Association of Dietary Patterns, C-Reactive Protein, and Risk of Obesity Among Children Aged 9–17 Years in Guangzhou, China: A Cross-Sectional Mediation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Survey Content
- (1)
- Questionnaires: Basic information included gender, age, region, and parental educational level. The survey on lifestyle factors was derived from the questionnaire of the “Monitoring and Intervention Work Plan for Common Diseases and Health-Influencing Factors of Chinese Students”, which was widely used [21]. The indicators and definitions in the survey form are as follows: (1) Tried smoking refers to whether an individual has ever smoked cigarettes, including taking just one or two puffs. (2) Alcohol consumption refers to whether an individual has ever consumed a full cup of alcohol, where the volume of a full cup is equivalent to one can of beer, one small glass of liquor, or one glass of wine or yellow wine. (3) Moderate to vigorous physical activity is measured by the question, “On how many days per week do you engage in at least 60 min of moderate to vigorous physical activity?” (Moderate to vigorous physical activity is defined as exercise that causes shortness of breath or an increased heart rate, such as running, playing basketball, soccer, swimming, aerobics, or lifting heavy objects). Based on the “Dietary Guidelines for Chinese School-Aged Children (2022)”, engaging in such activity for less than three days a week is considered below the recommended standard [22]. (4) Screen time is measured by the question, “How many hours per day do you spend on screen time, which includes the use of mobile phones, computers, tablets, TVs, and similar electronic devices?” According to the “Dietary Guidelines for Chinese School-Aged Children (2022)”, a daily screen time of two hours or more is considered excessive [22]. (5) Sleep time is measured by the questions, “What time do you wake up? What time do you go to bed?” In accordance with the Chinese national standard “Health requirements of daily learning time for secondary and elementary school students (GB/T 17223-2012)”, sleep times of less than 10 h for primary school students, 9 h for junior high school students, and 8 h for senior high school students are considered insufficient [23]. (6) Bedtime is measured by the question, “What time do you go to bed?” Going to bed after 22:30 is considered a late bedtime.A semi-quantitative food frequency questionnaire (FFQ) was used to assess the dietary intake of children over the previous month, including both the frequency and quantity of food consumed. Participants were provided with photos and models of food to assist them in determining portion sizes. The questionnaire was based on the food frequency survey established by the China National Center for Chronic Noncommunicable Disease and Nutrition Surveillance [24] and was amended by a team of experts to reflect the dietary habits of Guangzhou children. The FFQ employed in this study included 66 food items across 20 major categories, based on the Chinese Food Composition List (6th Edition) [25].
- (2)
- Physical Measurements: The height was measured using a metallic column stature meter with a 0.1 cm precision. Weight was measured using an electronic scale with a precision of 0.1 kg. The waist circumference was assessed using a glass fiber tape measure with a 0.1 cm precision. Physical measurements were conducted in compliance with the technical standards for the physical examination of students [26]. The body mass index (BMI) was calculated by dividing the weight (kg) by the square of the height (m). Based on the Chinese Health Industry Standards Screening for Overweight and Obesity among School-Aged Children and Adolescents (WS/T586—2018) [27], age- and gender-specific BMI standards were utilized to determine general obesity, and based on the High Waist Circumference Screening Threshold Among Children and Adolescents Aged 7–18 years (WS/T611—2018) [28], age- and gender-specific waist circumference standards were used to determine central obesity.
- (3)
- Laboratory Testing: Venous blood was collected early in the morning on the day of the survey. The supernatant serum was collected and stored at −80 degrees Celsius. The serum CRP concentrations were measured using an immunoturbidimetric assay in a BS2000M fully automatic biochemical analyzer from Mindray Corporation, Shenzhen, China.
