Adipokines and Gamma-Glutamyl Transferase as Biomarkers of Metabolic Syndrome Risk in Mexican School-Aged Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Subject Selection
2.2. Anthropometric and Medical Assessment
2.3. Biochemical Measurements
2.4. Statistical Analysis
3. Results
3.1. Nutritional Assessment
3.2. Adipokines and GGT Levels
3.3. Association of Markers with Metabolic Syndrome
3.4. Association Among Adipokines and GGT Levels
3.5. Cut-Off Points for Circulating Adipokines and GGT to Predict the Development of Metabolic Syndrome in Children
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez-Herrera, A.; Cruz-López, M. Situación actual de la obesidad infantil en México. Nutr. Hosp. 2018, 36, 463–469. [Google Scholar] [CrossRef]
- Shamah-Levy, T.; Gaona-Pineda, E.B.; Cuevas-Nasu, L.; Valenzuela-Bravo, D.G.; Morales-Ruan, C.; Rodríguez-Ramírez, S.; Méndez-Gómez-Humarán, I.; Ávila-Arcos, M.A.; Álvarez-Sánchez, C.; Ávila-Curiel, A.; et al. Sobrepeso y obesidad en población escolar y adolescente. Salud Publica Mex. 2024, 66, 404–413. [Google Scholar] [CrossRef]
- ENSANUT Estatal Nuevo León, ENSANUT Continua 2022. Instituto Nacional de Salud Pública, Secretaría de Igualdad e Inclusión y Secretaría de Salud de Nuevo León. Available online: https://saludnl.gob.mx/regulacion-sanitaria/wp-content/uploads/2023/02/RP-SALUD-02-DE-FEBRERO-2023.pdf (accessed on 21 October 2024).
- López-Jaramillo, P.; Gómez-Arbeláez, D.; López-López, J.; López-López, C.; Martínez-Ortega, J.; Gómez-Rodríguez, A.; Triana-Cubillos, S. The role of leptin/adiponectin ratio in metabolic syndrome and diabetes. Horm. Mol. Biol. Clin. Investig. 2014, 18, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.R.; Yadav, D.; Koh, S.B.; Kim, J.Y.; Ahn, S.V. Impact of Serum Leptin to Adiponectin Ratio on Regression of Metabolic Syndrome in High-Risk Individuals: The ARIRANG Study. Yonsei Med. J. 2017, 58, 339–346. [Google Scholar] [CrossRef]
- Cura–Esquivel, I.; Perales-Quintana, M.M.; Torres-González, L.; Guzmán-Avilán, K.; Muñoz-Espinosa, L.; Cordero-Pérez, P. Metabolic, inflammatory and adipokine differences on overweight/obese children with and without metabolic syndrome: A cross-sectional study. PLoS ONE 2023, 18, e0281381. [Google Scholar] [CrossRef] [PubMed]
- The International Diabetes Federation (IDF) Consensus Definition of the Metabolic Syndrome in Children and Adolescents. 2007. Available online: https://idf.org/media/uploads/2023/05/attachments-31.pdf (accessed on 21 October 2024).
- Romero-Velarde, E.; Aguirre-Salas, L.; Álvarez-Román, Y.; Vásquez-Garibay, E.; Casillas-Toral, E.; Fonseca-Reyes, S. Prevalencia de síndrome metabólico y factores asociados en niños y adolescentes con obesidad. Rev. Med. Inst. Mex. Seguro Soc. 2015, 54, 568–575. Available online: https://www.redalyc.org/journal/4577/457746956004/html/ (accessed on 13 December 2024).
