A Close Relationship Between Ultra-Processed Foods and Adiposity in Adults in Southern Italy
Highlights
- Higher consumption of ultra-processed foods (UPFs) is positively associated with obesity and adiposity indices, especially in younger people.
- Lower adherence to the Mediterranean Diet is associated with higher obesity and adiposity indices.
- Among all UPFs consumed, soft drinks were the most significant in all groups and their consumption increased substantially alongside the BMI.
- The main findings suggest that high UPF consumption is predictive of a low diet quality and increased visceral adiposity, which predisposes people to a higher risk of developing cardiovascular disease.
- The main findings highlight the importance of implementing public health strategies to improve population health by promoting the Mediterranean Diet and limiting UPF intake in favour of higher-quality products.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
- -
- Group 1: Obesity, Class I, BMI 30–34.9 kg/m2;
- -
- Group 2: Obesity, Class II, BMI 35–39.9 kg/m2;
- -
- Group 3: Obesity, Class III, BMI ≥40 kg/m2.
- -
- Age between 18 and 65 years old;
- -
- BMI ≥30 kg/m2.
2.2. Anthropometric Measurements and Body Composition Analysis
2.3. Biochemical and Clinical Parameters
2.4. Nutritional Assessments
2.5. Indicators of Adiposity
- -
- Waist-to-height ratio (WHtR) [31]:WHtR: WC/height (both expressed in centimeters).
- -
- Visceral Adiposity Index (VAI) [32]:VAI (men): (WC)/[39.68 + (1.88 × BMI)] × (TG/1.03) × (1.31/HDL);VAI (women): (WC)/[36.58 + (1.89 × BMI)] × (TG/0.81) × (1.52/HDL).
- -
- Lipid Accumulation Product (LAP) [33]:LAP (men): (WC − 65) × TG;LAP (women): (WC − 58) × TG.
- -
- Cardiometabolic Index (CMI) [34]:CMI: (TG/HDL) × WHtR.
- -
- Waist Triglyceride Index (WTI) [34]:WTI: WC × TG.
2.6. Statistical Analysis
3. Results
3.1. Assessment of Eating Habits in Relation to BMI
3.2. Socio-Demographic Characteristics and Adiposity Indices Across UPF Tertiles
- -
- T1: % UPF < 18.3;
- -
- T2: % UPF ≥ 18.3 and <29.1;
- -
- T3: % UPF ≥ 29.1.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Obesity Federation. World Obesity Atlas 2023. March 2023. Available online: https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2023 (accessed on 1 March 2023).
- Monteiro, C.A.; Moubarac, J.-C.; Cannon, G.; Ng, S.W.; Popkin, B. Ultra-processed Products Are Becoming Dominant in the Global Food System. Obes. Rev. 2013, 14, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Poti, J.M.; Braga, B.; Qin, B. Ultra-Processed Food Intake and Obesity: What Really Matters for Health—Processing or Nutrient Content? Curr. Obes. Rep. 2017, 6, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Zobel, E.H.; Hansen, T.W.; Rossing, P.; Von Scholten, B.J. Global Changes in Food Supply and the Obesity Epidemic. Curr. Obes. Rep. 2016, 5, 449–455. [Google Scholar] [CrossRef]
- Augustin, M.A.; Riley, M.; Stockmann, R.; Bennett, L.; Kahl, A.; Lockett, T.; Osmond, M.; Sanguansri, P.; Stonehouse, W.; Zajac, I.; et al. Role of Food Processing in Food and Nutrition Security. Trends Food Sci. Technol. 2016, 56, 115–125. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-Processed Foods: What They Are and How to Identify Them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Levy, R.B.; Claro, R.M.; Castro, I.R.R.D.; Cannon, G. A New Classification of Foods Based on the Extent and Purpose of Their Processing. Cad. Saúde Pública 2010, 26, 2039–2049. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA Food Classification and the Trouble with Ultra-Processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef]
