Somatic Changes of Maternal High-Fat Diet on Offspring—Possible Deleterious Effects of Flavonoids?
Abstract
:1. Introduction
2. Materials and Methods
- Group 1—control animals—normal weight pregnant females with an average weight of 300 g;
- Group 2—obese animals—pregnant females receiving HFD without supplement;
- Group 3—obese animals—pregnant females receiving HFD with flavonoids (Detralex);
- Group 4—obese animals—pregnant females receiving HFD with antioxidant supplement (Sel-E-Vit);
- Group 5—obese animals—pregnant females receiving HFD with administration of flavonoids (Rutin).
- day 15 of gestation: Venous blood was drawn from the pregnant females to determine plasma adipokine (leptin and visfatin) levels. This time point was chosen as it represents a critical period for placental development and fetal growth, and adipokine levels are known to fluctuate during gestation.
- days 18–22 of gestation: Ultrasound examination was performed to measure the thickness of adipose tissue in the abdominal wall. This period was chosen as it corresponds to the late stages of pregnancy when fat deposition is typically increased.
- offspring: After birth, 10 offspring from each group were selected for measurements. These included body weight, brain weight, and anthropometric measurements (head length, head width, spine length, width between shoulder blades, coxal bone length). Adipokine levels in the offspring’s brain tissue were also determined. Brain tissue samples were collected for electron microscopy analysis to identify any ultrastructural changes.
3. Results
3.1. Comparative Analysis of Pregnant Groups
3.2. Comparative Analysis of Offspring
3.2.1. Body Weight
3.2.2. Brain Weight
3.2.3. Head Length
3.2.4. Head Width
3.2.5. Spine Length
3.2.6. Width Between Shoulder Blades
3.2.7. Coxal Bone Length
3.2.8. Brain Levels of Adipocytokines (Leptin and Visfatin)
3.2.9. Brain Structure Modifications
4. Discussion
- rigorous methodology: the study followed a well-defined protocol with standardized procedures for animal care, diet, supplement administration, and measurements.
- significant differences: despite the small sample size, statistically significant differences were observed between the groups for many of the measured parameters, suggesting that the effects are robust.
- consistency with previous research: the findings regarding the effects of maternal obesity on offspring are consistent with existing data in the literature, supporting the validity of the results.
- detailed analysis: The study included a comprehensive analysis of various parameters, including adipokine levels, anthropometric measurements, and brain ultrastructure, providing a more complete picture of the effects of maternal obesity and flavonoid supplementation.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galic, S.; Oakhill, J.S.; Steinberg, G.R. Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol. 2009, 316, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Menichini, D.; Longo, M.; Facchinetti, F. Maternal interventions to improve offspring outcomes in rodent models of diet-induced obesity: A review. J. Matern. Neonatal Med. 2018, 32, 2943–2949. [Google Scholar] [CrossRef] [PubMed]