- Ayina, C.N.A.; Endomba, F.T.A.; Mandengue, S.H.; Noubiap, J.J.N.; Ngoa, L.S.E.; Boudou, P.; Gautier, J.F.; Mbanya, J.C.; Sobngwi, E. Association of the leptin-to-adiponectin ratio with metabolic syndrome in a sub-Saharan African population. Diabetol. Metab. Syndr. 2017, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Lee, J.Y.; Lee, D.C.; Lee, Y.J. Serum γ-glutamyltransferase level and metabolic syndrome in children and adolescents: Korean National Health and Nutrition Examination Survey. J. Diabetes Investig. 2017, 9, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Speakman, A.; Hitchcock, K.; Romantic, E.; Quiambao, V.; Lepolt, A.; Ley, S.; Arce-Clachar, A.C.; Bramlage, K.; Fei, L.; Sun, Q.; et al. Longitudinal Links between Changes in Body Composition and Liver Disease Severity in Children and Adolescents with Metabolic Dysfunction-Associated Steatotic Liver Disease. J. Pediatr. 2024, 276, 114301. [Google Scholar] [CrossRef] [PubMed]
- Mankowska-Cyl, A.; Krintus, M.; Rajewski, P.; Sypniewska, G. Gamma-glutamyltransferase activity as a surrogate biomarker of metabolic health status in young nondiabetic obese women. Biomark. Med. 2017, 11, 449–457. [Google Scholar] [CrossRef]
- Koenig, G.; Seneff, S. Gamma-Glutamyltransferase: A Predictive Biomarker of Cellular Antioxidant Inadequacy and Disease Risk. Dis. Markers 2015, 2015, 818570. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Blomhoff, R.; Jacobs, D.R. Is serum gamma glutamyltransferase a marker of oxidative stress? Free Radic. Res. 2004, 38, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Redondo-Flórez, L.; Beltrán-Velasco, A.I.; Martín-Rodríguez, A.; Martínez-Guardado, I.; Navarro-Jiménez, E.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. The Role of Adipokines in Health and Disease. Biomedicines 2023, 11, 1290. [Google Scholar] [CrossRef]
- Madeira, I.R.; Bordallo, M.A.; Carvalho, C.N.; Gazolla, F.M.; de Souza, F.M.; de Matos, H.J.; Borges, M.A. The role of metabolic syndrome components and adipokines in insulin resistance in prepubertal children. J. Pediatr. Endocrinol. Metab. 2011, 24, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Ye, J. Mechanisms of insulin resistance in obesity. Front. Med. 2013, 7, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Yosaee, S.; Khodadost, M.; Esteghamati, A.; Speakman, J.R.; Djafarian, K.; Bitarafan, V.; Shidfarxf, F. Adiponectin: An Indicator for Metabolic Syndrome. Iran. J. Public Health 2019, 48, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Kumar, S.; Kant, R. An update on metabolic syndrome: Metabolic risk markers and adipokines in the development of metabolic syndrome. Diabetes Metab. Synd. 2019, 13, 2409–2417. [Google Scholar] [CrossRef] [PubMed]
- Kong, A.P.S.; Choi, K.C.; Ho, C.S.; Chan, M.H.M.; Ozaki, R.; Chan, C.W.H.; Chan, J.C.N. Associations of uric acid and gamma-glutamyltransferase (GGT) with obesity and components of metabolic syndrome in children and adolescents. Pediatr. Obes. 2012, 8, 351–357. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Growth Reference Data for 5–19 Years. Indicators. BMI for Age 5–19 Years. 2007. Available online: https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/bmi-for-age (accessed on 21 October 2024).