2.3. Dietary Pattern Establishment
2.4. Lifestyle Model Establishment
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Lifestyle Model
3.3. Dietary Patterns
3.4. Analysis of Dietary Patterns, CRP, and Obesity
3.5. Analysis of Dietary Patterns and CRP
3.6. Mediation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lister, N.B.; Baur, L.A.; Felix, J.F.; Hill, A.J.; Marcus, C.; Reinehr, T.; Summerbell, C.; Wabitsch, M. Child and Adolescent Obesity. Nat. Rev. Dis. Primers 2023, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Norris, S.A.; Frongillo, E.A.; Black, M.M.; Dong, Y.; Fall, C.; Lampl, M.; Liese, A.D.; Naguib, M.; Prentice, A.; Rochat, T.; et al. Nutrition in Adolescent Growth and Development. Lancet 2022, 399, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Li, Z.; Yang, L.; Zhao, M.; Xi, B. Effect of abdominal obesity in childhood on abdominal obesity in adulthood. Chin. J. Epidemiol. 2020, 41, 385–388. [Google Scholar] [CrossRef]
- Singer, K.; Lumeng, C.N. The Initiation of Metabolic Inflammation in Childhood Obesity. J. Clin. Investig. 2017, 127, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Aguilar-Salinas, C.A.; et al. Worldwide Trends in Body-Mass Index, Underweight, Overweight, and Obesity from 1975 to 2016: A Pooled Analysis of 2416 Population-Based Measurement Studies in 128·9 Million Children, Adolescents, and Adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- Dong, Y.H.; Chen, L.; Liu, J.Y.; Ma, T.; Zhang, Y.; Chen, M.M.; Zhong, P.L.; Shi, D.; Hu, P.J.; Li, J.; et al. Epidemiology and prediction of overweight and obesity among children and adolescents aged 7–18 years in China from 1985 to 2019. Chin. J. Prev. Med. 2023, 57, 461–469. [Google Scholar] [CrossRef]
- Hargreaves, D.; Mates, E.; Menon, P.; Alderman, H.; Devakumar, D.; Fawzi, W.; Greenfield, G.; Hammoudeh, W.; He, S.; Lahiri, A.; et al. Strategies and Interventions for Healthy Adolescent Growth, Nutrition, and Development. Lancet 2022, 399, 198–210. [Google Scholar] [CrossRef]
- Schulze, M.B.; Martínez-González, M.A.; Fung, T.T.; Lichtenstein, A.H.; Forouhi, N.G. Food Based Dietary Patterns and Chronic Disease Prevention. BMJ 2018, 361, k2396. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, J.; Sun, L.; Gu, W.; Zong, G.; Song, B.; Shen, C.; Zhou, P.; Chen, Y.; Wu, Y.; et al. Isocaloric-Restricted Mediterranean Diet and Chinese Diets High or Low in Plants in Adults with Prediabetes. J. Clin. Endocrinol. Metab. 2022, 107, 2216–2227. [Google Scholar] [CrossRef]
- Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.; Horn, L.V.; Wylie-Rosett, J. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e472–e487. [Google Scholar] [CrossRef]
- Cespedes, E.M.; Hu, F.B. Dietary Patterns: From Nutritional Epidemiologic Analysis to National Guidelines. Am. J. Clin. Nutr. 2015, 101, 899–900. [Google Scholar] [CrossRef]
- Lassale, C.; Fitó, M.; Morales-Suárez-Varela, M.; Moya, A.; Gómez, S.F.; Schröder, H. Mediterranean Diet and Adiposity in Children and Adolescents: A Systematic Review. Obes. Rev. 2022, 23, e13381. [Google Scholar] [CrossRef]
- Ge, L.; Sadeghirad, B.; Ball, G.D.C.; da Costa, B.R.; Hitchcock, C.L.; Svendrovski, A.; Kiflen, R.; Quadri, K.; Kwon, H.Y.; Karamouzian, M.; et al. Comparison of Dietary Macronutrient Patterns of 14 Popular Named Dietary Programmes for Weight and Cardiovascular Risk Factor Reduction in Adults: Systematic Review and Network Meta-Analysis of Randomised Trials. BMJ 2020, 369, m696. [Google Scholar] [CrossRef]