- Louzada, M.L.D.C.; Baraldi, L.G.; Steele, E.M.; Martins, A.P.B.; Canella, D.S.; Moubarac, J.-C.; Levy, R.B.; Cannon, G.; Afshin, A.; Imamura, F.; et al. Consumption of Ultra-Processed Foods and Obesity in Brazilian Adolescents and Adults. Prev. Med. 2015, 81, 9–15. [Google Scholar] [CrossRef]
- Juul, F.; Parekh, N.; Martinez-Steele, E.; Monteiro, C.A.; Chang, V.W. Ultra-Processed Food Consumption among US Adults from 2001 to 2018. Am. J. Clin. Nutr. 2022, 115, 211–221. [Google Scholar] [CrossRef]
- Canella, D.S.; Levy, R.B.; Martins, A.P.B.; Claro, R.M.; Moubarac, J.-C.; Baraldi, L.G.; Cannon, G.; Monteiro, C.A. Ultra-Processed Food Products and Obesity in Brazilian Households (2008–2009). PLoS ONE 2014, 9, e92752. [Google Scholar] [CrossRef]
- Rauber, F.; Chang, K.; Vamos, E.P.; Da Costa Louzada, M.L.; Monteiro, C.A.; Millett, C.; Levy, R.B. Ultra-Processed Food Consumption and Risk of Obesity: A Prospective Cohort Study of UK Biobank. Eur. J. Nutr. 2021, 60, 2169–2180. [Google Scholar] [CrossRef] [PubMed]
- Pestoni, G.; Habib, L.; Reber, E.; Rohrmann, S.; Staub, K.; Stanga, Z.; Faeh, D. Ultraprocessed Food Consumption Is Strongly and Dose-Dependently Associated with Excess Body Weight in Swiss Women. Obesity 2021, 29, 601–609. [Google Scholar] [CrossRef]
- Sofi, F.; Abbate, R.; Gensini, G.F.; Casini, A. Accruing Evidence on Benefits of Adherence to the Mediterranean Diet on Health: An Updated Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2010, 92, 1189–1196. [Google Scholar] [CrossRef]
- McClure, S.T.; Appel, L.J. Food Processing and Incident Hypertension: Causal Relationship, Confounding, or Both? Am. J. Hypertens. 2017, 30, 348–349. [Google Scholar] [CrossRef]
- Juul, F.; Hemmingsson, E. Trends in Consumption of Ultra-Processed Foods and Obesity in Sweden between 1960 and 2010. Public Health Nutr. 2015, 18, 3096–3107. [Google Scholar] [CrossRef]
- Mendonça, R.D.D.; Pimenta, A.M.; Gea, A.; De La Fuente-Arrillaga, C.; Martinez-Gonzalez, M.A.; Lopes, A.C.S.; Bes-Rastrollo, M. Ultraprocessed Food Consumption and Risk of Overweight and Obesity: The University of Navarra Follow-Up (SUN) Cohort Study. Am. J. Clin. Nutr. 2016, 104, 1433–1440. [Google Scholar] [CrossRef]
- World Health Organization. Obesity—Preventing and Managing the Global Epidemic: Report on a WHO Consultation; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- World Health Organization (WHO). Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 1 March 2024).
- Cacciapuoti, N.; Lonardo, M.S.; Di Lauro, M.; Di Lorenzo, M.; Aurino, L.; Pacella, D.; Guida, B. Effects of Dietary Intervention on Nutritional Status in Elderly Individuals with Chronic Kidney Disease. Nutrients 2024, 16, 632. [Google Scholar] [CrossRef]
- Chiurazzi, M.; De Conno, B.; Di Lauro, M.; Guida, B.; Nasti, G.; Schiano, E.; Stornaiuolo, M.; Tenore, G.C.; Colantuoni, A.; Novellino, E. The Effects of a Cinchona Supplementation on Satiety, Weight Loss and Body Composition in a Population of Overweight/Obese Adults: A Controlled Randomized Study. Nutrients 2023, 15, 5033. [Google Scholar] [CrossRef]
- Earthman, C.P. Body Composition Tools for Assessment of Adult Malnutrition at the Bedside: A Tutorial on Research Considerations and Clinical Applications. J. Parenter. Enter. Nutr. 2015, 39, 787–822. [Google Scholar] [CrossRef]