- Rubio-Hurtado, M.J.; Berlanga-Silvente, V. Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso Práctico. Rev. D’innovació Recer. Educ. 2012, 5, 83–100. [Google Scholar] [CrossRef]
- Altman, N.; Krzywinski, M. Simple linear regression. Nat. Methods 2015, 12, 999–1000. [Google Scholar] [CrossRef] [PubMed]
- Cerda, J.; Cifuentes, L. Uso de curvas ROC en investigación clínica. Aspectos teórico-prácticos. Rev. Chil. Infectol. 2012, 29, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Rivadeneyra-Domínguez, E.; Díaz-Vallejo, J.J.; Prado-Bobadilla, A.G.; Rodríguez-Landa, J.F. A Comparative Study of Metabolic Syndrome Using NCEP—ATP III and IDF Criteria in Children and Its Relationship with Biochemical Indicators in Huatusco, Veracruz, Mexico. Children 2023, 10, 473. [Google Scholar] [CrossRef]
- Lo, M.H.; Lin, I.C.; Lu, P.C.; Huang, C.F.; Chien, S.J.; Hsieh, K.S.; Tain, Y.L. Evaluation of endothelial dysfunction, endothelial plasma markers, and traditional metabolic parameters in children with adiposity. J. Formos. Med. Assoc. 2019, 118, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Codazzi, V.; Frontino, G.; Galimberti, L.; Giustina, A.; Petrelli, A. Mechanisms and risk factors of metabolic syndrome in children and adolescents. Endocrine 2024, 84, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Nur Zati Iwani, A.K.; Jalaludin, M.Y.; Roslan, F.A.; Mansor, F.; Md Zain, F.; Hong, J.Y.H.; Zin, R.M.W.M.; Yahya, A.; Ishak, Z.; Selamat, R.; et al. Cardiometabolic risk factors among children who are affected by overweight, obesity and severe obesity. Front. Public Health 2023, 11, 1097675. [Google Scholar] [CrossRef]
- Ávila-Curiel, A.; Galindo-Gómez, C.; Juárez-Martínez, L.; Osorio-Victoria, M.L. Síndrome metabólico en niños de 6 a 12 años con obesidad, en escuelas públicas de siete municipios del Estado de México. Salud Publica Mex. 2018, 60, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Ortega, J.L.; Yupari-Azabache, I.L.; Caballero-Vidal, J.A.; Conde-Parada, N.E.; Rojas-Gamboa, A.F. Criteria in the Diagnosis of Metabolic Syndrome in Children: A Scoping Review. Diabetes Metab. Syndr. Obes. 2023, 16, 3489–3500. [Google Scholar] [CrossRef] [PubMed]
- Peña-Espinoza, B.I.; Granados-Silvestre, M.A.; Sánchez-Pozos, K.; Ortiz-López, M.G.; Menjivar, M. Síndrome metabólico en niños mexicanos: Poca efectividad de las definiciones diagnósticas. Endocrinol. Diabetes Nutr. 2017, 64, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Xu, L.; Zhao, Y.; Li, L.; Fu, J.; Zhang, Q.; Li, N.; Xiao, X.; Li, C.; Mi, J.; et al. Leptin-adiponectin imbalance as a marker of metabolic syndrome among Chinese children and adolescents: The BCAMS study. PLoS ONE 2017, 12, e0186222. [Google Scholar] [CrossRef]