- Gutaj, P.; Sibiak, R.; Jankowski, M.; Awdi, K.; Bryl, R.; Mozdziak, P.; Kempisty, B.; Wender-Ozegowska, E. The Role of the Adipokines in the Most Common Gestational Complications. Int. J. Mol. Sci. 2020, 21, 9408. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.; Peralta, M.; Naia, A.; Loureiro, N.; de Matos, M.G. Prevalence of adult overweight and obesity in 20 European countries, 2014. Eur. J. Public Health 2017, 28, 295–300. [Google Scholar] [CrossRef]
- Wentzel, P.; Eriksson, U.J.; Herrera, E. High-fat diet in pregnant rats and adverse fetal outcome. Upsala J. Med. Sci. 2019, 124, 125–134. [Google Scholar] [CrossRef]
- Boekelheide, K.; Blumberg, B.; Chapin, R.E.; Cote, I.; Graziano, J.H.; Janesick, A.; Lane, R.; Lillycrop, K.; Myatt, L.; States, J.C.; et al. Predicting Later-Life Outcomes of Early-Life Exposures. Environ. Health Perspect. 2012, 120, 1353–1361. [Google Scholar] [CrossRef]
- Stothard, K.J.; Tennant, P.W.G.; Bell, R.; Rankin, J. Maternal Overweight and Obesity and the Risk of Congenital Anomalies: A systematic review and meta-analysis. JAMA 2009, 301, 636–650. [Google Scholar] [CrossRef]
- Blomberg, M.I.; Källén, B. Maternal obesity and morbid obesity: The risk for birth defects in the offspring. Birth Defects Res. Part A Clin. Mol. Teratol. 2009, 88, 35–40. [Google Scholar] [CrossRef]
- Watkins, M.L.; Scanlon, K.S.; Mulinare, J.; Khoury, M.J. Is maternal obesity a risk factor for anencephaly and spina bifida? Epidemiology 1996, 7, 507–512. [Google Scholar] [CrossRef]
- Scialli, A.R. Teratology public affairs committee position paper: Maternal obesity and pregnancy. Birth Defects Res. Part A Clin. Mol. Teratol. 2006, 76, 73–77. [Google Scholar] [CrossRef]
- Westermeier, F.; Sáez, P.J.; Villalobos-Labra, R.; Sobrevia, L.; Farías-Jofré, M. Programming of Fetal Insulin Resistance in Pregnancies with Maternal Obesity by ER Stress and Inflammation. BioMed Res. Int. 2014, 2014, 917672. [Google Scholar] [CrossRef] [PubMed]
- Damm, P. Future risk of diabetes in mother and child after gestational diabetes mellitus. Int. J. Gynecol. Obstet. 2009, 104, S25–S26. [Google Scholar] [CrossRef] [PubMed]
- Catalano, P.M.; Presley, L.; Minium, J.; Hauguel-de Mouzon, S. Fetuses of Obese Mothers Develop Insulin Resistance in Utero. Diabetes Care 2009, 32, 1076–1080. [Google Scholar] [CrossRef] [PubMed]
- Estienne, A.; Bongrani, A.; Reverchon, M.; Ramé, C.; Ducluzeau, P.-H.; Froment, P.; Dupont, J. Involvement of Novel Adipokines, Chemerin, Visfatin, Resistin and Apelin in Reproductive Functions in Normal and Pathological Conditions in Humans and Animal Models. Int. J. Mol. Sci. 2019, 20, 4431. [Google Scholar] [CrossRef]
- Scheja, L.; Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 2019, 15, 507–524. [Google Scholar] [CrossRef]
- Ntaios, G.; Gatselis, N.K.; Makaritsis, K.; Dalekos, G.N. Adipokines as mediators of endothelial function and atherosclerosis. Atherosclerosis 2013, 227, 216–221. [Google Scholar] [CrossRef]