- McLaughlin, T.; Abbasi, F.; Cheal, K.; Chu, J.; Lamendola, C.; Reaven, G. Use of Metabolic Markers To Identify Overweight Individuals Who Are Insulin Resistant. Ann. Intern. Med. 2003, 139, 802. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B.; Vasan, R.S.; Keyes, M.J.; Sullivan, L.M.; Robins, S.J. Usefulness of the Triglyceride–High-Density Lipoprotein Versus the Cholesterol–High-Density Lipoprotein Ratio for Predicting Insulin Resistance and Cardiometabolic Risk (from the Framingham Offspring Cohort). Am. J. Cardiol. 2008, 101, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Kreutz, R.; Brunström, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; De Pinho, R.M.; Albini, F.L.; Boivin, J.-M.; et al. 2024 European Society of Hypertension Clinical Practice Guidelines for the Management of Arterial Hypertension. Eur. J. Intern. Med. 2024, 126, 1–15. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; García-Arellano, A.; Toledo, E.; Salas-Salvadó, J.; Buil-Cosiales, P.; Corella, D.; Covas, M.I.; Schröder, H.; Arós, F.; Gómez-Gracia, E.; et al. A 14-Item Mediterranean Diet Assessment Tool and Obesity Indexes among High-Risk Subjects: The PREDIMED Trial. PLoS ONE 2012, 7, e43134. [Google Scholar] [CrossRef]
- Dinu, M.; Bonaccio, M.; Martini, D.; Madarena, M.P.; Vitale, M.; Pagliai, G.; Esposito, S.; Ferraris, C.; Guglielmetti, M.; Rosi, A.; et al. Reproducibility and Validity of a Food-Frequency Questionnaire (NFFQ) to Assess Food Consumption Based on the NOVA Classification in Adults. Int. J. Food Sci. Nutr. 2021, 72, 861–869. [Google Scholar] [CrossRef]
- Dinu, M.; Tristan Asensi, M.; Pagliai, G.; Lotti, S.; Martini, D.; Colombini, B.; Sofi, F. Consumption of Ultra-Processed Foods Is Inversely Associated with Adherence to the Mediterranean Diet: A Cross-Sectional Study. Nutrients 2022, 14, 2073. [Google Scholar] [CrossRef]
- Turconi, G.; Guarcello, M.; Berzolari, F.G.; Carolei, A.; Bazzano, R.; Roggi, C. An Evaluation of a Colour Food Photography Atlas as a Tool for Quantifying Food Portion Size in Epidemiological Dietary Surveys. Eur. J. Clin. Nutr. 2005, 59, 923–931. [Google Scholar] [CrossRef]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height Ratio Is a Better Screening Tool than Waist Circumference and BMI for Adult Cardiometabolic Risk Factors: Systematic Review and Meta-analysis. Obes. Rev. 2012, 13, 275–286. [Google Scholar] [CrossRef]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; for the AlkaMeSy Study Group. Visceral Adiposity Index. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef]
- Kahn, H.S. The “Lipid Accumulation Product” Performs Better than the Body Mass Index for Recognizing Cardiovascular Risk: A Population-Based Comparison. BMC Cardiovasc. Disord. 2005, 5, 26. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, Y.; Liao, Y.; Chu, C.; Guo, T.; Ma, Q.; Wang, Y.; Wang, D.; Jia, H.; Mu, J. The New Visceral Adiposity Index Outperforms Traditional Obesity Indices as a Predictor of Subclinical Renal Damage in Chinese Individuals: A Cross-Sectional Study. BMC Endocr. Disord. 2023, 23, 78. [Google Scholar] [CrossRef] [PubMed]
- Robles, B.; Mota-Bertran, A.; Saez, M.; Solans, M. Association between Ultraprocessed Food Consumption and Excess Adiposity in Children and Adolescents: A Systematic Review. Obes. Rev. 2024, 25, e13796. [Google Scholar] [CrossRef]
- Neri, D.; Steele, E.M.; Khandpur, N.; Cediel, G.; Zapata, M.E.; Rauber, F.; Marrón-Ponce, J.A.; Machado, P.; Da Costa Louzada, M.L.; Andrade, G.C.; et al. Ultraprocessed Food Consumption and Dietary Nutrient Profiles Associated with Obesity: A Multicountry Study of Children and Adolescents. Obes. Rev. 2022, 23, e13387. [Google Scholar] [CrossRef]