- Pan, X.-F.; Wang, L.; Pan, A. Epidemiology and Determinants of Obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 373–392. [Google Scholar] [CrossRef]
- Ambrosini, G.L. Childhood Dietary Patterns and Later Obesity: A Review of the Evidence. Proc. Nutr. Soc. 2014, 73, 137–146. [Google Scholar] [CrossRef]
- Hariharan, R.; Odjidja, E.N.; Scott, D.; Shivappa, N.; Hébert, J.R.; Hodge, A.; De Courten, B. The Dietary Inflammatory Index, Obesity, Type 2 Diabetes, and Cardiovascular Risk Factors and Diseases. Obes. Rev. 2022, 23, e13349. [Google Scholar] [CrossRef]
- Cox, A.J.; West, N.P.; Cripps, A.W. Obesity, Inflammation, and the Gut Microbiota. Lancet Diabetes Endocrinol. 2015, 3, 207–215. [Google Scholar] [CrossRef]
- Jiang, K.; Zhang, Z.; Fullington, L.A.; Huang, T.T.; Kaliszewski, C.; Wei, J.; Zhao, L.; Huang, S.; Ellithorpe, A.; Wu, S.; et al. Dietary Patterns and Obesity in Chinese Adults: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 4911. [Google Scholar] [CrossRef]
- Zhan, S.Y.; Ye, D.Q.; Tan, H.Z. Epidemiology; Version 8; People’s Health Publishing House: Beijing, China, 2017; ISBN 978-7-117-24557-9. [Google Scholar]
- Wang, X.; He, T.; Xu, S.; Li, H.; Wu, M.; Lin, Z.; Huang, F.; Zhu, Y. Soy Food Intake Associated with Obesity and Hypertension in Children and Adolescents in Guangzhou, Southern China. Nutrients 2022, 14, 425. [Google Scholar] [CrossRef]
- General Office of the National Health Commission. Notice of the General Office of the National Health Commission of the PRC on Issuing the Work Program of Monitoring and Intervention of Common Diseases and Health Influencing Factors among Students in 2019. Available online: http://www.nhc.gov.cn/jkj/s5898bm/201903/1bcbac21e1864377ad24984fac014c7d.shtml (accessed on 30 October 2024).
- Zhang, N.; Zhu, W.L.; Zhang, M.; Ma, G.S. Interpretation on Dietary Guidelines for Chinese School-aged Children (2022). Chin. J. Sch. Health 2022, 43, 805–808. [Google Scholar] [CrossRef]
- GB/T 17223-2012; Health Requirements of Daily Learning Time for Secondary and Elementary School Students. Ministry of Health of the People’s Republic of China Beijing, China Standard Press: Beijing, China, 2013.
- National Heath and Family Planning Commission of the People’s Republic of China. Chronic Disease and Nutrition Monitoring Work Plan for Chinese Residents (Trial). Available online: https://www.chinanutri.cn/tzgg_6537/tzgg_102/201412/t20141231_108847.html (accessed on 4 June 2024).
- Yang, Y.X. Chinese Food Composition List; Version 6; Peking University Medical Press: Beijing, China, 2019. [Google Scholar]
- GB/T 26343-2010; Technical Standard for Physical Examination for Students. Ministry of Health of the People’s Republic of China Beijing, China Standard Press: Beijing, China, 2011.
- WS/T 586-2018; Screening for Overweight and Obesity among School-Age Children and Adolescents. National Heath and Family Planning Commission of the People’s Republic of China Beijing, China Standard Press: Beijing, China, 2018.
- WS/T 611-2018; High Waist Circumference Screening Threshold among Children and Adolescents Aged 7–18 Years. National Health Commission of the People’s Republic of China Beijing, China Standard Press: Beijing, China, 2018.
