Potential Effects of Bioactive Compounds of Plant-Based Foods and Medicinal Plants in Chronic Kidney Disease and Dialysis: A Systematic Review
Highlights
- This systematic review highlights the current impact of certain bioactive compounds and medicinal plants on the management and progression of CKD, as well as in dialysis patients.
- Bioactive compounds, such as turmeric, propolis, and green tea, exhibit significant anti-inflammatory and antioxidant properties that may improve outcomes in CKD and dialysis patients.
- Traditional Chinese medicine could play a role in a comprehensive approach to managing CKD and dialysis patients; however, there remains insufficient evidence to endorse its use in clinical practice.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection
2.4. Data Extraction
2.5. Evaluation of the Quality of the Articles
3. Results
3.1. Potential Effects of Plant-Based Food Bioactive Compounds on Chronic Kidney Disease
3.1.1. Curcumin
3.1.2. Propolis
3.1.3. Sulforaphane
3.1.4. Genistein
3.1.5. Allicin
3.1.6. Betalain from Beetroot (Beta Vulgaris Rubra)
3.2. Potential Effects of Some Medicinal Plants on Chronic Kidney Disease
3.2.1. Catechins from Green Tea (Camellia Sinensis)
3.2.2. Rhein, Emodin, and Aloe-Emodin from Rhubarb
3.2.3. Astragalus Membranaceus (Huangqi)
3.2.4. Triptolide from Tripterygium Wilfordii Hook F
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D. Global prevalence of chronic kidney disease—A systematic review and meta-analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef] [PubMed]
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.W.; et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016–2040 for 195 countries and territories. Lancet 2018, 10, 2052–2090. [Google Scholar] [CrossRef]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update. Kidney Int. 2022, 12, 7–11. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Lefevre, M.; Beecher, G.R.; Gross, M.D.; Keen, C.L.; Etherton, T.D. Bioactive compounds in nutrition and health-research methodologies for establishing biological function: The antioxidant and anti-inflammatory effects of flavonoids on atherosclerosis. Annu. Rev. Nutr. 2004, 24, 511–538. [Google Scholar] [CrossRef] [PubMed]
- Quintela, B.C.S.F.; Carioca, A.F.; de Oliveira, J.G.R.; Fraser, S.D.; da Silva Junior, G.B. Dietary patterns and chronic kidney disease outcomes: A systematic review. Nephrology 2021, 26, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Biesalski, H.K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; Müller, M.; Schrenk, D.; Walter, P.; Weber, P. Bioactive compounds: Definition and assessment of activity. Nutrition 2009, 25, 11–12. [Google Scholar] [CrossRef]
- Owen, L.; Corfe, B. The role of diet and nutrition on mental health and wellbeing. Proc. Nutr. Soc. 2017, 76, 425–426. [Google Scholar] [CrossRef]
- Gantenbein, K.V.; Kanaka-Gantenbein, C. Mediterranean diet as an antioxidant: The impact on metabolic health and overall wellbeing. Nutrients 2021, 13, 1951. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Song, H.; Yue, J.; Li, J.; Hou, Y.B.; Deng, J.L. Rheum officinale (a traditional Chinese medicine) for chronic kidney disease. Cochrane Database Syst. Rev. 2012, 7, CD008000. [Google Scholar] [CrossRef] [PubMed]
- Gámez-Villazana, J. Advances in the determination of bioactive compounds in foods. Cienc. Tecnol. Agrollanía 2020, 19, 7–17. [Google Scholar]
- Martins-de-Souza, D. Studies on Biomarkers and New Targets in Aging Research in Iran Focus on Turmeric and Curcumin; Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2021; Available online: http://www.springer.com/series/15040 (accessed on 16 September 2024).
- Rodrigues, H.C.; Martins, T.F.P.; Santana, N.C.e.S.; Braga, C.C.; Silva, M.C.; da Cunha, L.C.; Sugizaki, C.S.A.; Freitas, A.T.V.S.; Costa, N.A.; Peixoto, M.D.R.G. Antioxidant and anti-inflammatory response to curcumin supplementation in hemodialysis patients: A randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. ESPEN 2021, 1, 136–142. [Google Scholar] [CrossRef]
- Salarolli, R.T.; Alvarenga, L.; Cardozo, L.F.M.F.; Teixeira, K.T.R.; de Moreira, L.S.G.; Lima, J.D.; Rodrigues, S.D.; Nakao, L.S.; Fouque, D.; Mafra, D. Can curcumin supplementation reduce plasma levels of gut-derived uremic toxins in hemodialysis patients? A pilot randomized, double-blind, controlled study. Int. Urol. Nephrol 2021, 1, 1231–1238. [Google Scholar] [CrossRef]