- Moradi, S.; Entezari, M.H.; Mohammadi, H.; Jayedi, A.; Lazaridi, A.-V.; Kermani, M.A.H.; Miraghajani, M. Ultra-Processed Food Consumption and Adult Obesity Risk: A Systematic Review and Dose-Response Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2023, 63, 249–260. [Google Scholar] [CrossRef]
- Lane, M.M.; Davis, J.A.; Beattie, S.; Gómez-Donoso, C.; Loughman, A.; O’Neil, A.; Jacka, F.; Berk, M.; Page, R.; Marx, W.; et al. Ultraprocessed Food and Chronic Noncommunicable Diseases: A Systematic Review and Meta-analysis of 43 Observational Studies. Obes. Rev. 2021, 22, e13146. [Google Scholar] [CrossRef]
- Pagliai, G.; Dinu, M.; Madarena, M.P.; Bonaccio, M.; Iacoviello, L.; Sofi, F. Consumption of Ultra-Processed Foods and Health Status: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2021, 125, 308–318. [Google Scholar] [CrossRef]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 67–77.e3. [Google Scholar] [CrossRef]
- Fardet, A. Characterization of the Degree of Food Processing in Relation With Its Health Potential and Effects. Adv. Food Nutr. Res. 2018, 85, 79–129. [Google Scholar] [CrossRef]
- Martini, D.; Godos, J.; Bonaccio, M.; Vitaglione, P.; Grosso, G. Ultra-Processed Foods and Nutritional Dietary Profile: A Meta-Analysis of Nationally Representative Samples. Nutrients 2021, 13, 3390. [Google Scholar] [CrossRef]
- Crimarco, A.; Landry, M.J.; Gardner, C.D. Ultra-Processed Foods, Weight Gain, and Co-Morbidity Risk. Curr. Obes. Rep. 2021, 11, 80–92. [Google Scholar] [CrossRef]
- Schulte, E.M.; Avena, N.M.; Gearhardt, A.N. Which Foods May Be Addictive? The Roles of Processing, Fat Content, and Glycemic Load. PLoS ONE 2015, 10, e0117959. [Google Scholar] [CrossRef]
- Calcaterra, V.; Cena, H.; Rossi, V.; Santero, S.; Bianchi, A.; Zuccotti, G. Ultra-Processed Food, Reward System and Childhood Obesity. Children 2023, 10, 804. [Google Scholar] [CrossRef]
- Forde, C.G.; Mars, M.; De Graaf, K. Ultra-Processing or Oral Processing? A Role for Energy Density and Eating Rate in Moderating Energy Intake from Processed Foods. Curr. Dev. Nutr. 2020, 4, nzaa019. [Google Scholar] [CrossRef]
- Wahlqvist, M.L. Food Structure Is Critical for Optimal Health. Food Funct. 2016, 7, 1245–1250. [Google Scholar] [CrossRef]
- Quinn, M.; Jordan, H.; Lacy-Nichols, J. Upstream and Downstream Explanations of the Harms of Ultra-Processed Foods in National Dietary Guidelines. Public Health Nutr. 2021, 24, 5426–5435. [Google Scholar] [CrossRef]
- Barr, S.B.; Wright, J.C. Postprandial Energy Expenditure in Whole-Food and Processed-Food Meals: Implications for Daily Energy Expenditure. Food Nutr. Res. 2010, 54, 5144. [Google Scholar] [CrossRef]
- Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and Evolution of the Western Diet: Health Implications for the 21st Century1,2. Am. J. Clin. Nutr. 2005, 81, 341–354. [Google Scholar] [CrossRef]
- Hwang, S.; Lim, J.; Choi, Y.; Jee, S.H. Bisphenol A Exposure and Type 2 Diabetes Mellitus Risk: A Meta-Analysis. BMC Endocr. Disord. 2018, 18, 81. [Google Scholar] [CrossRef]
- Birlouez-Aragon, I.; Morales, F.; Fogliano, V.; Pain, J.-P. The Health and Technological Implications of a Better Control of Neoformed Contaminants by the Food Industry. Pathol. Biol. 2010, 58, 232–238. [Google Scholar] [CrossRef]
- Mariotti, M.S.; Granby, K.; Rozowski, J.; Pedreschi, F. Furan: A Critical Heat Induced Dietary Contaminant. Food Funct. 2013, 4, 1001. [Google Scholar] [CrossRef]
- Dybing, E. Risk Assessment of Acrylamide in Foods. Toxicol. Sci. 2003, 75, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Darbre, P.D. Endocrine Disruptors and Obesity. Curr. Obes. Rep. 2017, 6, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Casals-Casas, C.; Desvergne, B. Endocrine Disruptors: From Endocrine to Metabolic Disruption. Annu. Rev. Physiol. 2011, 73, 135–162. [Google Scholar] [CrossRef]