- Frühbeck, G.; Catalán, V.; Rodríguez, A.; Ramírez, B.; Becerril, S.; Salvador, J.; Colina, I.; Gómez-Ambrosi, J. Adiponectin-leptin Ratio is a Functional Biomarker of Adipose Tissue Inflammation. Nutrients 2019, 11, 454. [Google Scholar] [CrossRef]
- Gokulakrishnan, R.; Delhikumar, C.G.; Senthilkumar, G.P.; Sahoo, J.; Kumar, R.R. Chronic Inflammatory Markers in Overweight and Obese Children: A Cross-sectional Analytical Study. Indian. J. Endocrinol. Metab. 2024, 28, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Aleman, M.N.; Luciardi, M.C.; Albornoz, E.R.; Bazán, M.C.; Abregú, A.V. Relationship between inflammatory biomarkers and insulin resistance in excess-weight Latin children. Clin. Exp. Pediatr. 2024, 67, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Vidanapathirana, D.M.; Jasinge, E.A.; Samaranayake, D.; Wickramasinghe, P. Association of Serum Uric acid and Gamma-glutamyl transferase with Obesity Related Metabolic Derangements in a Cohort of Children with Obesity in Sri Lanka. Ceylon Med. J. 2019, 64, 125–132. [Google Scholar] [CrossRef] [PubMed]
Total (n = 140) | Children with Obesity (n = 60) | Children with Normal Weight (n = 80) | p | |
---|---|---|---|---|
Gender (n (%)) | ||||
Girls | 83 (59.3) | 31 (51.7) | 52 (65.0) | 0.021 * |
Boys | 57 (40.7) | 29 (48.3) | 28 (35.0) | 0.895 |
Age (years) | 9.03 ± 1.87 | 9.55 ± 1.61 | 8.64 ± 1.96 | 0.003 * |
Height (cm) a | 137.47 ± 14.24 | 144.78 ± 11.57 | 131.98 ± 13.63 | <0.001 * |
Weight (kg) | 42.81 ± 18.67 | 60.07 ± 14.37 | 29.87 ± 7.96 | <0.001 * |
BMI (kg/m2) | 21.71 ± 6.32 | 28.28 ± 3.89 | 16.78 ± 1.31 | <0.001 * |
Z-score of BMI | 1.53 ± 1.66 | 3.29 ± 0.86 | 0.22 ± 0.47 | <0.001 * |
WC (cm) | 71.91 ± 17.73 | 89.90 ± 11.09 | 58.42 ± 5.60 | <0.001 * |
WHtR | 0.52 ± 0.09 | 0.62 ± 0.06 | 0.44 ± 0.03 | <0.001 * |
SBP (mmHg) a | 93.30 ± 12.07 | 99.05 ± 10.51 | 88.99 ± 11.40 | <0.001 * |
DBP (mmHg) | 62.98 ± 7.52 | 64.20 ± 8.10 | 62.06 ± 6.96 | 0.001 * |
MAP (mmHg) a | 73.09 ± 8.51 | 75.82 ± 8.38 | 71.04 ± 8.07 | <0.001 * |
Glucose (mg/dL) a | 83.66 ± 7.21 | 84.83 ± 7.28 | 82.79 ± 7.07 | 0.090 |
Triglycerides (mg/dL) | 137.64 ± 66.81 | 175.92 ± 79.62 | 108.93 ± 34.25 | <0.001 * |
HDL cholesterol (mg/dL) | 45.49 ± 12.89 | 36.80 ± 7.91 | 52.01 ± 12.06 | <0.001 * |
Children with MetS (n = 33) | Children without MetS (n = 27) | p | |
---|---|---|---|
Gender (n (%)) | |||
Girls | 19 (57.6) | 12 (44.4) | 0.209 |
Boys | 14 (42.4) | 15 (55.6) | 0.853 |
Age (years) | 9.27 ± 1.57 | 9.89 ± 1.63 | 0.142 |
Height (cm) a | 143.12 ± 11.40 | 146.81 ± 11.67 | 0.220 |
Weight (kg) | 58.01 ± 13.94 | 62.59 ± 14.76 | 0.220 |
BMI (kg/m2) | 27.99 ± 4.04 | 28.64 ± 3.74 | 0.520 |
Z-score of BMI | 3.30 ± 0.99 | 3.27 ± 0.68 | 0.890 |
WC (cm) | 89.35 ± 11.55 | 90.58 ± 10.67 | 0.660 |
WHtR | 0.62 ± 0.07 | 0.61 ± 0.06 | 0.647 |
SBP (mmHg) a | 98.48 ± 11.97 | 99.74 ± 8.56 | 0.640 |
DBP (mmHg) | 65.00 ± 8.86 | 63.22 ± 7.09 | 0.400 |