- Aflaki, K.; Vigod, S.; Ray, J.G. Part I: A Friendly Introduction to Latent Class Analysis. J. Clin. Epidemiol. 2022, 147, 168–170. [Google Scholar] [CrossRef]
- Sinha, P.; Calfee, C.S.; Delucchi, K.L. Practitioner’s Guide to Latent Class Analysis: Methodological Considerations and Common Pitfalls. Crit. Care Med. 2021, 49, e63. [Google Scholar] [CrossRef]
- Wen, Z.L.; Ye, B.J. Analyses of Mediating Effects: The Development of Methods and Models. Adv. Psychol. Sci. 2014, 22, 731–745. [Google Scholar] [CrossRef]
- Dong, Y.; Jan, C.; Ma, Y.; Dong, B.; Zou, Z.; Yang, Y.; Xu, R.; Song, Y.; Ma, J.; Sawyer, S.M.; et al. Economic Development and the Nutritional Status of Chinese School-Aged Children and Adolescents from 1995 to 2014: An Analysis of Five Successive National Surveys. Lancet Diabetes Endocrinol. 2019, 7, 288–299. [Google Scholar] [CrossRef]
- Di Cesare, M.; Sorić, M.; Bovet, P.; Miranda, J.J.; Bhutta, Z.; Stevens, G.A.; Laxmaiah, A.; Kengne, A.-P.; Bentham, J. The Epidemiological Burden of Obesity in Childhood: A Worldwide Epidemic Requiring Urgent Action. BMC Med. 2019, 17, 212. [Google Scholar] [CrossRef]
- Yaguchi-Tanaka, Y.; Tabuchi, T. Skipping Breakfast and Subsequent Overweight/Obesity in Children: A Nationwide Prospective Study of 2.5- to 13-Year-Old Children in Japan. J. Epidemiol. 2021, 31, 417–425. [Google Scholar] [CrossRef]
- Shang, X.; Li, Y.; Xu, H.; Zhang, Q.; Hu, X.; Liu, A.; Du, S.; Li, T.; Guo, H.; Li, Y.; et al. Healthy Breakfast Habits and Changes in Obesity-Related Cardiometabolic Markers in Children: A Longitudinal Analysis. Eur. J. Clin. Nutr. 2020, 74, 1685–1697. [Google Scholar] [CrossRef]
- Adolphus, K.; Lawton, C.L.; Champ, C.L.; Dye, L. The Effects of Breakfast and Breakfast Composition on Cognition in Children and Adolescents: A Systematic Review. Adv. Nutr. 2016, 7, 590S–612S. [Google Scholar] [CrossRef]
- Wang, K.; Niu, Y.; Lu, Z.; Duo, B.; Effah, C.Y.; Guan, L. The Effect of Breakfast on Childhood Obesity: A Systematic Review and Meta-Analysis. Front. Nutr. 2023, 10, 1222536. [Google Scholar] [CrossRef]
- Jakubowicz, D.; Wainstein, J.; Landau, Z.; Raz, I.; Ahren, B.; Chapnik, N.; Ganz, T.; Menaged, M.; Barnea, M.; Bar-Dayan, Y.; et al. Influences of Breakfast on Clock Gene Expression and Postprandial Glycemia in Healthy Individuals and Individuals with Diabetes: A Randomized Clinical Trial. Diabetes Care 2017, 40, 1573–1579. [Google Scholar] [CrossRef]
- Dong, Y.; Lau, P.W.C.; Dong, B.; Zou, Z.; Yang, Y.; Wen, B.; Ma, Y.; Hu, P.; Song, Y.; Ma, J.; et al. Trends in Physical Fitness, Growth, and Nutritional Status of Chinese Children and Adolescents: A Retrospective Analysis of 1·5 Million Students from Six Successive National Surveys between 1985 and 2014. Lancet Child Adolesc. Health 2019, 3, 871–880. [Google Scholar] [CrossRef]
- Shi, J.; Fang, H.; Cheng, X.; Guo, Q.; Ju, L.; Piao, W.; Xu, X.; Yu, D.; Zhao, L.; He, L. Nutrient Patterns and Its Association and Metabolic Syndrome among Chinese Children and Adolescents Aged 7–17. Nutrients 2023, 15, 117. [Google Scholar] [CrossRef]