- Grün, F.; Blumberg, B. Perturbed Nuclear Receptor Signaling by Environmental Obesogens as Emerging Factors in the Obesity Crisis. Rev. Endocr. Metab. Disord. 2007, 8, 161–171. [Google Scholar] [CrossRef]
- Fotheringham, A.K.; Gallo, L.A.; Borg, D.J.; Forbes, J.M. Advanced Glycation End Products (AGEs) and Chronic Kidney Disease: Does the Modern Diet AGE the Kidney? Nutrients 2022, 14, 2675. [Google Scholar] [CrossRef]
- Chao, P.; Huang, C.; Hsu, C.; Yin, M.; Guo, Y. Association of Dietary AGEs with Circulating AGEs, Glycated LDL, IL-1α and MCP-1 Levels in Type 2 Diabetic Patients. Eur. J. Nutr. 2010, 49, 429–434. [Google Scholar] [CrossRef]
- Normand, G.; Lemoine, S.; Villien, M.; Le Bars, D.; Merida, I.; Irace, Z.; Troalen, T.; Costes, N.; Juillard, L. AGE Content of a Protein Load Is Responsible for Renal Performances: A Pilot Study. Diabetes Care 2018, 41, 1292–1294. [Google Scholar] [CrossRef]
- Wu, Y.; Tan, Z.; Zhen, J.; Liu, C.; Zhang, J.; Liao, F.; Dong, W. Association between Diet Soft Drink Consumption and Metabolic Dysfunction-Associated Steatotic Liver Disease: Findings from the NHANES. BMC Public Health 2023, 23, 2286. [Google Scholar] [CrossRef]
- Payne, A.N.; Chassard, C.; Lacroix, C. Gut Microbial Adaptation to Dietary Consumption of Fructose, Artificial Sweeteners and Sugar Alcohols: Implications for Host–Microbe Interactions Contributing to Obesity. Obes. Rev. 2012, 13, 799–809. [Google Scholar] [CrossRef]
- Boulangé, C.L.; Neves, A.L.; Chilloux, J.; Nicholson, J.K.; Dumas, M.-E. Impact of the Gut Microbiota on Inflammation, Obesity, and Metabolic Disease. Genome Med. 2016, 8, 42. [Google Scholar] [CrossRef]
- DiMeglio, D.P.; Mattes, R.D. Liquid versus Solid Carbohydrate: Effects on Food Intake and Body Weight. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 2000, 24, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Luger, M.; Lafontan, M.; Bes-Rastrollo, M.; Winzer, E.; Yumuk, V.; Farpour-Lambert, N. Sugar-Sweetened Beverages and Weight Gain in Children and Adults: A Systematic Review from 2013 to 2015 and a Comparison with Previous Studies. Obes. Facts 2017, 10, 674–693. [Google Scholar] [CrossRef]
- Pereira, M.A. Sugar-Sweetened and Artificially-Sweetened Beverages in Relation to Obesity Risk. Adv. Nutr. 2014, 5, 797–808. [Google Scholar] [CrossRef]
- Maersk, M.; Belza, A.; Stødkilde-Jørgensen, H.; Ringgaard, S.; Chabanova, E.; Thomsen, H.; Pedersen, S.B.; Astrup, A.; Richelsen, B. Sucrose-Sweetened Beverages Increase Fat Storage in the Liver, Muscle, and Visceral Fat Depot: A 6-Mo Randomized Intervention Study. Am. J. Clin. Nutr. 2012, 95, 283–289. [Google Scholar] [CrossRef]
- Souza, B.D.S.N.; Cunha, D.B.; Pereira, R.A.; Sichieri, R. Soft Drink Consumption, Mainly Diet Ones, Is Associated with Increased Blood Pressure in Adolescents. J. Hypertens. 2016, 34, 221–225. [Google Scholar] [CrossRef]
- Fagherazzi, G.; Gusto, G.; Affret, A.; Mancini, F.R.; Dow, C.; Balkau, B.; Clavel-Chapelon, F.; Bonnet, F.; Boutron-Ruault, M.-C. Chronic Consumption of Artificial Sweetener in Packets or Tablets and Type 2 Diabetes Risk: Evidence from the E3N-European Prospective Investigation into Cancer and Nutrition Study. Ann. Nutr. Metab. 2017, 70, 51–58. [Google Scholar] [CrossRef]
- Havel, P.J. Dietary Fructose: Implications for Dysregulation of Energy Homeostasis and Lipid/Carbohydrate Metabolism. Nutr. Rev. 2005, 63, 133–157. [Google Scholar] [CrossRef]
