saudi Med. J. 2019, 40, 1290–1293. [Google Scholar] [CrossRef] [PubMed]
- Brock, K.; Cant, R.; Clemson, L.; Mason, R.S.; Fraser, D.R. Effects of Diet and Exercise on Plasma Vitamin D (25(OH)D) Levels in Vietnamese Immigrant Elderly in Sydney, Australia. J. Steroid Biochem. Mol. Biol. 2007, 103, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Al Shaikh, A.; Farahat, F.; Abaalkhail, B.; Kaddam, I.; Aseri, K.; Al Saleh, Y.; Al Qarni, A.; Al Shuaibi, A.; Tamimi, W. Prevalence of Obesity and Overweight among School-Aged Children in Saudi Arabia and Its Association with Vitamin D Status. Acta Biomed. 2020, 91, e2020133. [Google Scholar] [CrossRef]
- Peterson, C. Vitamin D Deficiency and Childhood Obesity: Interactions, Implications, and Recommendations. Nutr. Diet. Suppl. 2015, 7, 29. [Google Scholar] [CrossRef]
- Jablonski, N.G.; Chaplin, G. The evolution of human skin coloration. J. Hum. Evol. 2000, 39, 57–106. [Google Scholar] [CrossRef]
- Cheng, H.; Chen, D.; Gao, H. An updated meta-analysis of the relationship between vitamin D levels and precocious puberty. Front. Endocrinol. 2023, 14, 1298374. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhang, X.; Yan, F.; Cui, Y.; Song, Y.; Yan, S.; Cui, W. Does Vitamin D Have a Potential Role in Precocious Puberty? A Meta-Analysis. Food Funct. 2023, 14, 5301–5310. [Google Scholar] [CrossRef]
- Al-Rafee, M.A.; AlShammery, A.R.; AlRumikan, A.S.; Pani, S.C. A Comparison of Dental Caries in Urban and Rural Children of the Riyadh Region of Saudi Arabia. Front. Public Health 2019, 7, 195. [Google Scholar] [CrossRef]
- Hujoel, P.P. Vitamin D and Dental Caries in Controlled Clinical Trials: Systematic Review and Meta-Analysis. Nutr. Rev. 2013, 71, 88–97. [Google Scholar] [CrossRef]
- Mansour, M.H.K.; Alhadidi, K. Vitamin D Deficiency in Children Living in Jeddah, Saudi Arabia. Indian J. Endocrinol. Metab. 2012, 16, 263. [Google Scholar] [CrossRef]
- Durá-Travé, T.; Gallinas-Victoriano, F. Dental Caries in Children and Vitamin D Deficiency: A Narrative Review. Eur. J. Pediatr. 2023. [Google Scholar] [CrossRef] [PubMed]
- Botelho, J.; Machado, V.; Proença, L.; Delgado, A.S.; Mendes, J.J. Vitamin D Deficiency and Oral Health: A Comprehensive Review. Nutrients 2020, 12, 1471. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, M.; Jaworski, M.; Płudowski, P. 25(OH)D Concentration in Neonates, Infants, Toddlers, Older Children and Teenagers from Poland—Evaluation of Trends during Years 2014–2019. Nutrients 2023, 15, 3477. [Google Scholar] [CrossRef] [PubMed]
- Płudowski, P.; Kos-Kudła, B.; Walczak, M.; Fal, A.; Zozulińska-Ziółkiewicz, D.; Sieroszewski, P.; Peregud-Pogorzelski, J.; Lauterbach, R.; Targowski, T.; Lewiński, A.; et al. Guidelines for Preventing and Treating Vitamin D Deficiency: A 2023 Update in Poland. Nutrients 2023, 15, 695. [Google Scholar] [CrossRef] [PubMed]
