Nutritional, Clinical and Sociodemographic Profiles of Spanish Patients with Amyotrophic Lateral Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Type of Study and Participants
2.2. Ethical Aspects
2.3. Procedures
2.3.1. Clinical and Sociodemographic History
2.3.2. Anthropometric Valuation
2.3.3. Analysis of Nutritional Intake
2.3.4. ALSFRS-R Test
2.3.5. Statistical Analysis
3. Results
3.1. Clinical and Sociodemographic Profile
3.2. Analysis of Nutritional Intake
3.2.1. Energy and Macronutrients
3.2.2. Micronutrients
4. Discussion
4.1. Clinical and Sociodemographic Profile
4.2. Nutritional Intake Profile
4.2.1. Energy and Macronutrients
4.2.2. Micronutrients
4.3. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oskarsson, B.; Gendron, T.F.; Staff, N.P. Amyotrophic Lateral Sclerosis: An Update for 2018. Mayo Clin. Proc. 2018, 93, 1617–1628. [Google Scholar] [CrossRef]
- Valko, K.; Ciesla, L. Amyotrophic lateral sclerosis. Prog. Med. Chem. 2019, 58, 63–117. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.F.; Shaw, P.J.; De Vos, K.J. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett. 2019, 710, 132–933. [Google Scholar] [CrossRef] [PubMed]
- Picher-Martel, V.; Brunet, F.; Dupré, N.; Chrestian, N. The Occurrence of FUS Mutations in Pediatric Amyotrophic Lateral Sclerosis: A Case Report and Review of the Literature. J. Child. Neurol. 2020, 35, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Pradas, J.; Puig, T.; Rojas-García, R.; Viguera, M.L.; Gich, I.; Logroscino, G.; ALS-CAT Group. Amyotrophic lateral sclerosis in Catalonia: A population based study. Amyotroph. Lateral Scler. Front. Degener. 2013, 14, 278–283. [Google Scholar] [CrossRef]
- Ingre, C.; Roos, P.M.; Piehl, F.; Kamel, F.; Fang, F. Risk factors for amyotrophic lateral sclerosis. Clin. Epidemiol. 2015, 7, 181–193. [Google Scholar] [CrossRef]
- Kiernan, M.C.; Vucic, S.; Cheah, B.C.; Turner, M.R.; Eisen, A.; Hardiman, O.; Burrell, J.R.; Zoing, M.C. Amyotrophic lateral sclerosis. Lancet 2011, 377, 942–955. [Google Scholar] [CrossRef]
- Yunusova, Y.; Plowman, E.K.; Green, J.R.; Barnett, C.; Bede, P. Clinical Measures of Bulbar Dysfunction in ALS. Front. Neurol. 2019, 10, 106. [Google Scholar] [CrossRef]
- Xu, L.; Liu, T.; Liu, L.; Yao, X.; Chen, L.; Fan, D.; Zhan, S.; Wang, S. Global variation in prevalence and incidence of amyotrophic lateral sclerosis: A systematic review and meta-analysis. J. Neurol. 2020, 267, 944–953. [Google Scholar] [CrossRef]
- Jaiswal, M.K. Riluzole and edaravone: A tale of two amyotrophic lateral sclerosis drugs. Med. Res. Rev. 2019, 39, 733–748. [Google Scholar] [CrossRef]
- Testa, D.; Lovati, R.; Ferrarini, M.; Salmoiraghi, F.; Filippini, G. Survival of 793 patients with amyotrophic lateral sclerosis diagnosed over a 28-year period. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2004, 5, 208–212. [Google Scholar] [CrossRef]
- Longinetti, E.; Fang, F. Epidemiology of amyotrophic lateral sclerosis: An update of recent literature. Curr. Opin. Neurol. 2019, 32, 771–776. [Google Scholar] [CrossRef]
- Zarei, S.; Carr, K.; Reiley, L.; Diaz, K.; Guerra, O.; Altamirano, P.F.; Pagani, W.; Lodin, D.; Orozco, G.; Chinea, A. A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int. 2015, 6, 171. [Google Scholar] [CrossRef]