- Trujillo, M.E.; Scherer, P.E. Adipose Tissue-Derived Factors: Impact on Health and Disease. Endocr. Rev. 2006, 27, 762–778. [Google Scholar] [CrossRef]
- Haslam, D.W.; James, W.P.T. Obesity. Lancet 2005, 366, 1197–1209. [Google Scholar] [CrossRef]
- Monteiro, R.; Azevedo, I. Chronic Inflammation in Obesity and the Metabolic Syndrome. Mediat. Inflamm. 2010, 2010, 289645. [Google Scholar] [CrossRef]
- Bai, Y.; Sun, Q. Macrophage recruitment in obese adipose tissue. Obes. Rev. 2015, 16, 127–136. [Google Scholar] [CrossRef]
- Revelo, X.S.; Luck, H.; Winer, S.; Winer, D.A. Morphological and Inflammatory Changes in Visceral Adipose Tissue During Obesity. Endocr. Pathol. 2013, 25, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Makki, K.; Froguel, P.; Wolowczuk, I. Adipose tissue in obesity-related inflammation and insulin resistance: Cells, cytokines, and chemokines. ISRN Inflamm. 2013, 2013, 139239. [Google Scholar] [CrossRef] [PubMed]
- Karastergiou, K.; Mohamed-Ali, V. The autocrine and paracrine roles of adipokines. Mol. Cell. Endocrinol. 2009, 318, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Fasshauer, M.; Blüher, M. Adipokines in health and disease. Trends Pharmacol. Sci. 2015, 36, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Mamdouh, M.; Shaban, S.; Ibrahim, A.; Zaki, M.M.; Ahmed, O.M.; Abdel-Daim, M.M. Adipokines: Potential Therapeutic Targets for Vascular Dysfunction in Type II Diabetes Mellitus and Obesity. J. Diabetes Res. 2017, 2017, 8095926. [Google Scholar] [CrossRef]
- Erichsen, J.M.; Fadel, J.R.; Reagan, L.P. Peripheral versus central insulin and leptin resistance: Role in metabolic disorders, cognition, and neuropsychiatric diseases. Neuropharmacology 2021, 203, 108877. [Google Scholar] [CrossRef]
- Talton, O.O.; Pennington, K.A.; Pollock, K.E.; Bates, K.; Ma, L.; Ellersieck, M.R.; Schulz, L.C. Maternal Hyperleptinemia Improves Offspring Insulin Sensitivity in Mice. Endocrinology 2016, 157, 2636–2648. [Google Scholar] [CrossRef]
- Atègbo, J.-M.; Grissa, O.; Yessoufou, A.; Hichami, A.; Dramane, K.L.; Moutairou, K.; Miled, A.; Grissa, A.; Jerbi, M.; Tabka, Z.; et al. Modulation of Adipokines and Cytokines in Gestational Diabetes and Macrosomia. J. Clin. Endocrinol. Metab. 2006, 91, 4137–4143. [Google Scholar] [CrossRef]
- Soheilykhah, S.; Mojibian, M.; Rahimi-Saghand, S.; Rashidi, M.; Hadinedoushan, H. Maternal serum leptin concentration in gestational diabetes. Taiwan. J. Obstet. Gynecol. 2011, 50, 149–153. [Google Scholar] [CrossRef]
- Liu, Z.J.; Liu, P.Q.; Ding, Y.; Wang, A.; Zhang, J.J.; Zhao, X.F. Maternal plasma leptin levels and their relationship to insulin and glucose in pregnant women with gestational diabetes mellitus and gestational impaired glucose tolerance. Zhonghua Fu Chan Ke Za Zhi 2003, 38, 261–263. [Google Scholar]
- Al Maskari, M.Y.; Alnaqdy, A.A. Correlation between Serum Leptin Levels, Body Mass Index and Obesity in Omanis. Sultan Qaboos Univ. Med. J. 2006, 6, 27. [Google Scholar] [PubMed]