MAP (mmHg) a | 76.16 ± 9.46 | 75.39 ± 6.99 | 0.728 |
Glucose (mg/dL) a | 85.30 ± 8.27 | 84.26 ± 5.95 | 0.580 |
Triglycerides (mg/dL) | 216.21 ± 80.16 | 126.67 ± 43.54 | <0.001 * |
HDL cholesterol (mg/dL) | 32.67 ± 3.93 | 41.85 ± 8.65 | <0.001 * |
Total (n = 140) | Children with Obesity (n = 60) | Children with Normal Weight (n = 80) | p | |
---|---|---|---|---|
Leptin (ng/mL) | 15.49 ± 18.04 | 30.61 ± 18.60 | 4.14 ± 3.19 | <0.001 * |
Adiponectin (µg/mL) | 51.35 ± 39.85 | 29.54 ± 23.95 | 67.71 ± 41.63 | <0.001 * |
GGT (U/L) | 17.94 ± 9.64 | 21.86 ± 13.49 | 15.00 ± 2.69 | <0.001 * |
IL-6 (pg/mL) a | 4.62 ± 4.90 | 5.11 ± 4.30 | 4.26 ± 5.30 | 0.310 |
TNF-α (pg/mL) a | 6.24 ± 4.14 | 6.64 ± 3.66 | 5.94 ± 4.47 | 0.320 |
Adipokines and GGT | Children with MetS (n = 33) | Children without MetS (n = 27) | p |
---|---|---|---|
Leptin (ng/mL) a | 32.42 ± 21.39 | 28.40 ± 14.58 | 0.400 |
Adiponectin (µg/mL) a | 28.00 ± 19.98 | 31.42 ± 28.34 | 0.580 |
GGT (U/L) | 18.34 ± 7.77 | 26.17 ± 17.43 | 0.020 * |
IL-6 (pg/mL) a | 5.53 ± 4.90 | 4.59 ± 3.45 | 0.400 |
TNF-α (pg/mL) a | 6.71 ± 4.15 | 6.55 ± 3.04 | 0.870 |
Dependent | Independent | R Squared | ANOVA | B | T | p |
---|---|---|---|---|---|---|
Metabolic syndrome | Leptin (ng/mL) | 0.274 | 52.002 | 0.523 | 7.211 | <0.001 * |
Adiponectin (µg/mL) | 0.107 | 16.467 | −0.327 | −4.058 | <0.001 * | |
GGT (U/L) | 0.001 | 0.072 | 0.023 | 0.268 | 0.789 | |
IL-6 (pg/mL) | 0.011 | 1.484 | 0.103 | 1.218 | 0.225 | |
TNF-α (pg/mL) | 0.004 | 0.547 | 0.063 | 0.740 | 0.461 |
Leptin | Adiponectin | GGT | |||||||
---|---|---|---|---|---|---|---|---|---|
MetS Components | R² | B | p | R² | B | p | R² | B | p |
WC | 0.452 | 0.684 | <0.001 * | 0.163 | −0.908 | <0.001 * | 0.095 | 0.168 | <0.001 * |
SBP | 0.110 | 0.496 | <0.001 * | 0.093 | −1.005 | <0.001 * | 0.023 | 0.122 | 0.072 |
DBP | 0.006 | 0.186 | 0.363 | 0.023 | −0.802 | 0.074 | < 0.001 | −0.011 | 0.922 |
Glucose | 0.035 | 0.469 | 0.026 * | 0.003 | −0.288 | 0.541 | 0.013 | 0.150 | 0.187 |
Triglycerides | 0.130 | 0.097 | <0.001 * | 0.075 | −0.164 | 0.001 * | 0.003 | −0.008 | 0.491 |
HDL−cholesterol | 0.212 | −0.644 | <0.001 * | 0.148 | 1.187 | <0.001 * | 0.054 | −0.174 | 0.006 * |
IL-6 | TNF-α | |||||
---|---|---|---|---|---|---|
MetS Components | R² | B | p | R² | B | p |
WC | 0.015 | 0.034 | 0.151 | 0.002 | 0.010 | 0.612 |
SBP | 0.007 | 0.035 | 0.312 | 0.004 | −0.022 | 0.444 |
DBP | <0.001 | −0.005 | 0.921 | 0.006 | −0.041 | 0.379 |
Glucose | 0.004 | −0.041 | 0.477 | 0.001 | −0.020 | 0.688 |
Triglycerides | 0.013 | 0.008 | 0.175 | 0.002 | −0.003 | 0.630 |
HDL cholesterol | 0.032 | −0.067 | 0.036 * | 0.018 | −0.043 | 0.117 |
Leptin | |||
---|---|---|---|
Markers | R² | B | p |
Adiponectin | 0.120 | −0.157 | <0.001 * |
TNF-α | 0.023 | 0.663 | 0.072 |
IL-6 | 0.018 | 0.499 | 0.110 |