- Jiménez-Osorio, A.S.; García-Niño, W.R.; González-Reyes, S.; Álvarez-Mejía, A.E.; Guerra-León, S.; Salazar-Segovia, J.; Falcón, I.; Montes de Oca-Solano, H.; Madero, M.; Pedraza-Chaverri, J. The effect of dietary supplementation with curcumin on redox status and Nrf2 activation in patients with nondiabetic or diabetic proteinuric chronic kidney disease: A pilot study. J. Ren. Nutr. 2016, 4, 237–244. [Google Scholar] [CrossRef]
- Gheflati, A.; Dehnavi, Z.; Yazdi, A.G.; Khorasanchi, Z.; Raeisi-Dehkordi, H.; Ranjbar, G. The effects of propolis supplementation on metabolic parameters: A systematic review and meta-analysis of randomized controlled clinical trials. Avicenna J. Phytomed. 2021, 11, 551–565. [Google Scholar] [CrossRef] [PubMed]
- Forma, E.; Bryś, M. Anticancer activity of propolis and its compounds. Nutrients 2021, 13, 2594. [Google Scholar] [CrossRef] [PubMed]
- Zulhendri, F.; Lesmana, R.; Tandean, S.; Christoper, A.; Chandrasekaran, K.; Irsyam, I.; Suwantika, A.A.; Abdulah, R.; Wathoni, N. Recent Update on the Anti-Inflammatory Activities of Propolis. Molecules 2022, 2, 8473. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, L.F.M.F.; Alvarenga, L.A.; Ribeiro, M.; Dai, L.; Shiels, P.G.; Stenvinkel, P.; Lindholm, B.; Mafra, D. Cruciferous vegetables: Rationale for exploring potential salutary effects of sulforaphane-rich foods in patients with chronic kidney disease. Nutr. Rev. 2021, 79, 1204–1224. [Google Scholar] [CrossRef] [PubMed]
- Vanduchova, A.; Anzenbacher, P.; Anzenbacherova, E. Isothiocyanate from Broccoli, Sulforaphane, and Its Properties. J. Med. Food 2019, 22, 121–126. [Google Scholar] [CrossRef]
- Houghton, C.A. Sulforaphane: Its “Coming of Age” as a Clinically Relevant Nutraceutical in the Prevention and Treatment of Chronic Disease. Oxid. Med. Cell. Longev. 2019, 2019, 2716870. [Google Scholar] [CrossRef] [PubMed]
- Helen, K.; Peterson, T.G.; Barnes, S. Mechanisms of action of the soy isoflavone genistein: Emerging role for its effects via transforming growth factor beta signaling pathways. Am. J. Clin. Nutr. 1998, 68, 1418–1425. [Google Scholar] [CrossRef]
- Peng, Q.; Li, Y.; Shang, J.; Huang, H.; Zhang, Y.; Ding, Y.; Liang, Y.; Xie, Z.; Chen, C. Effects of Genistein on Common Kidney Diseases. Nutrients 2022, 14, 3768. [Google Scholar] [CrossRef] [PubMed]
- Soroka, N.; Silverberg, D.S.; Greemland, M.; Birk, Y.; Blum, M.; Peer, G.; Iaina, A. Comparison of a Vegetable-Based (Soya) and an Animal-Based Low-Protein Diet in Predialysis Chronic Renal Failure Patients. Nephron 1998, 79, 173–180. [Google Scholar] [CrossRef]
- Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. The potential benefits of red beetroot supplementation in health and disease. Nutrients 2015, 7, 801–822. [Google Scholar] [CrossRef]
- Griffiths, A.; Alhulaefi, S.; Hayes, E.J.; Matu, J.; Brandt, K.; Watson, A. Exploring the Advantages and Disadvantages of a Whole Foods Approach for Elevating Dietary Nitrate Intake: Have Researchers Concentrated Too Much on Beetroot Juice? Appl. Sci. 2023, 13, 7319. [Google Scholar] [CrossRef]
- Avila-Carrasco, L.; García-Mayorga, E.A.; Díaz-Avila, D.; Garza-Veloz, I.; Martinez-Fierro, M.L.; González-Mateo, G.T. Potential therapeutic effects of natural plant compounds in kidney disease. Molecules 2021, 26, 96. [Google Scholar] [CrossRef]
- Kanwar, J.; Taskeen, M.; Mohammad, I.; Huo, C.; Chan, T.H.; Dou, Q.P. Recent advances on tea polyphenols. Front. Biosci. 2012, 4, 111–131. [Google Scholar] [CrossRef]
- Fu, J.; Wang, Z.; Huang, L.; Zheng, S.; Wang, D.; Chen, S.; Zhang, H.; Yang, S. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytother. Res. 2014, 28, 1275–1283. [Google Scholar] [CrossRef]
- Ji, B.; Xuan, L.; Zhang, Y.; Zhang, G.; Meng, J.; Mu, W.; Liu, J.; Paek, K.Y.; Park, S.Y.; Wang, J.; et al. Advances in Biotechnological Production and Metabolic Regulation of Astragalus membranaceus. Plants 2023, 12, 1858. [Google Scholar] [CrossRef]
- Song, C.Y.; Xu, Y.G.; Lu, Y.Q. Use of Tripterygium wilfordii Hook F for immune-mediated inflammatory diseases: Progress and future prospects. J. Zhejiang Univ. Sci. B 2020, 21, 280–290. [Google Scholar] [CrossRef]
- Sravanthi, V.; Sampath Kumar, H.M. Immunomodulators in Prophylaxis and Therapy of Type-1 Diabetes. In Discovery and Development of Antidiabetic Agents from Natural Products, 1st ed.; Brahmachari, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 229–249. [Google Scholar] [CrossRef]