- Ruoppolo, G.; Schettino, I.; Frasca, V.; Giacomelli, E.; Prosperini, L.; Cambieri, C.; Roma, R.; Greco, A.; Mancini, P.; De Vincentiis, M.; et al. Dysphagia in amyotrophic lateral sclerosis: Prevalence and clinical findings. Acta Neurol. Scand. 2013, 128, 397–401. [Google Scholar] [CrossRef]
- López-Gómez, J.J.; Ballesteros-Pomar, M.D.; Torres-Torres, B.; De la Maza, B.P.; Penacho-Lázaro, M.Á.; Palacio-Mures, J.M.; Abreu-Padín, C.; López-Guzmán, A.; De Luis-Román, D.A. Malnutrition at diagnosis in amyotrophic lateral sclerosis (als) and its influence on survival: Using glim criteria. Clin. Nutr. 2021, 40, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Mejzini, R.; Flynn, L.L.; Pitout, I.L.; Fletcher, S.; Wilton, S.D.; Akkari, P.A. ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now? Front. Neurosci. 2019, 13, 1310. [Google Scholar] [CrossRef]
- Okamoto, K.; Kihira, T.; Kondo, T.; Kobashi, G.; Washio, M.; Sasaki, S.; Yokoyama, T.; Miyake, Y.; Sakamoto, N.; Inaba, Y.; et al. Nutritional status and risk of amyotrophic lateral sclerosis in Japan. Amyotroph. Lateral Scler. 2007, 8, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.R. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial «Clinical limits of amyotrophic lateral sclerosis» workshop contributors. J. Neurol. Sci. 1994, 124, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Ortega, R.M.; Pérez-Rodrigo, C.; López-Sobaler, A.A. Métodos de evaluación de la ingesta actual: Registro o diario diétetico. Rev. Esp. Nutr. Comunitaria 2015, 2, 34–41. [Google Scholar] [CrossRef]
- Serra Majem, L.; Aranceta Bartrina, J. Objetivos nutricionales para la población española. Consenso de la Sociedad Española de Nutrición Comunitaria. Rev. Española Nutr. Comunitaria 2011, 17, 178–199. [Google Scholar]
- Frankenfield, D.C.; Muth, E.R.; Rowe, W.A. The Harris-Benedict studies of human basal metabolism: History and limitations. J. Am. Diet. Assoc. 1998, 98, 439–445. [Google Scholar] [CrossRef]
- Kollewe, K.; Mauss, U.; Krampfl, K.; Petri, S.; Dengler, R.; Mohammadi, B. ALSFRS-R score and its ratio: A useful predictor for ALS-progression. J. Neurol. Sci. 2008, 275, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, R.; Harvey, R.A.; Abraham, K.; Rosen, J.; Mehta, P. Amyotrophic lateral sclerosis among patients with a Medicare Advantage prescription drug plan; prevalence, survival and patient characteristics. Amyotroph. Lateral Scler. Front. Degener. 2019, 20, 251–259. [Google Scholar] [CrossRef] [PubMed]
- De Jong, S.; Huisman, M.; Sutedja, N.; van der Kooi, A.; de Visser, M.; Schelhaas, J.; van der Schouw, Y.; Veldink, J.; van den Berg, L. Endogenous female reproductive hormones and the risk of amyotrophic lateral sclerosis. J. Neurol. 2013, 260, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Paganoni, S.; Deng, J.; Jaffa, M.; Cudkowicz, M.E.; Wills, A.M. Body mass index, not dyslipidemia, is an independent predictor of survival in amyotrophic lateral sclerosis. Muscle Nerve 2011, 44, 20–24. [Google Scholar] [CrossRef]
- Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends Neurosci. 2013, 36, 587–597. [Google Scholar] [CrossRef]
- Sünram-Lea, S.I.; Owen, L. The impact of diet-based glycaemic response and glucose regulation on cognition: Evidence across the lifespan. Proc. Nutr. Soc. 2017, 76, 466–477. [Google Scholar] [CrossRef]
- Tefera, T.W.; Steyn, F.J.; Ngo, S.T.; Borges, K. CNS Glucose Metabolism in Amyotrophic Lateral Sclerosis: A Therapeutic Target? Cell Biosci. 2021, 11, 14. [Google Scholar] [CrossRef]