- Godos, J.; Giampieri, F.; Al-Qahtani, W.H.; Scazzina, F.; Bonaccio, M.; Grosso, G. Ultra-Processed Food Consumption and Relation with Diet Quality and Mediterranean Diet in Southern Italy. Int. J. Environ. Res. Public Health 2022, 19, 11360. [Google Scholar] [CrossRef]
- Passey, C. Reducing the Dietary Acid Load: How a More Alkaline Diet Benefits Patients With Chronic Kidney Disease. J. Ren. Nutr. 2017, 27, 151–160. [Google Scholar] [CrossRef]
- Simmons, A.L.; Schlezinger, J.J.; Corkey, B.E. What Are We Putting in Our Food That Is Making Us Fat? Food Additives, Contaminants, and Other Putative Contributors to Obesity. Curr. Obes. Rep. 2014, 3, 273–285. [Google Scholar] [CrossRef]
- Kladnicka, I.; Bludovska, M.; Plavinova, I.; Muller, L.; Mullerova, D. Obesogens in Foods. Biomolecules 2022, 12, 680. [Google Scholar] [CrossRef]
- Du, T.; Yuan, G.; Zhang, M.; Zhou, X.; Sun, X.; Yu, X. Clinical Usefulness of Lipid Ratios, Visceral Adiposity Indicators, and the Triglycerides and Glucose Index as Risk Markers of Insulin Resistance. Cardiovasc. Diabetol. 2014, 13, 146. [Google Scholar] [CrossRef]
- Radetti, G.; Fanolla, A.; Grugni, G.; Lupi, F.; Tamini, S.; Cicolini, S.; Sartorio, A. The Role of Different Indexes of Adiposity and Body Composition for the Identification of Metabolic Syndrome in Women with Obesity. J. Clin. Med. 2021, 10, 1975. [Google Scholar] [CrossRef]
- Barazzoni, R.; Gortan Cappellari, G.; Semolic, A.; Ius, M.; Zanetti, M.; Gabrielli, A.; Vinci, P.; Guarnieri, G.; Simon, G. Central Adiposity Markers, Plasma Lipid Profile and Cardiometabolic Risk Prediction in Overweight-Obese Individuals. Clin. Nutr. 2019, 38, 1171–1179. [Google Scholar] [CrossRef]
- Zwierzchowska, A.; Kantyka, J.; Rosołek, B.; Nawrat-Szołtysik, A.; Małecki, A. Sensitivity and Specificity of Anthropometric Indices in Identifying Obesity in Women over 40 Years of Age and Their Variability in Subsequent Decades of Life. Biology 2022, 11, 1804. [Google Scholar] [CrossRef]
All Patients n = 175 | Group 1 n = 26 | Group 2 n = 48 | Group 3 n = 101 | p-Value | |
---|---|---|---|---|---|
Age, Years * | 43.3 ± 12.6 | 41.6 ± 11.8 | 42.2 ± 12.4 | 43.8 ± 12.9 | 0.6 |
Male, n (%) | 63 (36%) | 7 (26.9%) | 12 (25%) | 44 (43.6%) | 0.06 |
Marital status, n (%) | 0.91 | ||||
Unmarried/Single | 60 (34.3%) | 7 (26.9%) | 17 (35.4%) | 36 (35.6%) | |
Married/partner | 97 (55.4%) | 16 (61.5%) | 27 (56.3%) | 54 (53.5%) | |
Divorced | 18 (10.3%) | 3 (11.5%) | 4 (8.3%) | 11 (10.9) | |
Education level, n (%) | 0.24 | ||||
Secondary school or below | 45 (25.7%) | 4 (15.4%) | 10 (20.8%) | 31 (30.7%) | |
High school | 110 (62.9%) | 17 (65.4%) | 31 (64.6%) | 62 (61.4%) | |
University | 20 (11.4%) | 5 (19.2%) | 7 (14.6%) | 8 (7.9%) | |
Occupation, n (%) | 0.25 | ||||
Unemployed | 86 (49.1%) | 11 (42.3%) | 20 (41.7%) | 55 (54.5%) | |
Employed | 89 (50.9%) | 15 (57.7%) | 28 (58.3%) | 46 (45.5%) | |
Place of residence, n (%) | <0.05 | ||||
Metropolis | 98 (56%) | 20 (76.9%) | 28 (58.3%) | 50 (49.5%) | |
Small and medium-sized cities | 77 (44%) | 6 (23.1%) | 20 (41.7%) | 51 (50.5%) | |
Physical activity level, n (%) | 0.88 | ||||
Sedentary | 166 (94.8%) | 25 (96.2%) | 45 (93.7%) | 96 (95%) | |
Medium | 8 (4.6%) | 1 (3.8%) | 3 (6.3%) | 4 (4%) | |
Heavy | 1 (0.6%) | 1 (1%) | |||
BW, kg ** | 112.9 (97.9–138.2) | 85.1 (78.2–95.1) | 100 (92.5–109.4) | 129.1 (114.9–150.1) | <0.001 |
BMI, kg/m2 ** | 42 (37–47) | 33 (31.6–33.8) | 37.6 (36.3–38.7) | 46.2 (43.2–52.8) | <0.001 |
WC, cm ** | 113 (103.7–129) | 97.5 (93.2–104) | 105.5 (98–111) | 125 (116.2–139) | <0.001 |