GGT | 0.113 | 0.629 | <0.001 * |
Adiponectin | |||
R² | B | p | |
Leptin | 0.120 | −0.766 | <0.001 * |
TNF-α | 0.001 | −0.229 | 0.780 |
IL-6 | <0.001 | 0.175 | 0.801 |
GGT | 0.088 | −1.228 | <0.001 * |
TNF−α | |||
R² | B | p | |
Leptin | 0.023 | 0.035 | 0.072 |
Adiponectin | 0.001 | −0.002 | 0.780 |
IL-6 | 0.092 | 0.256 | <0.001 * |
GGT | 0.002 | 0.021 | 0.573 |
IL−6 | |||
R² | B | p | |
Leptin | 0.018 | 0.037 | 0.110 |
Adiponectin | <0.001 | 0.003 | 0.801 |
TNF-α | 0.092 | 0.358 | <0.001 * |
GGT | <0.001 | 0.010 | 0.819 |
GGT | |||
R² | B | p | |
Leptin | 0.113 | 0.180 | <0.001 * |
Adiponectin | 0.088 | −0.072 | <0.001 * |
TNF-α | 0.002 | 0.112 | 0.573 |
IL-6 | <0.001 | 0.038 | 0.573 |
Markers | AUC (95% CI) | p |
---|---|---|
Leptin (ng/mL) | 0.833 (0.747 a 0.918) | <0.001 * |
Adiponectin (µg/mL) | 0.243 (0.157 a 0.328) | <0.001 * |
GGT (U/L) | 0.626 (0.508 a 0.744) | 0.029 * |
IL-6 (pg/mL) | 0.647 (0.552 a 0.743) | 0.011 * |
TNF-α (pg/mL) | 0.552 (0.437 a 0.667) | 0.059 |
Markers | Cut-Off Points |
---|---|
Leptin (ng/mL) | 8.3665 ng/mL |
Adiponectin (µg/mL) | 9.87 µg/mL |
GGT (U/L) | 17.8 U/L |
IL-6 (pg/mL) | 2.77 pg/mL |
TNF-α (pg/mL) | 6.68 pg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solís-Pérez, E.; Mar-Buruato, A.M.; Tijerina-Sáenz, A.; Sánchez-Peña, M.A.; González-Martínez, B.E.; Lavalle-González, F.J.; Villarreal-Pérez, J.Z.; Sánchez-Solís, G.; López-Cabanillas Lomelí, M. Adipokines and Gamma-Glutamyl Transferase as Biomarkers of Metabolic Syndrome Risk in Mexican School-Aged Children. Nutrients 2024, 16, 4410. https://doi.org/10.3390/nu16244410
Solís-Pérez E, Mar-Buruato AM, Tijerina-Sáenz A, Sánchez-Peña MA, González-Martínez BE, Lavalle-González FJ, Villarreal-Pérez JZ, Sánchez-Solís G, López-Cabanillas Lomelí M. Adipokines and Gamma-Glutamyl Transferase as Biomarkers of Metabolic Syndrome Risk in Mexican School-Aged Children. Nutrients. 2024; 16(24):4410. https://doi.org/10.3390/nu16244410
Chicago/Turabian StyleSolís-Pérez, Elizabeth, Ana Marina Mar-Buruato, Alexandra Tijerina-Sáenz, Maria Alejandra Sánchez-Peña, Blanca Edelia González-Martínez, Fernando Javier Lavalle-González, Jesús Zacarías Villarreal-Pérez, Gerardo Sánchez-Solís, and Manuel López-Cabanillas Lomelí. 2024. "Adipokines and Gamma-Glutamyl Transferase as Biomarkers of Metabolic Syndrome Risk in Mexican School-Aged Children" Nutrients 16, no. 24: 4410. https://doi.org/10.3390/nu16244410
APA StyleSolís-Pérez, E., Mar-Buruato, A. M., Tijerina-Sáenz, A., Sánchez-Peña, M. A., González-Martínez, B. E., Lavalle-González, F. J., Villarreal-Pérez, J. Z., Sánchez-Solís, G., & López-Cabanillas Lomelí, M. (2024). Adipokines and Gamma-Glutamyl Transferase as Biomarkers of Metabolic Syndrome Risk in Mexican School-Aged Children. Nutrients, 16(24), 4410. https://doi.org/10.3390/nu16244410