- Dewsbury, L.S.; Lim, C.K.; Steiner, G.Z. The Efficacy of Ketogenic Therapies in the Clinical Management of People with Neurodegenerative Disease: A Systematic Review. Adv. Nutr. 2021, 12, 1571–1593. [Google Scholar] [CrossRef]
- Lee, J.Y.; Zhao, L.; Hwang, D.H. Modulation of pattern recognition receptor-mediated inflammation and risk of chronic diseases by dietary fatty acids. Nutr. Rev. 2010, 68, 38–61. [Google Scholar] [CrossRef]
- Fritsche, K.L. The science of fatty acids and inflammation. Adv. Nutr. 2015, 6, 293S–301S. [Google Scholar] [CrossRef] [PubMed]
- Hemerková, P.; Vališ, M. Role of Oxidative Stress in the Pathogenesis of Amyotrophic Lateral Sclerosis: Antioxidant Metalloenzymes and Therapeutic Strategies. Biomolecules 2021, 11, 437. [Google Scholar] [CrossRef] [PubMed]
- Lauritzen, I.; Blondeau, N.; Heurteaux, C.; Widmann, C.; Romey, G.; Lazdunski, M. Polyunsaturated fatty acids are potent neuroprotectors. EMBO J. 2000, 19, 1784–1793. [Google Scholar] [CrossRef] [PubMed]
- Nelson, L.M.; McGuire, V.; Longstreth, W.T.; Matkin, C. Population-based case-control study of amyotrophic lateral sclerosis in western Washington State. I. Cigarette smoking and alcohol consumption. Am. J. Epidemiol. 2000, 151, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Pupillo, E.; Bianchi, E.; Chiò, A.; Casale, F.; Zecca, C.; Tortelli, R.; Beghi, E.; SLALOM Group; PARALS Group; SLAP Group. Amyotrophic lateral sclerosis and food intake. Amyotroph. Lateral Scler. Front. Degener. 2018, 19, 267–274. [Google Scholar] [CrossRef]
- Moon, Y.; Choi, Y.J.; Kim, J.O.; Han, S.H. Muscle profile and cognition in patients with Alzheimer’s disease dementia. Neurol. Sci. 2018, 39, 1861–1866. [Google Scholar] [CrossRef]
- Winge, K.; Rasmussen, D.; Werdelin, L.M. Constipation in neurological diseases. J. Neurol. Neurosurg. Psychiatry 2003, 74, 13–19. [Google Scholar] [CrossRef]
- Rowin, J.; Xia, Y.; Jung, B.; Sun, J. Gut inflammation and dysbiosis in human motor neuron disease. Physiol. Rep. 2017, 5, e13443. [Google Scholar] [CrossRef]
- Yu, H.; Kim, S.H.; Noh, M.Y.; Lee, S.; Park, Y. Relationship between Dietary Fiber Intake and the Prognosis of Amytrophic Lateral Sclerosis in Korea. Nutrients 2020, 12, 3420. [Google Scholar] [CrossRef] [PubMed]
- Bistriche-Giuntini, E.; Hoffmann-Sardá, F.A.; Wenzel de Menezes, E. The Effects of Soluble Dietary Fibers on Glycemic Response: An Overview and Futures Perspectives. Foods 2022, 11, 3934. [Google Scholar] [CrossRef]
- De la Rubia-Ortí, J.E.; Cuerda-Ballester, M.; Drehmer, E.; Carrera-Juliá, S.; Motos-Muñoz, M.; Cunha-Pérez, C.; Benlloch, M.; López-Rodríguez, M.M. Vitamin B1 Intake in Multiple Sclerosis Patients and its Impact on Depression Presence: A Pilot Study. Nutrients 2020, 12, 2655. [Google Scholar] [CrossRef]
- Roos, E.; Mariosa, D.; Ingre, C.; Lundholm, C.; Wirdefeldt, K.; Roos, P.M.; Fang, F. Depression in amyotrophic lateral sclerosis. Neurology 2016, 86, 2271–2277. [Google Scholar] [CrossRef]
- Tong, L. Structure and function of biotin-dependent carboxylases. Cell Mol. Life Sci. 2013, 70, 863–891. [Google Scholar] [CrossRef] [PubMed]
- Pearson, P.; Lewis, S.A.; Britton, J.; Young, I.S.; Fogarty, A. The pro-oxidant activity of high-dose vitamin E supplements in vivo. BioDrugs 2006, 20, 271–273. [Google Scholar] [CrossRef] [PubMed]