- Makarova, E.N.; Syracheva, M.S.; Bazhan, N.M. The influence of hyperleptinemia during pregnancy on fetal weight and obesity development in progeny mice with agouti yellow mutation. Ross. Fiziol. Zhurnal Im. IM Sechenova 2014, 100, 370–379. [Google Scholar]
- Linnemann, K.; Malek, A.; Sager, R.; Blum, W.F.; Schneider, H.; Fusch, C. Leptin Production and Release in the Duallyin VitroPerfused Human Placenta1. J. Clin. Endocrinol. Metab. 2000, 85, 4298–4301. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, I.; Straczkowski, M.; Nikolajuk, A.; Adamska, A.; Karczewska-Kupczewska, M.; Otziomek, E.; Wolczynski, S.; Gorska, M. Serum visfatin in relation to insulin resistance and markers of hyperandrogenism in lean and obese women with polycystic ovary syndrome. Hum. Reprod. 2007, 22, 1824–1829. [Google Scholar] [CrossRef] [PubMed]
- Sethi, J.K.; Vidal-Puig, A. Visfatin: The missing link between intra-abdominal obesity and diabetes? Trends Mol. Med. 2005, 11, 344–347. [Google Scholar] [CrossRef]
- Jiang, Y.-K.; Deng, H.-Y.; Qiao, Z.-Y.; Gong, F.-X. Visfatin level and gestational diabetes mellitus: A systematic review and meta-analysis. Arch. Physiol. Biochem. 2021, 127, 468–478. [Google Scholar] [CrossRef]
- Barenys, M.; Masjosthusmann, S.; Fritsche, E. Is intake of Flavonoid-Based food supplements during pregnancy safe for the de-veloping Child? A literature review. Curr. Drug Targets 2016, 18, 196–231. [Google Scholar] [CrossRef]
- Hariri, N.; Thibault, L. High-fat diet-induced obesity in animal models. Nutr. Res. Rev. 2010, 23, 270–299. [Google Scholar] [CrossRef]
- George, V.; Tremblay, A.; Després, J.P.; Leblanc, C.; Bouchard, C. Effect of dietary fat content on total and regional adiposity in men and women. Int. J. Obes. 1990, 14, 1085–1094. [Google Scholar]
- Popkin, B.M.; Keyou, G.; Zhai, F.; Guo, X.; Ma, H.; Zohoori, N. The nutrition transition in China: A cross-sectional analysis. Eur. J. Clin. Nutr. 1993, 47, 333–346. [Google Scholar]
- Ghibaudi, L.; Cook, J.; Farley, C.; Van Heek, M.; Hwa, J.J. Fat intake affects adiposity, comorbidity factors, and energy metabolism of Sprague-Dawley rats. Obes. Res. 2002, 10, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Briana, D.D.; Malamitsi-Puchner, A. Adipocytokines in Normal and Complicated Pregnancies. Reprod. Sci. 2009, 16, 921–937. [Google Scholar] [CrossRef] [PubMed]
- Wauters, M.; Considine, R.V.; Van Gaal, L.F. Human leptin: From an adipocyte hormone to an endocrine mediator. Eur. J. Endocrinol. 2000, 143, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Boyko, E.J.; Collier, G.R.; de Courten, M. Etiology of the Metabolic Syndrome: Potential Role of Insulin Resistance, Leptin Resistance, and Other Players. Ann. N. Y. Acad. Sci. 1999, 892, 25–44. [Google Scholar] [CrossRef] [PubMed]
- Sennello, J.A.; Fayad, R.; Morris, A.M.; Eckel, R.H.; Asilmaz, E.; Montez, J.; Friedman, J.M.; Dinarello, C.A.; Fantuzzi, G. Regulation of T Cell-Mediated Hepatic Inflammation by Adiponectin and Leptin. Endocrinology 2005, 146, 2157–2164. [Google Scholar] [CrossRef]