- Khan, M.A.; Kassianos, A.J.; Hoy, W.E.; Alam, A.K.; Healy, H.G.; Gobe, G.C. Promoting Plant-Based Therapies for Chronic Kidney Disease. J. Evid. Based. Integr. Med. 2022, 27, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Carrero, J.J.; González-Ortiz, A.; Avesani, C.M.; Bakker, S.J.L.; Bellizzi, V.; Chauveau, P.; Clase, C.M.; Cupisti, A.; Espinosa-Cuevas, A.; Molina, P.; et al. Plant-based diets to manage the risks and complications of chronic kidney disease. Nat. Rev. Nephrol. 2020, 16, 525–542. [Google Scholar] [CrossRef]
- Tabas, I.; Glass, C.K. Anti-inflammatory therapy in chronic disease: Challenges and opportunities. Science 2013, 339, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Rysz, J.; Franczyk, B.; Ławiński, J.; Olszewski, R.; Ciałkowska-Rysz, A.; Gluba-Brzózka, A. The Impact of CKD on Uremic Toxins and Gut Microbiota. Toxins 2021, 13, 252. [Google Scholar] [CrossRef] [PubMed]
- Mafra, D.; Fouque, D. Gut microbiota and inflammation in chronic kidney disease patients. Clin. Kidney J. 2015, 1, 332–334. [Google Scholar] [CrossRef]
- Borges, N.A.; Barros, A.F.; Nakao, L.S.; Dolenga, C.J.; Fouque, D.; Mafra, D. Protein-Bound Uremic Toxins from Gut Microbiota and Inflammatory Markers in Chronic Kidney Disease. J. Ren. Nutr. 2016, 1, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Jadad, A.R.; Moore, R.A.; Carroll, D.; Jenkinson, C.; Reynolds, D.J.M.; Gavaghan, D.J.; McQuay, H.J. Assessing the quality of reports of randomized clinical trials: Is blinding necessary? Control. Clin. Trials. 1996, 17, 1–12. [Google Scholar] [CrossRef]
- Alvarenga, L.; Salarolli, R.; Cardozo, L.F.M.F.; Santos, R.S.; de Brito, J.S.; Kemp, J.A.; Reis, D.; de Paiva, B.R.; Stenvinkel, P.; Lindholm, B.; et al. Impact of curcumin supplementation on expression of inflammatory transcription factors in hemodialysis patients: A pilot randomized, double-blind, controlled study. Clin Nut. 2020, 39, 3594–3600. [Google Scholar] [CrossRef]
- Hami, M.; Bigdeli, A.; Khameneh-Bagheri, R.; Rajabi, O.; Salehi, M.; Zahedi-Avval, F. The Effect of Curcumin in Prevention of Contrast Nephropathy Following Coronary Angiography or Angioplasty in CKD Patients. Iran. J. Kidney Dis. 2019, 13, 304–309. [Google Scholar] [PubMed]
- Silveira, M.A.D.; Teles, F.; Berretta, A.A.; Sanches, T.R.; Rodrigues, C.E.; Seguro, A.C. Effects of Brazilian green propolis on proteinuria and renal function in patients with chronic kidney disease: A randomized, double-blind, placebo-controlled trial. BMC Nephrol. 2019, 25, 140. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.; Cardozo, L.F.M.F.; Paiva, B.R.; Baptista, B.G.; Fanton, S.; Alvarenga, L.; Lima, L.S.; Britto, I.; Nakao, L.S.; Fouque, D.; et al. Sulforaphane supplementation did not modulate NRF2 and NF-kB mRNA expressions in hemodialysis patients. J. Ren. Nut. 2023, 1, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Pakfetrat, M.; Akmali, M.; Malekmakan, L.; Dabaghimanesh, M.; Khorsand, M. Role of turmeric in oxidative modulation in end-stage renal disease patients. Hemodial. Int. 2015, 1, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Samadian, F.; Dalili, N.; Gholi, F.P.R.; Fattah, M.; Malih, N.; Nafar, M.; Firoozan, A.; Ahmadpoor, P.; Samavat, S.; Ziaie, S. Evaluation of Curcumin’s effect on inflammation in hemodialysis patients. Clin. Nutr. ESPEN 2017, 1, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Pivari, F.; Mingione, A.; Piazzini, G.; Ceccarani, C.; Ottaviano, E.; Brasacchio, C.; Dei Cas, M.; Vischi, M.; Cozzolino, M.G.; Fogagnolo, P.; et al. Curcumin Supplementation (Meriva®) Modulates Inflammation, Lipid Peroxidation and Gut Microbiota Composition in Chronic Kidney Disease. Nutrients 2022, 1, 231. [Google Scholar] [CrossRef]
- Chermut, T.R.; Fonseca, L.; Figueiredo, N.; de Oliveira Leal, V.; Borges, N.A.; Cardozo, L.F.; Correa Leite, P.E.; Alvarenga, L.; Regis, B.; Delgado, A.; et al. Effects of propolis on inflammation markers in patients undergoing hemodialysis: A randomized, double-blind controlled clinical trial. Complement. Ther. Clin. Pract. 2023, 51, 101732. [Google Scholar] [CrossRef]
- Baptista, B.G.; Fanton, S.; Ribeiro, M.; Cardozo, L.F.; Regis, B.; Alvarenga, L.; Ribeiro-Alves, M.; Berretta, A.A.; Shiels, P.G.; Mafra, D. The effect of Brazilian Green Propolis extract on inflammation in patients with chronic kidney disease on peritoneal dialysis: A randomised double-blind controlled clinical trial. Phytomedicine 2023, 114, 154731. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.; Alvarenga, L.; Coutinho-Wolino, K.S.; Nakao, L.S.; Cardozo, L.F.; Mafra, D. Sulforaphane upregulates the mRNA expression of NRF2 and NQO1 in non-dialysis patients with chronic kidney disease. Free Radic. Biol. Med. 2024, 221, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Fanti, P.; Asmis, R.; Stephenson, T.J.; Sawaya, B.P.; Franke, A.A. Positive effect of dietary soy in ESRD patients with systemic inflammation—Correlation between blood levels of the soy isoflavones and the acute-phase reactants. Nephrol. Dial. Transplant. 2006, 8, 2239–2246. [Google Scholar] [CrossRef]