FFM, % * | 55.9 ± 8.3 | 55.5 ± 9.7 | 57.3 ± 8.5 | 55.3 ± 7.8 | 0.4 |
FM, % * | 49.7 ± 10.4 | 46.1 ± 10.3 | 48.6 ± 10.7 | 51.1 ± 10.2 | 0.07 |
FMI, kg/m2 ** | 18.2 (14.2–22.7) | 11.9 (10.6–13.3) | 16 (13.7–17.6) | 22.2 (18.8–25.2) | <0.001 |
All Patients n = 175 | Group 1 n = 26 | Group 2 n = 48 | Group 3 n = 101 | p-Value | |
---|---|---|---|---|---|
Glucose, mg/dL ** | 93 (85–103.2) | 87 (80–96) | 91 (82–103) | 95.5 (88–105.7) | <0.05 |
Insulin, µU/mL ** | 16.7 (10.8–30.3) | 11.1 (8.1–21) | 14 (8.9–19.1) | 18.3 (13.1–35.2) | <0.001 |
Tot-C, mg/dL * | 183.2 ± 34 | 179.9 ± 35.5 | 189.6 ± 39.6 | 181.3 ± 30.8 | 0.4 |
LDL-C, mg/dL ** | 114 (89.2–136) | 101 (83–126) | 111.3 (93–128) | 119 (93.2–143) | 0.2 |
HDL-C, mg/dL ** | 50 (40.2–59) | 56.8 (41.9–64) | 54 (45–63) | 46 (39–51) | <0.01 |
TG, mg/dL ** | 118 (88.5–163.5) | 111 (81–155) | 103.5 (78–171.5) | 123 (93.2–161.5) | 0.4 |
TG/HDL ratio ** | 2.4 (1.7–3.5) | 2.1 (1.6–2.6) | 2 (1.3–3.7) | 2.6 (1.9–3.7) | <0.01 |
Uric acid, mg/dL * | 5.5 ± 1.4 | 4.9 ± 0.8 | 5.1 ± 1.7 | 5.9 ± 1.4 | <0.01 |
SBP, mmHg ** | 125 (120–140) | 120 (117.5–130) | 120 (120–133.7) | 130 (120–140) | <0.05 |
DBP, mmHg ** | 80 (80–90) | 80 (78.7–80) | 80 (76.2–80) | 80 (80–90) | <0.001 |
All Patients n = 175 | Group 1 n = 26 | Group 2 n = 48 | Group 3 n = 101 | p-Value | |
---|---|---|---|---|---|
Kcal/day * | 3632.5 (3069.7–4388.7) | 3714 (2959–4202.2) | 3271 (3012.5–3987.7) | 3741 (3190.5–4598.5) | 0.07 |
MPF g/day * | 827.8 (626.5–1050.7) | 914.8 (692.1–1140.3) | 789.5 (497–966.4) | 814.8 (635.5–1067.1) | 0.1 |
% of tot food * | 47.2 (37.2–58.1) | 55.1 (48–62.4) | 49.8 (38.6–60.7) | 43.3 (31.3–55.7) | <0.001 |
PF (PF + PCI) g/day * | 461.5 (358.9–587.1) | 398.1 (297.3–489.6) | 424.8 (326.1–555.7) | 510.5 (390.8–693.6) | <0.001 |
% of tot food * | 25.6 (21.1–32.4) | 24.4 (19.4–29.9) | 26.1 (22.2–33.1) | 25.6 (20.1–32.3) | 0.4 |
UPF g/day * | 394 (255–628.5) | 274.2 (212–397.8) | 278.4 (224–475.4) | 526.2 (329.7–799.4) | <0.001 |
% of tot food * | 23.1 (16–34.7) | 18.2 (14.2–25.6) | 19 (15–30) | 26.2 (19.1–37.8) | <0.01 |
UPF Subgroups | |||||
Energy Drinks g/day * | 0 (0–20) | 0 (0–5) | 0 (0–0) | 0 (0–28.5) | 0.3 |
% of tot UPFs * | 0 (0–2.3) | 0 (0–1.6) | 0 (0–0) | 0 (0–4) | 0.5 |
Soft Drinks g/day * | 48.5 (0–200) | 28.2 (0–47.8) | 47.1 (0–141.4) | 100 (33–330) | <0.01 |
% of tot UPFs * | 21.7 (0–43.9) | 11.7 (0–20.7) | 19.7 (0–35) | 27 (6.8–49) | <0.01 |
Alcohol g/day * | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0.9 |
% of tot UPFs * | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0 (0–0) | 0.3 |
Packaged breads g/day * | 5 (0–15) | 6 (0–16.6) | 5 (0–14.2) | 7.1 (0–21.4) | 0.5 |
% of tot UPFs * | 1.1 (0–3.9) | 2.5 (0–5.6) | 0.4 (0–4.4) | 1.1 (0–3.4) | 0.6 |
Buns g/day * | 10 (0–25.7) | 12.8 (0–30) | 8.5 (0–20.6) | 10 (3.6–25.7) | 0.6 |
% of tot UPFs * | 2.2 (0–6.1) | 4.2 (0–12.2) | 2.8 (0–6.2) | 1.9 (0.6–5.1) | 0.3 |
Sweet/savory snacks g/day * | 9.5 (3–25.7) | 8.5 (0–18.2) | 6.2 (0–16.6) | 12.8 (3–27.8) | <0.05 |
% of tot UPFs * | 2.5 (0.1–4.9) | 2.8 (0–5.1) | 2 (0–4.2) | 2.5 (0.5–5.5) | 0.4 |
Snacks g/day * | 14.2 (5–42.8) | 7.1 (3.7–37.5) | 18.2 (5–28.5) | 14.2 (5–50) | 0.4 |
% of tot UPFs * | 3.4 (0.4–9.1) | 3 (1.1–11.4) | 3.8 (0–9.6) | 3 (0.5–8.1) | 0.8 |
Biscuits g/day * | 17.1 (4.2–38.5) | 17.1 (2.2–26.7) | 15 (4.8–45) | 21.4 (7.2–40) | 0.3 |
% of tot UPFs * | 4.7 (0.9–8.1) | 5.1 (0.7–7.5) | 5.2 (0.9–11.2) | 4.2 (0.9–7.9) | 0.8 |
Ice-cream g/day * | 0 (0–10) | 0 (0–0) | 0 (0–10) | 0 (0–10.2) | <0.05 |
% of tot UPFs * | 0 (0–2) | 0 (0–0) | 0 (0–1.9) | 0 (0–2.3) | <0.05 |