- Sun, J.; Ruan, Y.; Xu, N.; Wu, P.; Lin, N.; Yuan, K.; An, S.; Kang, P.; Li, S.; Huang, Q.; et al. The Effect of Dietary Carbohydrate and Calorie Restriction on Weight and Metabolic Health in Overweight/Obese Individuals: A Multi-Center Randomized Controlled Trial. BMC Med. 2023, 21, 192. [Google Scholar] [CrossRef]
- Ludwig, D.S.; Aronne, L.J.; Astrup, A.; De Cabo, R.; Cantley, L.C.; Friedman, M.I.; Heymsfield, S.B.; Johnson, J.D.; King, J.C.; Krauss, R.M.; et al. The Carbohydrate-Insulin Model: A Physiological Perspective on the Obesity Pandemic. Am. J. Clin. Nutr. 2021, 114, 1873–1885. [Google Scholar] [CrossRef]
- Appannah, G.; Murray, K.; Trapp, G.; Dymock, M.; Oddy, W.H.; Ambrosini, G.L. Dietary Pattern Trajectories across Adolescence and Early Adulthood and Their Associations with Childhood and Parental Factors. Am. J. Clin. Nutr. 2021, 113, 36–46. [Google Scholar] [CrossRef]
- Schlesinger, S.; Neuenschwander, M.; Schwedhelm, C.; Hoffmann, G.; Bechthold, A.; Boeing, H.; Schwingshackl, L. Food Groups and Risk of Overweight, Obesity, and Weight Gain: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2019, 10, 205–218. [Google Scholar] [CrossRef]
- Pan, L.; Shi, K.; Lv, J.; Pang, Y.; Guo, Y.; Pei, P.; Du, H.; Millwood, I.; Yang, L.; Chen, Y.; et al. Association of Dietary Patterns, Circulating Lipid Profile, and Risk of Obesity. Obesity 2023, 31, 1445–1454. [Google Scholar] [CrossRef]
- Bujtor, M.; Turner, A.I.; Torres, S.J.; Esteban-Gonzalo, L.; Pariante, C.M.; Borsini, A. Associations of Dietary Intake on Biological Markers of Inflammation in Children and Adolescents: A Systematic Review. Nutrients 2021, 13, 356. [Google Scholar] [CrossRef]
- Shiraseb, F.; Hosseininasab, D.; Mirzababaei, A.; Bagheri, R.; Wong, A.; Suzuki, K.; Mirzaei, K. Red, White, and Processed Meat Consumption Related to Inflammatory and Metabolic Biomarkers among Overweight and Obese Women. Front. Nutr. 2022, 9, 1015566. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Verde, L.; Sulu, C.; Katsiki, N.; Hassapidou, M.; Frias-Toral, E.; Cucalón, G.; Pazderska, A.; Yumuk, V.D.; Colao, A.; et al. Mediterranean Diet and Obesity-Related Disorders: What Is the Evidence? Curr. Obes. Rep. 2022, 11, 287–304. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Xu, B. Anti-Inflammatory Effects of Phytochemicals from Fruits, Vegetables, and Food Legumes: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1260–1270. [Google Scholar] [CrossRef]
- Rakha, A.; Umar, N.; Rabail, R.; Butt, M.S.; Kieliszek, M.; Hassoun, A.; Aadil, R.M. Anti-Inflammatory and Anti-Allergic Potential of Dietary Flavonoids: A Review. Biomed. Pharmacother. 2022, 156, 113945. [Google Scholar] [CrossRef]
- Jennings, A.; Kühn, T.; Bondonno, N.P.; Waniek, S.; Bang, C.; Franke, A.; Kassubek, J.; Müller, H.P.; Both, M.; Weber, K.S.; et al. The Gut Microbiome Modulates Associations between Adherence to a Mediterranean-Style Diet, Abdominal Adiposity, and C-Reactive Protein in Population-Level Analysis. Am. J. Clin. Nutr. 2024, 119, 136–144. [Google Scholar] [CrossRef]