- Asgharpour, M.; Khavandegar, A.; Balaei, P.; Enayati, N.; Mardi, P.; Alirezaei, A.; Bakhtiyari, M. Efficacy of Oral Administration of Allium sativum Powder “garlic Extract” on Lipid Profile, Inflammation, and Cardiovascular Indices among Hemodialysis Patients. Evid. Based Complement. Alternat. Med. 2021, 2021, 6667453. [Google Scholar] [CrossRef]
- Zare, E.; Alirezaei, A.; Bakhtiyari, M.; Mansouri, A. Evaluating the effect of garlic extract on serum inflammatory markers of peritoneal dialysis patients: A randomized double-blind clinical trial study. BMC Nephrol. 2019, 20, 26. [Google Scholar] [CrossRef] [PubMed]
- Heredia-Martinez, A.; Rosa-Diez, G.; Ferraris, J.R.; Sohlenius-Sternbeck, A.K.; Nihlen, C.; Olsson, A.; Lundberg, J.O.; Weitzberg, E.; Carlström, M.; Krmar, R.T. Plasma Nitrate and Nitrite Kinetics after Single Intake of Beetroot Juice in Adult Patients on Chronic Hemodialysis and in Healthy Volunteers: A Randomized, Single-Blind, Placebo-Controlled, Crossover Study. Nutrients 2022, 14, 2480. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.S.; Liou, S.Y.; Wu, H.C.; Tsai, F.J.; Tsai, C.H.; Huang, C.Y. Efficacy of Epigallocatechin-3-Gallate and Amla (Emblica officinalis) Extract for the Treatment of Diabetic-Uremic Patients. J. Med. Food 2011, 7–8, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Borges, C.M.; Papadimitriou, A.; Duarte, D.A.; Lopes De Faria, J.M.; Lopes De Faria, J.B. The use of green tea polyphenols for treating residual albuminuria in diabetic nephropathy: A double-blind randomised clinical trial. Sci. Rep. 2016, 6, 28282. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.P.; Wu, M.S.; Yang, C.C.; Huang, K.C.; Liou, S.Y.; Hsu, S.M.; Chien, C.T. Chronic green tea extract supplementation reduces hemodialysis-enhanced production of hydrogen peroxide and hypochlorous acid, atherosclerotic factors, and proinflammatory cytokines 1–3. Am. J. Clin. Nutr. 2007, 86, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.A.; Nasiruddin, M.; Haque, S.F.; Khan, R.A. Evaluation of Rhubarb Supplementation in Stages 3 and 4 of Chronic Kidney Disease: A Randomized Clinical Trial. Int. J. Chronic Dis. 2014, 2014, 789340. [Google Scholar] [CrossRef]
- Okuda, M.; Horikoshi, S.; Matsumoto, M.; Tanimoto, M.; Yasui, H.; Tomino, Y. Beneficial effect of Astragalus membranaceus on estimated glomerular filtration rate in patients with progressive chronic kidney disease. Hong Kong J. Nephrol. 2012, 14, 17–23. [Google Scholar] [CrossRef]
- Ge, Y.; Xie, H.; Li, S.; Jin, B.; Hou, J.; Zhang, H.; Hi, M.; Liu, Z. Treatment of diabetic nephropathy with Tripterygium wilfordii Hook F extract: A prospective, randomized, controlled clinical trial. J. Transl. Med. 2013, 11, 134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; He, J.; Zhang, F.; Huang, C.; Wu, Y.; Han, Y.; Zhang, W.; Zhao, Y. Prognostic role of C-reactive protein and Interleukin-6 in dialysis patients: A systematic review and meta-analysis. J. Nephrol. 2013, 26, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Cobo, G.; Lindholm, B.; Stenvinkel, P. Chronic inflammation in end-stage renal disease and dialysis. Nephrol. Dial. Tranplant. 2018, 1, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, M.; Cobo, G.; Lindholm, B.; Stenvinkel, P. Inflammation and Protein-Energy Wasting in the Uremic Milieu. Contrib. Nephrol. 2017, 191, 58–71. [Google Scholar] [CrossRef]
- Rysz, J.; Franczyk, B.; Ławiński, J.; Gluba-Brzózka, A. Oxidative stress in ESRD patients on dialysis and the risk of cardiovascular diseases. Antioxidants 2020, 9, 1079. [Google Scholar] [CrossRef]
- Rapa, S.F.; Di Iorio, B.R.; Campiglia, P.; Heidland, A.; Marzocco, S. Inflammation and oxidative stress in chronic kidney disease—Potential therapeutic role of minerals, vitamins and plant-derived metabolites. Int. J. Mol. Sci. 2020, 1, 263. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D.; Wong, J.; Pahl, M.; Piceno, Y.M.; Yuan, J.; Desantis, T.Z.; Ni, Z.; Nguyen, T.H.; Andersen, G.L. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013, 83, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Wang, F.; Jiang, H.; Liu, H.; Wei, M.; Wang, Z. Gut Bacterial Translocation May Aggravate Microinflammation in Hemodialysis Patients. Dig. Dis. Sci. 2014, 1, 2109–2117. [Google Scholar] [CrossRef] [PubMed]