- Bacchetta, J.; Edouard, T.; Laverny, G.; Bernardor, J.; Bertholet-Thomas, A.; Castanet, M.; Garnier, C.; Gennero, I.; Harambat, J.; Lapillonne, A.; et al. Vitamin D and Calcium Intakes in General Pediatric Populations: A French Expert Consensus Paper. Arch. Pediatr. 2022, 29, 312–325. [Google Scholar] [CrossRef]
Serum 25(OH)D Status (ng/mL) | |||||
---|---|---|---|---|---|
Total | Sufficient | Insufficient | Deficient | ||
n (%) | ≥30 ng/mL | 21–29 | 0–20 | ||
Age | 0–21 | 1790 (100) | 554 (31%) | 591 (33%) | 645 (36%) |
Age categories | 0–1 (Infancy) | 5 (0.3) | |||
2–5 (Early childhood) | 117 (7) | ||||
6–11 (Middle childhood) | 247 (14) | ||||
12–18 (Early adolescence) | 434 (24) | ||||
19–21 (Late adolescence) | 987 (55) | ||||
Mean (age) ± SD | 16.23 ± 5.44 | ||||
Gender | |||||
Male | 441 (25) | ||||
Female | 1349 (75) | ||||
Nationality | |||||
Saudi | 1412 (79) | ||||
Non-Saudi | 378 (21) |
Variables | 25(OH)D Serum Concentration (ng/mL) | p-Value | |||
---|---|---|---|---|---|
N (%) | Mean ± SD | Median (IQR) | |||
Gender | Male | 441 (25) | 29 ± 13 | 28 (12) | a: p < 0.001 |
Female | 1349 (75) | 26 ± 12 | 23 (14) | ||
Age classes | 0–1 | 5 (0.3) | 66 ± 7 | 65 (11) | b: p < 0.001 |
2–5 | 117 (7) | 40 ± 12 | 39 (13) | ||
6–11 | 247 (14) | 28 ± 8 | 28 (11) | ||
12–18 | 434 (24) | 24 ± 11 | 22 (13) | ||
19–21 | 987 (55) | 25 ± 13 | 22 (13) | ||
Nationality | Saudi | 1412 (79) | 26 ± 13 | 23 (14) | a: p < 0.001 |
Non-Saudi | 378 (21) | 29 ± 10 | 27 (13) | ||
Season of blood sample collection | Spring | 20 (1) | 25 ± 13 | 29 (15) | b: 0.007 |
Summer | 228 (13) | 29 ± 13 | 26 (14) | ||
Autumn | 814 (45) | 27 ± 12 | 24.2 (14) | ||
Winter | 728 (41) | 26 ± 13 | 23 (14) |
25(OH)D Status Frequency n (%) | Sufficient (≥30 ng/mL) n = 554 (31) | Insufficient (21–29 ng/mL) n = 591 (33) | Deficient (0–20 ng/mL) n = 645 (36) | |
---|---|---|---|---|
Season | Spring | 5 (25) | 6 (30) | 9 (45) |
Summer | 86 (38) | 80 (35) | 62 (27) | |
Autumn | 262 (32) | 281 (35) | 271 (33) | |
Winter | 201 (28) | 224 (31) | 303 (42) | |
p-value | 0.001 | 0.001 | 0.001 |
25(OH) Vitamin D Serum Concentrations (ng/mL) | |||||||
---|---|---|---|---|---|---|---|
Seasons | Sufficient | Insufficient | Deficient | Total | p-Value | ||
Spring | Female | % within gender | 4 (25%) | 5 (31%) | 7 (44%) | 16 (100%) | 0.966 |
% of Total | 20% | 25% | 35% | 80% | |||
Male | % within gender | 1 (25%) | 1 (25%) | 2(50%) | 4(100%) | ||
% of Total | 5% | 5% | 10% | 20% | |||
Total | % within gender | 5 (25%) | 6 (30%) | 9 (45%) | 20 (100%) | ||
Summer | Female | % within gender | 59 (37%) | 51 (32%) | 49 (31%) | 159(100%) | 0.139 |
% of Total | 26% | 22% | 22% | 70% | |||
Male | % within gender | 27 (39%) | 29 (42%) | 13 (19%) | 69 (100%) | ||
% of Total | 12% | 13% | 6% | 30% | |||
Total | % within gender | 86 (38%) | 80 (35%) | 62(27%) | 228 (100%) | ||
Autumn | Female | % within gender | 182(29%) | 204 (33%) | 233 (38%) | 619 (100%) | p < 0.001 |
% of Total | 22% | 25% | 29% | 76% | |||