- Grolla, A.A.; Travelli, C.; Genazzani, A.A.; Sethi, J.K. Extracellular nicotinamide phosphoribosyltransferase, a new cancer metabokine. Br. J. Pharmacol. 2016, 173, 2182–2194. [Google Scholar] [CrossRef]
- Akyol, A.; Langley-Evans, S.C.; McMullen, S. Obesity induced by cafeteria feeding and pregnancy outcome in the rat. Br. J. Nutr. 2009, 102, 1601–1610. [Google Scholar] [CrossRef]
- Chen, H.; Simar, D.; Lambert, K.; Mercier, J.; Morris, M.J. Maternal and Postnatal Overnutrition Differentially Impact Appetite Regulators and Fuel Metabolism. Endocrinology 2008, 149, 5348–5356. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Pérez-Jiménez, J.; Neveu, V.; Medina-Remón, A.; M’Hiri, N.; García-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; et al. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, 2013, bat070. [Google Scholar] [CrossRef]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxid. Redox Signal. 2012, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed]
- Amado, N.G.; Fonseca, B.F.; Cerqueira, D.M.; Reis, A.H.; Simas, A.B.C.; Kuster, R.M.; Mendes, F.A.; Abreu, J.G. Effects of Natural Compounds on Xenopus Embryogenesis: A Potential Read Out for Functional Drug Discovery Targeting Wnt/β-catenin Signaling. Curr. Top. Med. Chem. 2012, 12, 2103–2113. [Google Scholar] [CrossRef] [PubMed]
Mean | SD | Mean | SD | p | |
---|---|---|---|---|---|
Weight at end of study | |||||
Group 1 vs. Group 2 | 222.86 | 11.47 | 456.71 | 31.71 | <0.001 |
Group 3 vs. Group 1 | 454.29 | 32.69 | 222.86 | 11.47 | <0.001 |
Group 3 vs. Group 2 | 454.29 | 32.69 | 456.71 | 31.71 | NS * |
Group 4 vs. Group 1 | 459.14 | 15.25 | 222.86 | 11.47 | <0.001 |
Group 4 vs. Group 2 | 459.14 | 15.25 | 456.71 | 31.71 | NS |
Group 5 vs. Group 1 | 493.57 | 16.97 | 222.86 | 11.47 | <0.001 |
Group 5 vs. Group 2 | 493.57 | 16.97 | 456.71 | 31.71 | <0.01 |
Weight variation | |||||
Group 1 vs. Group 2 | 0.0 | 0.0 | 241.29 | 32.55 | <0.001 |
Group 3 vs. Group 1 | 237.29 | 32.29 | 0.0 | 0.0 | <0.001 |
Group 3 vs. Group 2 | 237.29 | 32.29 | 241.29 | 32.55 | NS |
Group 4 vs. Group 1 | 236.0 | 17.40 | 0.0 | 0.0 | <0.001 |
Group 4 vs. Group 2 | 236.0 | 17.40 | 241.29 | 32.55 | NS |
Group 5 vs. Group 1 | 279.71 | 15.28 | 0.0 | 0.0 | <0.001 |
Group 5 vs. Group 2 | 279.71 | 15.28 | 241.29 | 32.55 | <0.01 |
Abdominal wall thickness | |||||
Group 1 vs. Group 2 | 1.30 | 0.29 | 2.49 | 0.56 | <0.001 |
Group 3 vs. Group 1 | 2.19 | 0.35 | 1.30 | 0.29 | <0.001 |
Group 3 vs. Group 2 | 2.19 | 0.35 | 2.49 | 0.56 | NS |
Group 4 vs. Group 1 | 2.39 | 0.20 | 1.30 | 0.29 | <0.001 |
Group 4 vs. Group 2 | 2.39 | 0.20 | 2.49 | 0.56 | NS |
Group 5 vs. Group 1 | 2.46 | 0.15 | 1.30 | 0.29 | <0.001 |
Group 5 vs. Group 2 | 2.46 | 0.15 | 2.49 | 0.56 | NS |
Plasma leptin | |||||
Group 1 vs. Group 2 | 1.12 | 0.57 | 2.01 | 0.34 | <0.01 |
Group 3 vs. Group 1 | 1.68 | 1.12 | 1.12 | 0.57 | NS |
Group 3 vs. Group 2 | 1.68 | 1.12 | 2.01 | 0.34 | NS |
Group 4 vs. Group 1 | 2.48 | 0.93 | 1.12 | 0.57 | <0.05 |
Group 4 vs. Group 2 | 2.48 | 0.93 | 2.01 | 0.34 | NS |
Plasma visfatin | |||||
Group 1 vs. Group 2 | 3.57 | 0.60 | 3.38 | 1.68 | NS |
Group 3 vs. Group 1 | 2.90 | 1.18 | 3.57 | 0.60 | NS |