- Cabała, S.; Ożgo, M.; Herosimczyk, A. The Kidney–Gut Axis as a Novel Target for Nutritional Intervention to Counteract Chronic Kidney Disease Progression. Metabolites 2024, 14, 78. [Google Scholar] [CrossRef] [PubMed]
- Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P.S. Influence of Piperine on the Pharmacokinetics of Curcumin in Animals and Human Volunteers. Planta Med. 1998, 4, 353–356. [Google Scholar] [CrossRef]
- Hegde, M.; Girisa, S.; BharathwajChetty, B.; Vishwa, R.; Kunnumakkara, A.B. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS Omega 2023, 8, 10713–10746. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, L.; Cardozo, L.F.M.F.; Borges, N.A.; Chermut, T.R.; Ribeiro, M.; Leite, M.; Shiels, P.G.; Stenvinkel, P.; Mafra, D. To bee or not to bee? The bee extract propolis as a bioactive compound in the burden of lifestyle diseases. Nutrition 2021, 83, 111094. [Google Scholar] [CrossRef]
- Duarte Silveira, M.A.; Malta-Santos, H.; Rebouças-Silva, J.; Teles, F.; Batista Dos Santos Galvão, E.; Pinto De Souza, S.; Dantas Dutra, F.R.; Dantas Gomes, M.M.; Teixeira, M.B.; Miranda Rebelo da Conceição, L.F.; et al. Effects of Standardized Brazilian Green Propolis Extract (EPP-AF®) on Inflammation in Haemodialysis Patients: A Clinical Trial. Int. J. Nephrol. 2022, 22, 1035475. [Google Scholar] [CrossRef]
- Anvarifard, P.; Ostadrahimi, A.; Ardalan, M.; Anbari, M.; Ghoreishi, Z. The effects of propolis on pro-oxidant–antioxidant balance, glycemic control, and quality of life in chronic kidney disease: A randomized, double-blind, placebo-controlled trial. Sci. Rep. 2023, 1, 9884. [Google Scholar] [CrossRef] [PubMed]
- Chavda, V.P.; Chaudhari, A.Z.; Teli, D.; Balar, P.; Vora, L. Propolis and Their Active Constituents for Chronic Diseases. Biomedicines 2023, 11, 259. [Google Scholar] [CrossRef]
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxid. Med. Cell. Longev. 2017, 2017, 1259510. [Google Scholar] [CrossRef]
- Liebman, S.E.; Le, T.H. Eat your broccoli: Oxidative stress, nrf2, and sulforaphane in chronic kidney disease. Nutrients 2021, 13, 266. [Google Scholar] [CrossRef] [PubMed]
- García, E.L.; Lesmes, I.B.; Perales, A.D.; Moreno, V.; Baquedano, M.P.P.; Velasco, A.M.R.; Salvo, U.F.; Romero, L.T.; Porcel, F.B.O.; Laín, S.A.; et al. Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) sobre recomendaciones dietéticas sostenibles y recomendaciones de actividad física para la población española. Rev. Com. Científico AESAN 2022, 36, 11–70. Available online: https://www.aesan.gob.es/AECOSAN/docs/documentos/seguridad_alimentaria/evaluacion_riesgos/informes_comite/INFORME_RECOMENDACIONES_DIETETICAS.pdf (accessed on 27 September 2024).
- Lin, C.Y.; Yao, C.A. Potential role of NRF2 activators with dual antiviral and anti-inflammatory properties in the management of viral pneumonia. Infect. Drug. Resist. 2020, 13, 1735–1741. [Google Scholar] [CrossRef]
- Ribeiro, M.; Alvarenga, L.; Cardozo, L.F.M.F.; Chermut, T.R.; Sequeira, J.; de Souza Gouveia Moreira, L.; Teixeira, K.T.R.; Shiels, P.G.; Stenvinkel, P.; Mafra, D. From the distinctive smell to therapeutic effects: Garlic for cardiovascular, hepatic, gut, diabetes and chronic kidney disease. Clin. Nutr. 2021, 40, 4807–4819. [Google Scholar] [CrossRef] [PubMed]
- Tuteja, N.; Chandra, M.; Tuteja, R.; Misra, M.K. Nitric Oxide as a Unique Bioactive Signaling Messenger in Physiology and Pathophysiology. J. Biomed. Biotechnol. 2004, 2004, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Reglamento (UE) 2023/915 de la Comisión. Relativo a los Límites Máximos de Determinados Contaminantes en los Alimentos. 2023. Available online: https://www.boe.es/buscar/doc.php?id=DOUE-L-2023-80614 (accessed on 25 September 2024).
- Kemmner, S.; Lorenz, G.; Wobst, J.; Kessler, T.; Wen, M.; Günthner, R.; Stock, K.; Heemann, U.; Burkhardt, K.; Baumann, M.; et al. Dietary nitrate load lowers blood pressure and renal resistive index in patients with chronic kidney disease: A pilot study. Nitric Oxide 2017, 64, 7–15. [Google Scholar] [CrossRef]
- Moreira, L.D.S.G.; Fanton, S.; Cardozo, L.; Borges, N.A.; Combet, E.; Shiels, P.G.; Stenvinkel, P.; Mafra, D. Pink pressure: Beetroot (Beta vulgaris rubra) as a possible novel medical therapy for chronic kidney disease. Nutr. Rev. 2022, 80, 1041–1061. [Google Scholar] [CrossRef]
- Reglamento (UE) 2022/2340 de la Comisión Respecta a los Extractos de Té Verde que Contienen (-) 3-Galato de Epigalocatequina. 2022. Available online: https://www.boe.es/buscar/doc.php?id=DOUE-L-2022-81764 (accessed on 25 September 2024).