- Nani, A.; Murtaza, B.; Sayed Khan, A.; Khan, N.A.; Hichami, A. Antioxidant and Anti-Inflammatory Potential of Polyphenols Contained in Mediterranean Diet in Obesity: Molecular Mechanisms. Molecules 2021, 26, 985. [Google Scholar] [CrossRef]
- Wang, D.; Van der Horst, K.; Jacquier, E.F.; Afeiche, M.C.; Eldridge, A.L. Snacking Patterns in Children: A Comparison between Australia, China, Mexico, and the US. Nutrients 2018, 10, 198. [Google Scholar] [CrossRef]
- Gregor, M.F.; Hotamisligil, G.S. Inflammatory Mechanisms in Obesity. Annu. Rev. Immunol. 2011, 29, 415–445. [Google Scholar] [CrossRef]
- González-Gil, E.M.; Tognon, G.; Lissner, L.; Intemann, T.; Pala, V.; Galli, C.; Wolters, M.; Siani, A.; Veidebaum, T.; Michels, N.; et al. Prospective Associations between Dietary Patterns and High Sensitivity C-Reactive Protein in European Children: The IDEFICS Study. Eur. J. Nutr. 2018, 57, 1397–1407. [Google Scholar] [CrossRef]
- Navarro, P.; Shivappa, N.; Hébert, J.R.; Mehegan, J.; Murrin, C.M.; Kelleher, C.C.; Phillips, C.M. Predictors of the Dietary Inflammatory Index in Children and Associations with Childhood Weight Status: A Longitudinal Analysis in the Lifeways Cross-Generation Cohort Study. Clin. Nutr. 2020, 39, 2169–2179. [Google Scholar] [CrossRef]
- Neri, D.; Steele, E.M.; Khandpur, N.; Cediel, G.; Zapata, M.E.; Rauber, F.; Marrón-Ponce, J.A.; Machado, P.; da Costa Louzada, M.L.; Andrade, G.C.; et al. Ultraprocessed Food Consumption and Dietary Nutrient Profiles Associated with Obesity: A Multicountry Study of Children and Adolescents. Obes. Rev. 2022, 23, e13387. [Google Scholar] [CrossRef]
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021, 10, 3164. [Google Scholar] [CrossRef]
- Ma, X.; Nan, F.; Liang, H.; Shu, P.; Fan, X.; Song, X.; Hou, Y.; Zhang, D. Excessive Intake of Sugar: An Accomplice of Inflammation. Front. Immunol. 2022, 13, 988481. [Google Scholar] [CrossRef]
- Custers; Emma, E.M.; Kiliaan; Amanda, J. Dietary Lipids from Body to Brain. Prog. Lipid Res. 2022, 85, 101144. [Google Scholar] [CrossRef]
- Yang, M.; Qiu, S.; He, Y.; Li, L.; Wu, T.; Ding, N.; Li, F.; Zhao, A.Z.; Yang, G. Genetic Ablation of C-Reactive Protein Gene Confers Resistance to Obesity and Insulin Resistance in Rats. Diabetologia 2021, 64, 1169–1183. [Google Scholar] [CrossRef]
- Xu, X.; Piao, W.; Fang, H.; Guo, Q.; Ju, L.; Cai, S.; Li, S.; Cheng, X.; Zhao, L.; Yu, D.; et al. Beverage Consumption of Children and Adolescents Aged 6−17 Years—China, 2016−2017. China CDC Wkly. 2021, 3, 279–284. [Google Scholar] [CrossRef]
- Guo, J.; Luo, S.; Su, Z.; Fu, J.; Ma, J.; Zhong, X.; Zeng, C.; Huang, J.; Zhang, W.; Zhang, Z.; et al. Consumption Patterns of Sugar-Sweetened Beverages and Association with Undernutrition among Children Aged 9–17 Years in Guangzhou, China: A Cross-Sectional Study. Nutrients 2024, 16, 650. [Google Scholar] [CrossRef]
- Cooke, C.B.; Greatwood, H.C.; McCullough, D.; Kirwan, R.; Duckworth, L.C.; Sutton, L.; Gately, P.J. The Effect of Discretionary Snack Consumption on Overall Energy Intake, Weight Status, and Diet Quality: A Systematic Review. Obes. Rev. 2024, 25, e13693. [Google Scholar] [CrossRef]
General Obesity | Central Obesity | |||||||