Group 3 vs. Group 2 | 2.90 | 1.18 | 3.38 | 1.68 | NS |
Group 4 vs. Group 1 | 3.29 | 0.48 | 3.57 | 0.60 | NS |
Group 4 vs. Group 2 | 3.29 | 0.48 | 3.38 | 1.68 | NS |
Group 5 vs. Group 1 | 2.53 | 0.56 | 3.57 | 0.60 | <0.05 |
Group 5 vs. Group 2 | 2.53 | 0.56 | 3.38 | 1.68 | NS |
Leptin | |||||
---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | |
Body weight | 0.88 | 0.78 | 0.88 | 0.97 | 0.93 |
Body weight variation | * | 0.85 | 0.83 | 0.76 | 0.80 |
Abdominal wall thickness | 0.84 | 0.72 | 0.89 | 0.94 | 0.87 |
Visfatin | |||||
---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | |
Body weight | 0.90 | 0.92 | 0.93 | 0.84 | 0.89 |
Body weight variation | * | 0.87 | 0.96 | 0.80 | 0.78 |
Abdominal wall thickness | 0.80 | 0.88 | 0.84 | 0.86 | 0.97 |
Mean | SD | Mean | SD | p | |
---|---|---|---|---|---|
Weight | |||||
Group 1 vs. Group 2 | 8.63 | 0.68 | 12.38 | 0.76 | <0.001 |
Group 3 vs. Group 1 | 6.03 | 0.47 | 8.63 | 0.68 | <0.001 |
Group 3 vs. Group 2 | 6.03 | 0.47 | 12.38 | 0.76 | <0.001 |
Group 4 vs. Group 1 | 6.80 | 0.39 | 8.63 | 0.68 | <0.001 |
Group 4 vs. Group 2 | 6.80 | 0.39 | 12.38 | 0.76 | <0.001 |
Group 5 vs. Group 1 | 5.75 | 0.22 | 8.63 | 0.68 | <0.001 |
Group 5 vs. Group 2 | 5.75 | 0.22 | 12.38 | 0.76 | <0.001 |
Brain weight | |||||
Group 1 vs. Group 2 | 0.31 | 0.04 | 0.49 | 0.05 | <0.001 |
Group 3 vs. Group 1 | 0.25 | 0.03 | 0.31 | 0.04 | <0.01 |
Group 3 vs. Group 2 | 0.25 | 0.03 | 0.49 | 0.05 | <0.001 |
Group 4 vs. Group 1 | 0.31 | 0.04 | 0.31 | 0.04 | NS * |
Group 4 vs. Group 2 | 0.31 | 0.04 | 0.49 | 0.05 | <0.001 |
Group 5 vs. Group 1 | 0.25 | 0.03 | 0.31 | 0.04 | <0.001 |
Group 5 vs. Group 2 | 0.25 | 0.03 | 0.49 | 0.05 | <0.001 |
Head length | |||||
Group 1 vs. Group 2 | 18.13 | 0.70 | 21.27 | 0.53 | <0.001 |
Group 3 vs. Group 1 | 16.33 | 0.42 | 18.13 | 0.70 | <0.001 |
Group 3 vs. Group 2 | 16.33 | 0.42 | 21.27 | 0.53 | <0.001 |
Group 4 vs. Group 1 | 16.87 | 0.42 | 18.13 | 0.70 | <0.001 |
Group 4 vs. Group 2 | 16.87 | 0.42 | 21.27 | 0.53 | <0.001 |
Group 5 vs. Group 1 | 15.64 | 0.39 | 18.13 | 0.70 | <0.001 |
Group 5 vs. Group 2 | 15.64 | 0.39 | 21.27 | 0.53 | <0.001 |
Head width | |||||
Group 1 vs. Group 2 | 11.82 | 0.77 | 13.45 | 0.33 | <0.001 |
Group 3 vs. Group 1 | 11.39 | 0.42 | 11.82 | 0.77 | NS |
Group 3 vs. Group 2 | 11.39 | 0.42 | 13.45 | 0.33 | <0.001 |
Group 4 vs. Group 1 | 12.34 | 0.68 | 11.82 | 0.77 | NS |
Group 4 vs. Group 2 | 12.34 | 0.68 | 13.45 | 0.33 | <0.001 |
Group 5 vs. Group 1 | 10.96 | 0.14 | 11.82 | 0.77 | <0.01 |
Group 5 vs. Group 2 | 10.96 | 0.14 | 13.45 | 0.33 | <0.001 |
Spine length | |||||
Group 1 vs. Group 2 | 28.03 | 0.77 | 38.37 | 0.63 | <0.001 |
Group 3 vs. Group 1 | 25.43 | 0.50 | 28.03 | 0.77 | <0.01 |
Group 3 vs. Group 2 | 25.43 | 0.50 | 38.37 | 0.63 | <0.01 |
Group 4 vs. Group 1 | 26.70 | 0.77 | 28.03 | 0.77 | <0.001 |
Group 4 vs. Group 2 | 26.70 | 0.77 | 38.37 | 0.63 | <0.001 |
Group 5 vs. Group 1 | 25.26 | 0.48 | 28.03 | 0.77 | <0.001 |
Group 5 vs. Group 2 | 25.26 | 0.48 | 38.37 | 0.63 | <0.001 |
Width between shoulder blades | |||||
Group 1 vs. Group 2 | 13.01 | 0.61 | 15.17 | 0.32 | <0.001 |