- Zhang, Y.; Xiong, Y.; Shen, S.; Yang, J.; Wang, W.; Wu, T.; Chen, L.; Yu, Q.; Zuo, H.; Wang, X.; et al. Causal Association Between Tea Consumption and Kidney Function: A Mendelian Randomization Study. Front. Nutr. 2022, 9, 801591. [Google Scholar] [CrossRef] [PubMed]
- Dursun, E.; Dursun, B.; Suleymanlar, G.; Ozben, T. Effect of haemodialysis on the oxidative stress and antioxidants in diabetes mellitus. Acta Diabetol. 2005, 42, 123–128. [Google Scholar] [CrossRef]
- Kanlaya, R.; Thongboonkerd, V. Molecular Mechanisms of Epigallocatechin-3-Gallate for Prevention of Chronic Kidney Disease and Renal Fibrosis: Preclinical Evidence. Curr. Dev. Nutr. 2019, 3, nzz101. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Deng, Y.; Chen, Y.; Chuang, P.Y.; He, J.C. Therapeutic use of traditional Chinese herbal medications for chronic kidney diseases. Kidney Int. 2013, 84, 1108–1118. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, P.; Zhang, Z.; Youn, J.Y.; Wang, C.; Zhang, H. Traditional Chinese Medicine (TCM) in the treatment of COVID-19 and other viral infections: Efficacies and mechanisms. Pharmacol. Ther. 2021, 225, 107843. [Google Scholar] [CrossRef] [PubMed]
- Lui, S.L.; Zhu, D.; Cheng, S.W.; Ng, F.; Hui, P.C.; Yip, T. Effects of astragalus membranaceus-based chinese medicine formulae on residual renal function in patients on peritoneal dialysis. Perit. Dial. Int. 2015, 35, 595–598. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.Q.; Yu, F.; Chen, H.J.; Deng, Y.R.; Lin, J.; Xu, Y.; Zheng, X.; Zhang, J.W.; Liu, J.F. Efficacy of astragalus combined with renin-angiotensin-aldosterone system blockers in the treatment of stage III diabetic nephropathy: A systematic review and meta-analysis. Ren. Fail. 2024, 46, 2359033. [Google Scholar] [CrossRef] [PubMed]
- Teo, W.Y.; Chu, S.W.F.; Chow, L.Y.; Yeam, C.T.; Low, L.L.; Quah, J.H.M. Role of Alternative Medical Systems in Adult Chronic Kidney Disease Patients: A Systematic Review of Literature. Cureus 2022, 14, e32874. [Google Scholar] [CrossRef] [PubMed]
Bioactive Compounds from Plant-Based Foods | Alimentary Source | Therapeutic Effects | Refs. |
---|---|---|---|
Curcumin | Turmeric (spice) | Anti-inflammatory and antioxidant agent Microbiota modulator | [11,12,13,14] |
Propolis (flavonoids, terpenes) | Resin obtained by bees | Anti-inflammatory, anti-proteinuric, and renal-protective activities | [15,16,17] |
Sulforaphane | Broccoli, brussels sprouts, cauliflower, cabbage | Activates Nrf2 gene expression, leading to an antioxidant and anti-inflammatory effect | [18,19,20] |
Genistein | Soy, red clover | Anti-inflammatory and improves nutritional status | [21,22] |
Allicin | Garlic | Hypoglycemic, lipid-lowering agent, antioxidant and anti-inflammatory | [23] |
Betalain | Beetroot | Reduction in blood pressure and anti-inflammatory | [24,25] |
Bioactive compounds from Medicinal plants | Medicinal Plants | ||
Catechins (polyphenols) | Green tea (Camelia sinensis) | Anti-inflammatory and antioxidant effects | [26,27] |
Rhein, emodin, and aloe-emodin | Rhubarb | Anti-inflammatory, antioxidant, antibacterial, and lipid-lowering agent | [9] |
Flavonoids, polysaccharides, saponins, amino acids, and other compounds (riboside, sphingolipids, oligosaccharides, acids, enzymes, and trace elements) | Astragalus membranaceus | Hepatoprotective, diuretic, and expectorant properties Anti-inflammatory, antioxidant, and antiviral activities Renoprotective | [28,29] |
Triptolide | Tripterygium wilfordii Hook F | Immunosuppressive and anti-inflammatory Renoprotective | [30,31] |
Bioactive Compound | Study Design and Population | Intervention | Molecular Mechanisms | Therapeutic Effect | Major Findings | Refs. |
---|---|---|---|---|---|---|
Curcumin | Randomized double-blind placebo-controlled clinical trial n = 101 CKD patients | Curcumin (107 mg) in each meal (320 mg/day) or placebo (starch), for 8 weeks | Cellular effect directly against ROS or indirectly via the Nrf2 pathway | Antioxidant agent | The curcumin-supplemented group showed improved ROS scavenging activity and MDA and decreased oxidative stress | [14] |
Randomized double-blind placebo-controlled clinical trial n = 28 HD patients | Juice containing 100 mL of orange juice, 12 g of carrot, and 2.5 g of turmeric (95% curcumin), 3 times a week for 12 weeks | Modulates the expression of mRNA to NF-kβ, Nrf2, and IL-1β | Anti-inflammatory agent Promising gut microbiota modulator | Significant reduction in NF-kβ mRNA expression and CRP levels in the curcumin group Significant decrease in gut-uremic toxins (PCS) Modulation of the intestinal microbiota | [13,39] | |
Randomized double-blind clinical trial n = 119 HD patients | Turmeric (1 capsule with each meal containing 500 mg turmeric, of which 22.1 mg was the active ingredient curcumin; 3 capsules daily) Controls received starch capsules for the same 8 weeks | Inhibition of the NF-kβ cell signaling pathway; decreases MCP-1 by inhibiting IL-8 and IL-12 Increases the levels of antioxidant enzymes (GPx, GR, and CAT) | Anti-inflammatory agent Antioxidant agent | Significant reduction in plasma IL-6 and TNF-α concentrations compared with the placebo group CAT enzyme levels were increased in both groups significantly Significant elevation of albumin levels in the turmeric group | [43,44] | |