- Michal-Freedman, D.; Kuncl, R.W.; Weinstein, S.J.; Malila, N.; Virtamo, J.; Albanes, D. Vitamin E serum levels and controlled supplementation and risk of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2013, 14, 246–251. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Li, L.; Wang, Q.; Le, W. Folic acid protects motor neurons against the increased homocysteine, inflammation and apoptosis in SOD1 G93A transgenic mice. Neuropharmacology 2008, 54, 1112–1119. [Google Scholar] [CrossRef]
- Watanabe, F. Vitamin B12 sources and bioavailability. Exp. Biol. Med. 2007, 232, 1266–1274. [Google Scholar] [CrossRef]
- Burton, J.M.; Costello, F.E. Vitamin D in multiple sclerosis and central nervous system demyelinating disease—A review. J. Neuroophthalmol. 2015, 35, 194–200. [Google Scholar] [CrossRef]
- Karam, C.; Scelsa, S.N. Can vitamin D delay the progression of ALS? Med. Hypotheses 2011, 76, 643–645. [Google Scholar] [CrossRef] [PubMed]
- Caplliure-Llopis, J.; Escrivá, D.; Benlloch, M.; de la Rubia-Ortí, J.E.; Estrela, J.M.; Barrios, C. Poor Bone Quality in Patients with Amyotrophic Lateral Sclerosis. Front. Neurol. 2020, 11, 599216. [Google Scholar] [CrossRef]
- Civitelli, R.; Ziambaras, K. Calcium and phosphate homeostasis: Concerted interplay of new regulators. J. Endocrinol. Investig. 2011, 34, 3–7. [Google Scholar] [CrossRef]
- Watanabe, M.T.; Araujo, R.M.; Vogt, B.P.; Barretti, P.; Caramori, J.C.T. Most consumed processed foods by patients on hemodialysis: Alert for phosphate-containing additives and the phosphate-to-protein ratio. Clin. Nutr. ESPEN 2016, 14, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Grillo, A.; Salvi, L.; Coruzzi, P.; Salvi, P.; Parati, G. Sodium Intake and Hypertension. Nutrients 2019, 11, 1970. [Google Scholar] [CrossRef] [PubMed]
- Moreau, C.; Brunaud-Danel, V.; Dallongeville, J.; Duhamel, A.; Laurier-Grymonprez, L.; de Reuck, J.; Wiart, A.C.; Perez, T.; Richard, F.; Amouyel, P.; et al. Modifying effect of arterial hypertension on amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 2012, 13, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, M.S.; Andersen, M.V.; Christoffersen, P.R.; Jensen, M.D.; Lichota, J.; Moos, T. Neurodegeneration with inflammation is accompanied by accumulation of iron and ferritin in microglia and neurons. Neurobiol. Dis. 2015, 81, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Takao, M. Neuropathology of superficial hemosiderosis and neuroferritinopathy. Clin. Neurol. 2012, 52, 959–961. [Google Scholar] [CrossRef]
- Tyszka-Czochara, M.; Grzywacz, A.; Gdula-Argasińska, J.; Librowski, T.; Wiliński, B.; Opoka, W. The role of zinc in the pathogenesis and treatment of central nervous system (CNS) diseases. Implications of zinc homeostasis for proper CNS function. Acta Pol. Pharm. 2014, 71, 369–377. [Google Scholar]
- Szewczyk, B. Zinc homeostasis and neurodegenerative disorders. Front. Aging Neurosci. 2013, 5, 33. [Google Scholar] [CrossRef]
- Foster, H.D. Disease family trees: The possible roles of iodine in goitre, cretinism, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s and Parkinson’s diseases and cancers of the thyroid, nervous system and skin. Med. Hypotheses 1987, 24, 249–263. [Google Scholar] [CrossRef]