Male | % within gender | 80 (41%) | 77 (39%) | 38 (20%) | 195 (100%) | ||
% of Total | 10% | 9% | 5% | 24% | |||
Total | % within gender | 262 (32%) | 281 (35%) | 271 (33%) | 814 (100%) | ||
Winter | Female | % within gender | 134 (24%) | 159 (29%) | 262 (47%) | 555 (100%) | p < 0.001 |
% of Total | 18% | 22% | 36% | 76% | |||
Male | % within gender | 67 (39%) | 65 (38%) | 41 (24%) | 173 (100%) | ||
% of Total | 9% | 9% | 6% | 24% | |||
Total | % within gender | 201 (28%) | 224 (31%) | 303 (41%) | 728 (100%) |
Nationality | N (Frequency) | Mean of 25(OH)D Concentrations (ng/mL) | Std. Deviation | p-Value | ||
---|---|---|---|---|---|---|
Spring | 25(OH)D | Non-Saudi | 8 | 31 | 16 | 0.047 |
Saudi | 12 | 20 | 7 | |||
Summer | 25(OH)D | Non-Saudi | 62 | 30 | 12 | 0.170 |
Saudi | 166 | 28 | 14 | |||
Autumn | 25(OH)D | Non-Saudi | 169 | 28 | 9 | 0.048 |
Saudi | 645 | 27 | 13 | |||
Winter | 25(OH)D | Non-Saudi | 139 | 28 | 11 | 0.006 |
Saudi | 589 | 25 | 13 |
Seasons | 25(OH) Vitamin D Serum Concentrations (ng/mL) | |||||||
---|---|---|---|---|---|---|---|---|
Sufficient | Sufficient | Deficient | Total | p-Value | ||||
Spring | Nationality | Non-Saudi | % within Nationality | 4 (50%) | 2 (25%) | 2(25%) | 8 (100%) | 0.09 |
% of Total | 20% | 10% | 10% | 40% | ||||
Saudi | % within Nationality | 1 (8.3%) | 4 (33.3%) | 7 (58.3%) | 12 (100%) | |||
% of Total | 5% | 20% | 35% | 60% | ||||
Total | % within Nationality | 5 (25%) | 6 (30%) | 9 (45%) | 20 (100%) | |||
% of Total | 25% | 30% | 45% | 100% | ||||
Summer | Nationality | Non-Saudi | % within Nationality | 31 (50%) | 18 (29%) | 13 (21%) | 62 (100%) | 0.06 |
% of Total | 14% | 8% | 6% | 27% | ||||
Saudi | % within Nationality | 55 (33%) | 62 (37%) | 49 (30%) | 166 (100%) | |||
% of Total | 24% | 27% | 22% | 73% | ||||
Total | % within Nationality | 86 (38%) | 80 (35%) | 62 (27%) | 228 (100%) | |||
% of Total | 38% | 35% | 27% | 100% | ||||
Autumn | Nationality | Non-Saudi | % within Nationality | 66 (39%) | 74 (44%) | 29 (17%) | 169 (100%) | p < 0.001 |
% of Total | 8% | 9% | 4% | 21% | ||||
Saudi | % within Nationality | 196(30%) | 207 (32%) | 242 (38%) | 645 (100%) | |||
% of Total | 24% | 25% | 30% | 79% | ||||
Total | % within Nationality | 262 (32%) | 281 (35%) | 271 (33%) | 814 (100%) | |||
% of Total | 32% | 35% | 33% | 100% | ||||
Winter | Nationality | Non-Saudi | % within Nationality | 51 (37%) | 50 (36%) | 38 (27%) | 139 (100%) | 0.01 |
% of Total | 7.00% | 7% | 5% | 19% | ||||
Saudi | % within Nationality | 150 (25%) | 174 (30%) | 265 (45%) | 589 (100%) | |||
% of Total | 21% | 24% | 36% | 81% | ||||
Total | % within Nationality | 201 (28%) | 224 (31%) | 303 (42%) | 728 (100%) | |||
% of Total | 28% | 31% | 42% | 100% |
Coefficients a | Model | Unstandardized Coefficients | Standardized Coefficients | 95.0% Confidence Interval for B | |||||
---|---|---|---|---|---|---|---|---|---|