---|---|---|---|---|---|---|---|---|
Characteristic | Total | No | Yes | p | No | Yes | p | |
Gender, n (%) | 0.046 | 0.016 | ||||||
girl | 1116 | 1052 (94.3) | 64 (5.7) | 1020 (91.4) | 96 (8.6) | |||
boy | 1297 | 1196 (92.2) | 101 (7.8) | 1147 (88.4) | 150 (11.6) | |||
Age, medians (P25, P75) (year) | 13.3 (11.3, 14.4) | 13.3 (11.4, 14.4) | 13.2 (10.9, 14.2) | 0.212 | 13.2 (11.3, 14.4) | 13.4 (11.2, 14.6) | 0.362 | |
Age group, n (%) (year) | 0.138 | 0.521 | ||||||
9–10 | 483 | 441 (91.3) | 42 (8.7) | 431 (89.2) | 52 (10.8) | |||
11–13 | 1122 | 1050 (93.6) | 72 (6.4) | 1020 (90.9) | 102 (9.1) | |||
14–17 | 808 | 757 (93.7) | 51 (6.3) | 716 (88.6) | 92 (11.4) | |||
School stage, n (%) | 0.678 | 0.549 | ||||||
primary school | 994 | 921 (92.7) | 73 (7.3) | 897 (90.2) | 97 (9.8) | |||
junior high school | 1044 | 975 (93.4) | 69 (6.6) | 939 (89.9) | 105 (10.1) | |||
senior high school | 375 | 352 (93.9) | 23 (6.1) | 331 (88.3) | 44 (11.7) | |||
Lifestyle, n (%) | 0.986 | 0.967 | ||||||
Health group | 1196 | 1115 (93.2) | 81 (6.8) | 1076 (90.0) | 120 (10.0) | |||
Poor sleep group | 1053 | 980 (93.1) | 73 (6.9) | 944 (89.6) | 109 (10.4) | |||
Risk group | 164 | 153 (93.3) | 11 (6.7) | 147 (89.6) | 17 (10.4) | |||
Breakfast, n (%) (time/week) | <0.001 | <0.001 | ||||||
≤3 | 180 | 154 (85.6) | 26 (14.4) | 147 (81.7) | 33 (18.3) | |||
>3 | 2233 | 2094 (93.8) | 139 (6.2) | 2020 (90.5) | 213 (9.5) | |||
Education of father, n (%) | 0.269 | 0.219 | ||||||
Junior high school or below | 1132 | 1060 (93.6) | 72 (6.4) | 1021 (90.2) | 111 (9.8) | |||
High school | 706 | 658 (93.2) | 48 (6.8) | 640 (90.7) | 66 (9.3) | |||
College degree or above | 575 | 530 (92.2) | 45 (7.8) | 506 (88.0) | 69 (12.0) | |||
Education of mother, n (%) | 0.047 | 0.086 | ||||||
Junior high school or below | 1239 | 1165 (94.0) | 74 (6.0) | 1125 (90.8) | 114 (9.2) | |||
High school | 584 | 543 (93.0) | 41 (7.0) | 521 (89.2) | 63 (10.8) | |||
College degree or above | 590 | 540 (91.5) | 50 (8.5) | 521 (88.3) | 69 (11.7) | |||
Nature of school, n (%) | 0.001 | 0.021 | ||||||
Public school | 2052 | 1926 (93.9) | 126 (6.1) | 1855 (90.4) | 197 (9.6) | |||
Private school | 361 | 322 (89.2) | 39 (10.8) | 312 (86.4) | 49 (13.6) | |||
Body mass index, medians (P25, P75) (kg/m2) | 18.2 (16.4, 20.5) | 18.0 (16.3, 19.9) | 27.1 (24.9, 29.1) | <0.001 | 17.9 (16.2, 19.8) | 25.0 (23.2, 28.2) | <0.001 | |
Waist circumference, medians (P25, P75) (cm) | 62.5 (58.0, 68.0) | 62.0 (57.5, 66.8) | 81.8 (75.8, 89.6) | <0.001 | 61.5 (57.4, 66.0) | 81.3 (76.5, 88.0) | <0.001 |
Dietary Pattern/LnCRP | General Obesity | Central Obesity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 1 | Model 2 | |||||||||
OR | 95%CI | p | OR | 95%CI | p | OR | 95%CI | p | OR | 95%CI | p | |
Fruit and vegetable pattern | 1.103 | 0.956, 1.272 | 0.180 | 1.096 | 0.947, 1.269 | 0.220 | 0.972 | 0.848, 1.114 | 0.684 | 0.961 | 0.837, 1.103 | 0.574 |
Snack pattern | 0.916 | 0.773, 1.085 | 0.309 | 0.879 | 0.738, 1.046 | 0.145 | 0.907 | 0.785, 1.047 | 0.181 | 0.884 | 0.764, 1.024 | 0.100 |