- Filippini, T.; Michalke, B.; Mandrioli, J.; Tsatsakis, A.; Weuve, J.; Vinceti, M. Selenium Neurotoxicity and Amyotrophic Lateral Sclerosis: An Epidemiologic Perspective. In Selenium, 1st ed.; Michalke, B., Ed.; Springer: New York, NY, USA, 2018; pp. 231–248. [Google Scholar] [CrossRef]
Variable | Total (n = 40) |
---|---|
Sex | |
Male | 25 |
Female | 15 |
Age (years) | 54.7 ± 10.17 |
Age (years), | |
Minimum–maximum | 37–80 |
Weight (kg) | 67.99 ± 8.85 |
Men | 72.02 ± 7.46 |
Women | 61.28 ± 6.75 |
Height (cm) | 167.83 ± 8.79 |
BMI (kg/m2) | 24.14 ± 2.56 |
Men | 24.55 ± 2.28 |
Women | 23.47 ± 2.94 |
Time of diagnosis (years), | |
Minimum–maximum | 0–4 |
Duration of ALS (years), | |
Minimum–maximum | 1–8 |
ALSFRS-R | 40.13 ± 0.70 |
Nutritional Variable | Mean | SD | DRI |
---|---|---|---|
Energy (kcal/day) | 2211.67 | 305.86 | 1875–3000 |
Carbohydrates (%/day) | 40.18 ** | 4.20 | 50–55 |
Proteins (%/day) | 18.58 | 2.43 | 10–20 |
Lipids (%/day) | 41.23 ** | 3.91 | 30–35 |
Monounsaturated fatty acids (%/day) | 15.92 ** | 0.12 | 20 |
Polyunsaturated fatty acids (%/day) | 11.96 ** | 0.21 | 5 |
Saturated fatty acids (%/day) | 13.31 ** | 0.20 | 7–8 |
Cholesterol (mg/day) | 351.14 | 214.11 | <300 |
Fiber (g/day) | 21.31 | 6.33 | 25–35 |
B1-Thiamine (mg/day) | 1.48 * | 0.61 | 1–1.2 |
B2-Riboflavin (mg/day) | 2.16 ** | 1.06 | 1.2–1.6 |
B3-Niacin (mg/day) | 31.75 ** | 7.82 | 14–18 |
B5-Pantothenic acid (mg/day) | 5.67 * | 1.31 | 5 |
B6-Pyridoxine (mg/day) | 2.40 ** | 1.66 | 1.2–1.6 |
B8-Biotin (µg/day) | 8.06 ** | 5.04 | 30 |
B9-Folic acid (µg/day) | 275.89 | 91.67 | 300 |
B12-Cyanocobalamin (µg/day) | 8.03 ** | 5.36 | 2 |
C-Ascorbic acid (mg/day) | 94.60 ** | 50.00 | 60–70 |
A (µg/day) | 837.53 | 637.53 | 600–700 |
D (µg/day) | 5.11 | 3.17 | 5–10 |
E (mg/day) | 17.68 ** | 3.88 | 15 |
Sodium (mg/day) | 2255.10 ** | 528.80 | 1200–1500 |
Potassium (mg/day) | 2998.29 | 779.89 | 3100 |
Calcium (mg/day) | 941.57 | 283.98 | 900–1000 |
Phosphorus (mg/day) | 1384.26 ** | 290.11 | 700 |
Magnesium (mg/day) | 330.71 | 109.26 | 300–350 |
Iron (mg/day) | 16.55 | 6.29 | 9–18 |
Zinc (mg/day) | 10.40 | 5.06 | 7–10 |
Iodine (µg/day) | 84.49 ** | 29.55 | 150 |
Selenium (µg/day) | 78.51 ** | 25.98 | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrera-Juliá, S.; Estrela, J.M.; Zacarés, M.; Navarro, M.Á.; Vega-Bello, M.J.; de la Rubia Ortí, J.E.; Moreno, M.L.; Drehmer, E. Nutritional, Clinical and Sociodemographic Profiles of Spanish Patients with Amyotrophic Lateral Sclerosis. Nutrients 2024, 16, 350. https://doi.org/10.3390/nu16030350
Carrera-Juliá S, Estrela JM, Zacarés M, Navarro MÁ, Vega-Bello MJ, de la Rubia Ortí JE, Moreno ML, Drehmer E. Nutritional, Clinical and Sociodemographic Profiles of Spanish Patients with Amyotrophic Lateral Sclerosis. Nutrients. 2024; 16(3):350. https://doi.org/10.3390/nu16030350
Chicago/Turabian StyleCarrera-Juliá, Sandra, José M. Estrela, Mario Zacarés, Mari Ángeles Navarro, María Jesús Vega-Bello, José Enrique de la Rubia Ortí, Mari Luz Moreno, and Eraci Drehmer. 2024. "Nutritional, Clinical and Sociodemographic Profiles of Spanish Patients with Amyotrophic Lateral Sclerosis" Nutrients 16, no. 3: 350. https://doi.org/10.3390/nu16030350
APA StyleCarrera-Juliá, S., Estrela, J. M., Zacarés, M., Navarro, M. Á., Vega-Bello, M. J., de la Rubia Ortí, J. E., Moreno, M. L., & Drehmer, E. (2024). Nutritional, Clinical and Sociodemographic Profiles of Spanish Patients with Amyotrophic Lateral Sclerosis. Nutrients, 16(3), 350. https://doi.org/10.3390/nu16030350