Chocolate g/day * | 7.1 (0–20) | 8.5 (0–17.8) | 8.5 (0–20) | 6.4 (0–20.5) | 0.9 |
% of tot UPFs * | 1.6 (0–3.9) | 3.1 (0–5.6) | 1.9 (0–5.6) | 1.2 (0–3.4) | 0.2 |
Chips and French fries, g/day * | 15 (0–32.1) | 0 (0–21.4) | 0 (0–28) | 21.4 (0–42.8) | <0.01 |
% of tot UPFs * | 2.1 (0–8) | 0 (0–6.8) | 0 (0–8.2) | 2.8 (0–8.5) | 0.1 |
Sausages and würstel g/day * | 20 (10–35) | 14.2 (7.7–22.8) | 14.2 (0–26.7) | 28.5 (14.2–42.8) | <0.01 |
% of tot UPFs * | 4.5 (1.2–8.2) | 4 (1.2–7.1) | 4 (0–8.7) | 4.9 (1.3–8.3) | 0.7 |
Nuggets and sticks g/day * | 14.2 (0–28) | 5 (0–14.4) | 0 (0–14.8) | 14.2 (0–28.5) | <0.001 |
% of tot UPFs * | 2.1 (0–5.7) | 0.7 (0–5.6) | 0 (0–6) | 3.2 (0–5.6) | 0.1 |
Fish sticks g/day * | 10 (0–15) | 5 (0–16.6) | 0 (0–18.7) | 10 (0–17.5) | 0.8 |
% of tot UPFs * | 1.4 (0–4.5) | 1.5 (0–6.8) | 1.4 (0–5.7) | 1.4 (0–3.9) | 0.5 |
PREDIMED SCORE * | 5 (5–6) | 6 (5–6.5) | 6 (5–6) | 5 (4–6) | <0.01 |
Percentage of UPF 1 | Tertile 1 n = 57 <18.3 | Tertile 2 n = 59 18.3 ≤ % < 29.1 | Tertile 3 n = 59 ≥29.1 | p-Value |
---|---|---|---|---|
Age, Years * | 46.1 ± 12.01 | 43.5 ± 11.2 | 39.8 ± 13.7 | <0.05 |
Male, n (%) | 24 (42.1%) | 17 (28.8%) | 22 (37.3%) | 0.31 |
Marital status, n (%) | 0.38 | |||
Unmarried/Single | 16 (28.1%) | 20 (33.9%) | 24 (40.7%) | |
Married/partner | 35 (61.4%) | 35 (59.3%) | 27 (45.7%) | |
Divorced | 6 (10.5%) | 4 (6.8%) | 8 (13.6%) | |
Education level, n (%) | 0.06 | |||
Secondary school or below | 17 (29.8%) | 16 (27.1%) | 12 (20.3%) | |
High school | 29 (50.9%) | 37 (62.7%) | 44 (74.6%) | |
University | 11 (19.3%) | 6 (10.2%) | 3 (5.1%) | |
Occupation, n (%) | 0.81 | |||
Unemployed | 30 (52.6%) | 31 (52.5%) | 28 (47.5%) | |
Employed | 27 (47.4%) | 28 (47.5%) | 31 (52.5%) | |
Place of residence, n (%) | 0.051 | |||
Metropolis | 33 (57.9%) | 39 (66.1%) | 26 (44.1%) | |
Small and medium-sized cities | 24 (42.1%) | 20 (33.9%) | 33 (55.9%) | |
Physical activity level, n (%) | 0.41 | |||
Sedentary | 53 (92.9%) | 55 (93.2%) | 58 (98.3%) | |
Medium | 3 (5.3%) | 4 (6.8%) | 1 (1.7%) | |
Heavy | 1 (1.8%) | |||
WHtR ** | 0.6 (0.6–0.7) | 0.7 (0.6–0.7) | 0.7 (0.6–0.8) | <0.05 |
CMI ** | 0.7 (0.4–0.8) | 1 (0.5–1.1) | 1.2 (0.6–1.3) | <0.001 |
VAI ** | 1.4 (1–1.9) | 1.9 (1.3–2.4) | 2 (1.4–2–6) | <0.01 |
LAP ** | 80.4 (40.7–90.6) | 96.8 (51.6–102.7) | 113.6 (66.3–125.4) | <0.001 |
WTI ** | 161.5 (97.9–180.4) | 196.7 (113.8–212.9) | 222.7 (145.1–258.7) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Lorenzo, M.; Aurino, L.; Cataldi, M.; Cacciapuoti, N.; Di Lauro, M.; Lonardo, M.S.; Gautiero, C.; Guida, B. A Close Relationship Between Ultra-Processed Foods and Adiposity in Adults in Southern Italy. Nutrients 2024, 16, 3923. https://doi.org/10.3390/nu16223923
Di Lorenzo M, Aurino L, Cataldi M, Cacciapuoti N, Di Lauro M, Lonardo MS, Gautiero C, Guida B. A Close Relationship Between Ultra-Processed Foods and Adiposity in Adults in Southern Italy. Nutrients. 2024; 16(22):3923. https://doi.org/10.3390/nu16223923
Chicago/Turabian StyleDi Lorenzo, Mariana, Laura Aurino, Mauro Cataldi, Nunzia Cacciapuoti, Mariastella Di Lauro, Maria Serena Lonardo, Claudia Gautiero, and Bruna Guida. 2024. "A Close Relationship Between Ultra-Processed Foods and Adiposity in Adults in Southern Italy" Nutrients 16, no. 22: 3923. https://doi.org/10.3390/nu16223923
APA StyleDi Lorenzo, M., Aurino, L., Cataldi, M., Cacciapuoti, N., Di Lauro, M., Lonardo, M. S., Gautiero, C., & Guida, B. (2024). A Close Relationship Between Ultra-Processed Foods and Adiposity in Adults in Southern Italy. Nutrients, 16(22), 3923. https://doi.org/10.3390/nu16223923