Group 3 vs. Group 1 | 11.83 | 0.77 | 13.01 | 0.61 | <0.001 |
Group 3 vs. Group 2 | 11.83 | 0.77 | 15.17 | 0.32 | <0.001 |
Group 4 vs. Group 1 | 12.25 | 0.67 | 13.01 | 0.61 | <0.01 |
Group 4 vs. Group 2 | 12.25 | 0.67 | 15.17 | 0.32 | <0.001 |
Group 5 vs. Group 1 | 11.24 | 0.70 | 13.01 | 0.61 | <0.001 |
Group 5 vs. Group 2 | 11.24 | 0.70 | 15.17 | 0.32 | <0.001 |
Coxal bone length | |||||
Group 1 vs. Group 2 | 15.86 | 0.99 | 16.30 | 0.36 | NS |
Group 3 vs. Group 1 | 14.07 | 0.51 | 15.86 | 0.99 | <0.001 |
Group 3 vs. Group 2 | 14.07 | 0.51 | 16.30 | 0.36 | <0.001 |
Group 4 vs. Group 1 | 14.88 | 0.82 | 15.86 | 0.99 | <0.05 |
Group 4 vs. Group 2 | 14.88 | 0.82 | 16.30 | 0.36 | <0.001 |
Group 5 vs. Group 1 | 13.81 | 0.51 | 15.86 | 0.99 | <0.001 |
Group 5 vs. Group 2 | 13.81 | 0.51 | 16.30 | 0.36 | <0.001 |
Brain leptin | |||||
Group 1 vs. Group 2 | 0.27 | 0.08 | 0.29 | 0.09 | NS |
Group 3 vs. Group 1 | 0.30 | 0.10 | 0.27 | 0.08 | NS |
Group 3 vs. Group 2 | 0.30 | 0.10 | 0.29 | 0.09 | NS |
Group 4 vs. Group 1 | 0.23 | 0.09 | 0.27 | 0.08 | NS |
Group 4 vs. Group 2 | 0.23 | 0.09 | 0.29 | 0.09 | NS |
Group 5 vs. Group 1 | 0.28 | 0.11 | 0.27 | 0.08 | NS |
Group 5 vs. Group 2 | 0.28 | 0.11 | 0.29 | 0.09 | NS |
Brain visfatin | |||||
Group 1 vs. Group 2 | 0.67 | 0.15 | 0.61 | 0.13 | NS |
Group 3 vs. Group 1 | 0.56 | 0.19 | 0.67 | 0.15 | NS |
Group 3 vs. Group 2 | 0.56 | 0.19 | 0.61 | 0.13 | NS |
Group 4 vs. Group 1 | 0.45 | 0.11 | 0.67 | 0.15 | <0.001 |
Group 4 vs. Group 2 | 0.45 | 0.11 | 0.61 | 0.13 | <0.01 |
Group 5 vs. Group 1 | 0.56 | 0.18 | 0.67 | 0.15 | NS |
Group 5 vs. Group 2 | 0.56 | 0.18 | 0.61 | 0.13 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ormindean, C.M.; Ciortea, R.; Bucuri, C.E.; Măluțan, A.M.; Iuhas, C.I.; Porumb, C.G.; Nicula, R.L.; Ormindean, V.; Roman, M.P.; Nati, I.D.; et al. Somatic Changes of Maternal High-Fat Diet on Offspring—Possible Deleterious Effects of Flavonoids? Nutrients 2024, 16, 4022. https://doi.org/10.3390/nu16234022
Ormindean CM, Ciortea R, Bucuri CE, Măluțan AM, Iuhas CI, Porumb CG, Nicula RL, Ormindean V, Roman MP, Nati ID, et al. Somatic Changes of Maternal High-Fat Diet on Offspring—Possible Deleterious Effects of Flavonoids? Nutrients. 2024; 16(23):4022. https://doi.org/10.3390/nu16234022
Chicago/Turabian StyleOrmindean, Cristina Mihaela, Razvan Ciortea, Carmen Elena Bucuri, Andrei Mihai Măluțan, Cristian Ioan Iuhas, Ciprian Gheorghe Porumb, Renata Lacramioara Nicula, Vlad Ormindean, Maria Patricia Roman, Ionel Daniel Nati, and et al. 2024. "Somatic Changes of Maternal High-Fat Diet on Offspring—Possible Deleterious Effects of Flavonoids?" Nutrients 16, no. 23: 4022. https://doi.org/10.3390/nu16234022
APA StyleOrmindean, C. M., Ciortea, R., Bucuri, C. E., Măluțan, A. M., Iuhas, C. I., Porumb, C. G., Nicula, R. L., Ormindean, V., Roman, M. P., Nati, I. D., Suciu, V., Florea, A., Solomon, C., Moldovan, M., & Mihu, D. (2024). Somatic Changes of Maternal High-Fat Diet on Offspring—Possible Deleterious Effects of Flavonoids? Nutrients, 16(23), 4022. https://doi.org/10.3390/nu16234022