Seasons | B | Std. Error | Beta | T | Sig. | Lower Bound | Upper Bound | ||
Spring | 1 | (Constant) | 39 | 8.204 | 4.812 | <0.001 | 22.169 | 56.788 | |
Age | −0.603 | 0.529 | −0.242 | −1.139 | 0.271 | −1.72 | 0.514 | ||
Nationality | −10.09 | 5.288 | −0.405 | −1.908 | 0.073 | −21.247 | 1.067 | ||
Summer | 1 | (Constant) | 36 | 2.517 | 14.221 | <0.001 | 30.838 | 40.759 | |
Age | −0.43 | 0.154 | −0.188 | −2.796 | <0.001 | −0.733 | −0.127 | ||
Nationality | −1.316 | 2.001 | −0.044 | −0.658 | 0.511 | −5.26 | 2.627 | ||
Autumn | 1 | (Constant) | 33 | 1.387 | 23.968 | <0.001 | 30.52 | 35.965 | |
Age | −0.417 | 0.085 | −0.185 | −4.902 | <0.001 | −0.584 | −0.25 | ||
Nationality | 0.613 | 1.152 | 0.02 | 0.532 | 0.595 | −1.648 | 2.875 | ||
Winter | 1 | (Constant) | 37 | 1.574 | 23.747 | <0.001 | 34.278 | 40.457 | |
Age | −0.729 | 0.091 | −0.3 | −7.988 | <0.001 | −0.908 | −0.55 | ||
Nationality | 0.265 | 1.208 | 0.008 | 0.22 | 0.826 | −2.106 | 2.636 |
Variables in the Equation | 95% C.I. for EXP (B) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Season of Sample Collection | B | S.E. | Wald | df | Sig. | Exp (B) | Lower | Upper | ||
Autumn | Step 1 a | Gender | 0.513 | 0.17 | 9.082 | 1 | 0.003 | 1.670 | 1.196 | 2.332 |
Constant | −0.876 | 0.088 | 98.582 | 1 | <0.001 | 0.416 | ||||
Spring | Step 1 a | Gender | 0 | 1.291 | 0 | 1 | 1.000 | 1.000 | 0.08 | 12.557 |
Constant | −1.099 | 0.577 | 3.621 | 1 | 0.057 | 0.333 | ||||
Summer | Step 1 a | Gender | 0.086 | 0.296 | 0.084 | 1 | 0.772 | 1.090 | 0.61 | 1.947 |
Constant | −0.528 | 0.164 | 10.33 | 1 | 0.001 | 0.590 | ||||
Winter | Step 1 a | Gender | 0.686 | 0.185 | 13.763 | 1 | <0.001 | 1.986 | 1.382 | 2.853 |
Constant | −1.145 | 0.099 | 133.213 | 1 | <0.001 | 0.318 |
Means of 25(OH)D Concentrations (ng/mL) | |||||
---|---|---|---|---|---|
Age Categories | N (Frequency) | Autumn | Winter | Spring | Summer |
0–1 | 5 | 61 | 71 | 0 | 64 |
2–5 | 117 | 39 | 43 | 66 | 36 |
6–11 | 247 | 27 | 28 | 22 | 29 |
12–18 | 434 | 24 | 24 | 20 | 26 |
19–21 | 987 | 26 | 24 | 29 | 28 |
Total | 1790 | 27 | 25 | 25 | 29 |
p-Value | p < 0.001 | p < 0.001 | p < 0.001 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benameur, T. Seasonal Variations in 25-Hydroxyvitamin D Levels among Pediatric Patients Attending the Healthcare Centre. Nutrients 2024, 16, 379. https://doi.org/10.3390/nu16030379
Benameur T. Seasonal Variations in 25-Hydroxyvitamin D Levels among Pediatric Patients Attending the Healthcare Centre. Nutrients. 2024; 16(3):379. https://doi.org/10.3390/nu16030379
Chicago/Turabian StyleBenameur, Tarek. 2024. "Seasonal Variations in 25-Hydroxyvitamin D Levels among Pediatric Patients Attending the Healthcare Centre" Nutrients 16, no. 3: 379. https://doi.org/10.3390/nu16030379
APA StyleBenameur, T. (2024). Seasonal Variations in 25-Hydroxyvitamin D Levels among Pediatric Patients Attending the Healthcare Centre. Nutrients, 16(3), 379. https://doi.org/10.3390/nu16030379