Rice and meat pattern | 1.138 | 0.976, 1.327 | 0.098 | 1.166 | 1.000, 1.359 | 0.049 | 1.197 | 1.056, 1.357 | 0.005 | 1.215 | 1.071, 1.377 | 0.002 |
LnCRP | 2.167 | 1.683, 2.789 | <0.001 | 2.301 | 1.776, 2.982 | <0.001 | 2.104 | 1.696, 2.611 | <0.001 | 2.165 | 1.738, 2.697 | <0.001 |
Dietary Pattern | Model 1 | Model 2 | ||||
---|---|---|---|---|---|---|
β | 95%CI | p | β | 95%CI | p | |
Fruit and vegetable pattern | −0.064 | −0.086, −0.041 | <0.001 | −0.059 | −0.081, −0.036 | <0.001 |
Snack pattern | 0.051 | 0.028, 0.073 | <0.001 | 0.043 | 0.020, 0.065 | <0.001 |
Rice and meat pattern | 0.031 | 0.007, 0.056 | 0.011 | 0.024 | 0.000, 0.048 | 0.055 |
Dietary Pattern | Total Effect | Indirect Effect | Direct Effect | Conclusion | ||||||
---|---|---|---|---|---|---|---|---|---|---|
β | 95%CI | p | β | 95%CI | p | β | 95%CI | p | ||
Fruit and vegetable pattern | 0.00603 | −0.00418, 0.02 | 0.25 | −0.00306 | −0.00462, 0.00 | <0.001 | 0.00909 | −0.00129, 0.02 | 0.09 | Suppression |
Snack pattern | −0.00720 | −0.01821, 0.00 | 0.149 | 0.00270 | 0.00131, 0.00 | <0.001 | −0.00991 | −0.02075, 0.00 | 0.043 | Suppression |
Rice and meat pattern | 0.0109 | 0.0000627, 0.02 | 0.037 | 0.001180 | −0.0000279, 0.00 | 0.054 | - | - | - | - |
Dietary Pattern | Total Effect | Indirect Effect | Direct Effect | Conclusion | ||||||
---|---|---|---|---|---|---|---|---|---|---|
β | 95%CI | p | β | 95%CI | p | β | 95%CI | p | ||
Fruit and vegetable pattern | −0.00354 | −0.016925, 0.01 | 0.58 | −0.003797 | −0.005659, 0.00 | <0.001 | 0.000256 | −0.01325, 0.01 | 0.98 | Suppression |
Snack pattern | −0.00937 | −0.02410, 0.00 | 0.138 | 0.00363 | 0.00185, 0.01 | <0.001 | −0.01300 | −0.02744, 0.00 | 0.034 | Suppression |
Rice and meat pattern | 0.0196 | 0.00694, 0.03 | 0.002 | 0.00157 | −0.000069, 0.00 | 0.061 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Z.; Zeng, C.; Huang, J.; Luo, S.; Guo, J.; Fu, J.; Zhang, W.; Zhang, Z.; Zhang, B.; Li, Y. Association of Dietary Patterns, C-Reactive Protein, and Risk of Obesity Among Children Aged 9–17 Years in Guangzhou, China: A Cross-Sectional Mediation Study. Nutrients 2024, 16, 3835. https://doi.org/10.3390/nu16223835
Su Z, Zeng C, Huang J, Luo S, Guo J, Fu J, Zhang W, Zhang Z, Zhang B, Li Y. Association of Dietary Patterns, C-Reactive Protein, and Risk of Obesity Among Children Aged 9–17 Years in Guangzhou, China: A Cross-Sectional Mediation Study. Nutrients. 2024; 16(22):3835. https://doi.org/10.3390/nu16223835
Chicago/Turabian StyleSu, Zheng, Chunzi Zeng, Jie Huang, Shiyun Luo, Jiaying Guo, Jinhan Fu, Weiwei Zhang, Zhoubin Zhang, Bo Zhang, and Yan Li. 2024. "Association of Dietary Patterns, C-Reactive Protein, and Risk of Obesity Among Children Aged 9–17 Years in Guangzhou, China: A Cross-Sectional Mediation Study" Nutrients 16, no. 22: 3835. https://doi.org/10.3390/nu16223835
APA StyleSu, Z., Zeng, C., Huang, J., Luo, S., Guo, J., Fu, J., Zhang, W., Zhang, Z., Zhang, B., & Li, Y. (2024). Association of Dietary Patterns, C-Reactive Protein, and Risk of Obesity Among Children Aged 9–17 Years in Guangzhou, China: A Cross-Sectional Mediation Study. Nutrients, 16(22), 3835. https://doi.org/10.3390/nu16223835