Randomized double-blind placebo-controlled clinical trial n = 43 HD patients | Curcuminoid capsules (1 g/day; each capsule contained 167 mg of curcuminoids and microcrystalline cellulose as an excipient) or placebo (only corn starch) for 12 weeks | Antioxidant by activating Nrf2 pathway Anti-inflammatory via NF-kβ modulation | Antioxidant, eliminating ROS Anti-inflammatory agent | Enhancement or preservation of enzymatic antioxidant capacity (CAT, GPx, and GR) No changes in MDA and CRP concentrations | [12] | |
Randomized double-blind placebo-controlled clinical trial n = 60 CKD stage 3–4 patients | Curcumin or placebo (starch) capsules of 500 mg, 3 times/day, from two days before the procedure to three days after | Anti-inflammatory via NF-kβ modulation Antioxidant by activating Nrf2 pathway | Anti-inflammatory agent Antioxidant effects | No changes were observed with curcumin supplementation, with no adverse effects of CIN | [40] | |
Randomized double-blind placebo-controlled clinical trial n = 24 CKD stage 3a–4 patients | Meriva® 500 mg tablet, twice a day (curcumin (500 mg) film-coated tablets containing 100 mg of highly bioavailable curcuminoids) for 3 or 6 months | Reduction pro-inflammatory mediators (MCP-1, IFN-γ, and IL-4) and lipid peroxidation Increasing beneficial microbial diversity and reduction in uremic toxins (IS and PCS) in the gut barrier | Anti-inflammatory agent Microbiota modulator | Significant reduction in pro-inflammatory mediators MCP-1, IFN-γ, and IL-4 Lipid peroxidation markers, such as TBARS, were associated with curcumin intervention Improvement in gut diversity at the phylum level (Increase Lachnoclostridium spp.; Decrease Escherichia spp. and Shigella spp.) | [45] |
Bioactive Compound | Study Design and Population | Intervention | Molecular Mechanisms | Therapeutic Effect | Major Findings | Refs. |
---|---|---|---|---|---|---|
Propolis | Randomized double-blind placebo-controlled study n = 32 CKD stage 2–4 patients | 500 mg/day (4 tablets of 125 mg each twice a day) or placebo (starch) for 12 months | Decreasecytokine MCP-1 promotes the recruitment of monocytes and their transformation into macrophages | Proteinuria reduction Improves renal function | Propolis reduced proteinuria Significant reduction urinary excretion of MCP-1 | [41] |
Randomized double-blind placebo-controlled study n = 41 HD patients | Propolis: 4 capsules of 100 mg/day containing EPP-AF® green propolis extract) or placebo (4 capsules of 100 mg/day from starch) for 2 months | Anti-inflammatory via NF-kβ modulation | Anti-inflammatory agent | ↓ TNF-α and MIP-1β | [46] | |
Randomized double-blind placebo-controlled trial n = 19 PD patients | 4 capsules of 500 mg/day containing EPP-AF® green propolis extract or placebo from starch (4 capsules of 500 mg/day) for 2 months | Anti-inflammatory activation via Nrf2 and inhibition via NF-kβ | Anti-inflammatory agent | DecreaseTNF-α after propolis intervention No significant changes in MDA, IL-6, or CRP | [47] | |
Sulforaphane | Randomized double-blind crossover study n = 30 HD patients | 150 μmol of sulforaphane (extract 1.0% powder with 0.5% myrosinase) or placebo (starch) for 2 months | An agonistic action of Nrf2 influences the transcription of antioxidant enzymes and inhibits NF-kβ activity, leading to negative regulation of proinflammatory genes and the inflammasome | Antioxidant agent Anti-inflammatory agent | No changes in antioxidants (Nrf2 and MDA) and anti-inflammatory effects (NF-kβ mRNA expression) | [42] |
Randomized placebo-controlled clinical trial n = 25 CKD stages 3–5 patients | 400 μg of L-sulforaphane daily or placebo (400 μg of cornstarch) for 1 month | Nrf2 pathway stimulates the expression of a series of antioxidants and anti-inflammatory genes, including NQO1, GPx, and SOD | Antioxidant agent Cardiovascular benefits | Significant increase in the mRNA expression of Nrf2 and NQO1 Decrease hosphate, glucose, and triglyceride levels | [48] |
Bioactive Compound | Study Design and Population | Intervention | Molecular Mechanisms | Therapeutic Effect | Major Findings | Refs. |
---|---|---|---|---|---|---|
Genistein | Randomized double-blind controlled pilot study n = 32 HD patients with underlying systemic inflammation | Soy protein isolate (protein drink, 54 mg isoflavones), during each HD session, and a protein snack bar or a cereal-like breakfast product (26 mg isoflavones) on each non-dialysis day for 8 weeks | Increasing IGF-1, a potent anabolic hormone which results in Reduction of protein degradation and Increase protein synthesis | Anti-inflammatory agent Improved nutritional status | Isoflavones reduced inflammatory biomarkers (CRP) and improved nutritional indicators (IGF-1, albumin) | [49] |
Allicin | Randomized double-blind clinical trial n = 70 HD patients | Group intervention: 300 mg of garlic powder (containing 1.3 mg of the garlic extract) vs. placebo for 8 weeks After a 6-week wash-out period, the agents were switched between groups | Decrease cytokine production in endothelial cells, modifying adipocyte metabolic profile and stimulating anti-inflammatory gene expression | Cardioprotective Antioxidant agent | Garlic extract was useful in reducing triacylglyceride, oxidized LDL, and homocysteine levels | [50] |
Randomized double-blind parallel-designed clinical trial n = 40 PD patients | 400 mg of standardized garlic extract (tablets containing 1000 µg of Alliin) twice a day for 8 weeks | Decrease cytokine production in endothelial cells, creating an anti-inflammatory gene expression profile and modifying adipocyte metabolic profile | Anti-inflammatory agent Lipid-lowering agent | Significant decrease in IL-6, CRP, and erythrocyte sedimentation rates in the intervention group Significant decreasein IL-6 with placebo | [51] | |
Beetroot | Randomized single-blind placebo-controlled study n = 8 HD patients | 300 mL of nitrate-rich concentrated beetroot juice or placebo (<0.01 mmol/L nitrate; 70 mL), in a crossover manner, with a washout period of at least seven days between each trial | Modulation of the activity of the nitrate–nitrite–NO pathway | Vasodilator effects | Significantly ↑ plasma nitrate modulates arterial blood flow and blood pressure | [52] |
Bioactive Compound | Study Design and Population | Intervention | Molecular Mechanisms | Therapeutic Effect | Major Findings | Refs. |
---|---|---|---|---|---|---|
Green tea (Camellia sinensis) | Randomized double-blind controlled study n = 13 diabetic HD patients | 100 mg of EGCG and100 mg of AE for 3 months | Antioxidant effects by activating the Nrf2 pathway and ROS scavengers | Antioxidant Anti-inflammatory Cardioprotective | Improves antioxidant defenses (plasma FRAP, and increaseplasma polyphenols) Decrease CRP and improve atherogenic index (LDL/HDL ratio) | [53] |
Randomized double-blind placebo-controlled study n = 42 diabetic nephropathy patients | 800 mg of EGCG or placebo for 12 weeks | Oxidative stress modulated by inhibiting the NOX4 protein pathway and NOS enzymes Uncoupling and reducing podocyte apoptosis by activating the Wnt pathway | Antioxidant Anti-inflammatory Decreases podocyte apoptosis | Decrease DKK-1, a WNT pathway inhibitor, post-intervention Decrease TNF-α and CRP Reduction Albuminuria | [54] | |
Randomized double-blind study n = 44 HD patients | 455 mg of decaffeinated green tea extracts (4 cups of green tea) or placebo for 7 months | Modulation of ROS (hydrogen peroxide and hypochlorous acid) by oxidizing LDLs Inhibits proinflammatory and proapoptotic oxidative injury via decreasing of the production of ROS, translocation of NF-kβ and activated protein, and the endothelial adhesion molecule ICAM-1 | Antioxidant Cardioprotective Anti-inflammatory | Decreaseof HD-induced plasma hydrogen peroxide activity and lower hypochlorous acid activity (ROS) Decrease phosphatidylcholine, hydroperoxide), sICAM-1, and MCP-1 Decreaseserum CRP, TNF-α-, and IL-1ra by inhibitory effect on HD-enhanced leukocyte activation | [55] | |
Rhubarb (Rheum oficinal) | Randomized clinical trial n = 144 CKD stage 3–4 patients | Group intervention: conservative CKD treatment + rhubarb capsule (350 mg) thrice daily Controls: conservative CKD treatment + telmisartan (40 mg/day) Duration: 12 weeks | Emodin inhibits the transcription and translation of the AQP2 gene Rhein inhibits TGF-β1 and fibronectin expression in renal tissue | Cardioprotective Antiproteinuric Renoprotective | Systolic and diastolic blood pressure reduction in rhubarb intervention Decrease24 h total urine protein and improved GFR after 12 weeks post-intervention Decreasepotassium in both groups | [56] |
Astragalus membranaceus (Huangqi) | Prospective study, clinical trial n = 35 CKD stage 4–5 patients | 2.5 g Astragalus membranaceus twice a day, together with conventional therapy for 3 months | Enhanced NO production via activation of endothelial NO synthase and scavenging ROS Improves renal function by reducing NF-kβmRNA levels in the renal cortex | Antiproteinuric Renoprotective | Reduction 24 h total urine protein In CKD stage 4, the GFR increased at 3 months and remained stable during the following 12 months In CKD stage 5, GFR increased slightly at 3 months, declining at 6 and 12 months | [57] |
Tripterygium wilfordii Hook F | Randomized controlled trial n = 65 diabetic nephropathy patients | TwHF: 120 mg/day, followed by 60 mg/day of TwHF for 3 months Valsartan group: 160 mg of valsartan daily for 6 months | Inhibits the expression of certain inflammatory cytokines (TNF-α, IL-1β, IL-6, and IFN-γ) | Antiproteinuric Renoprotective | TwHF group: Reduction proteinuria at 1, 3, and 6 months Valsartan group: proteinuria was not reduced at 1, 3, or 6 months post-intervention DecreaseGFR in the valsartan group vs. the TwHF group (26.4% vs. 13.7%, respectively) | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Josa, E.; Barril, G.; Ruperto, M. Potential Effects of Bioactive Compounds of Plant-Based Foods and Medicinal Plants in Chronic Kidney Disease and Dialysis: A Systematic Review. Nutrients 2024, 16, 4321. https://doi.org/10.3390/nu16244321
Josa E, Barril G, Ruperto M. Potential Effects of Bioactive Compounds of Plant-Based Foods and Medicinal Plants in Chronic Kidney Disease and Dialysis: A Systematic Review. Nutrients. 2024; 16(24):4321. https://doi.org/10.3390/nu16244321
Chicago/Turabian StyleJosa, Esmeralda, Guillermina Barril, and Mar Ruperto. 2024. "Potential Effects of Bioactive Compounds of Plant-Based Foods and Medicinal Plants in Chronic Kidney Disease and Dialysis: A Systematic Review" Nutrients 16, no. 24: 4321. https://doi.org/10.3390/nu16244321
APA StyleJosa, E., Barril, G., & Ruperto, M. (2024). Potential Effects of Bioactive Compounds of Plant-Based Foods and Medicinal Plants in Chronic Kidney Disease and Dialysis: A Systematic Review. Nutrients, 16(24), 4321. https://doi.org/10.3390/nu16244321