Mitigating Dietary Bisphenol Exposure Through the Gut Microbiota: The Role of Next-Generation Probiotics in Bacterial Detoxification
Abstract
:1. Introduction
2. The Bisphenols Used in the Food Industry
2.1. Bisphenol A
2.2. BPA Analogs
2.2.1. Bisphenol S (BPS)
2.2.2. Bisphenol F (BPF)
2.2.3. Bisphenol B (BPB)
2.2.4. Bisphenol AF (BPAF)
2.2.5. Tetramethyl Bisphenol F (TMBPF)
3. The Impact of Bisphenols on Gut Microbiota and Their Obesity Risk
4. The Host’s Gut Microbial Metabolism of Bisphenols
4.1. Host Metabolism
4.2. Gut Microbial Metabolism
4.3. Bioadsorption
4.4. Biodegradation
5. Next-Generation Probiotics (NGPs) as a New Tool
5.1. Faecalibacterium prausnitzii
5.2. Akkermansia muciniphila
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kowalczyk, M.; Piwowarski, J.P.; Wardaszka, A.; Średnicka, P.; Wójcicki, M.; Juszczuk-Kubiak, E. Application of In vitro Models for Studying the Mechanisms Underlying the Obesogenic Action of Endocrine-Disrupting Chemicals (EDCs) as Food Contaminants—A Review. Int. J. Mol. Sci. 2023, 24, 1083. [Google Scholar] [CrossRef] [PubMed]
- Onyeaka, H.; Ghosh, S.; Obileke, K.; Miri, T.; Odeyemi, O.; Nwaiwu, O.; Tamasiga, P. Preventing chemical contaminants in food: Challenges and prospects for safe and sustainable food production. Food Control 2023, 155, 110040. [Google Scholar] [CrossRef]
- Street, M.E.; Audouze, K.; Legler, J.; Sone, H.; Palanza, P. Endocrine Disrupting Chemicals: Current Understanding, New Testing Strategies and Future Research Needs. Int. J. Mol. Sci. 2021, 22, 933. [Google Scholar] [CrossRef] [PubMed]
- van den Brand, A.D.; Hessel, E.V.S.; Rijk, R.; van de Ven, B.; Leijten, N.M.; Rorije, E.; den Braver-Sewradj, S.P. A Prioritization Strategy for Functional Alternatives to Bisphenol A in Food Contact Materials. Crit. Rev. Toxicol. 2024, 54, 291–314. [Google Scholar] [CrossRef]
- Muzeza, C.; Ngole-Jeme, V.; Msagati, T.A.M. The Mechanisms of Plastic Food-Packaging Monomers’ Migration into Food Matrix and the Implications on Human Health. Foods 2023, 12, 3364. [Google Scholar] [CrossRef]
- Giamaki, D.; Tsiotsiou, M.; Oglou, S.C.; Touraki, M. Interactions of Bisphenol A with Artemia franciscana and the Ameliorative Effect of Probiotics. Environ. Toxicol. Pharmacol. 2023, 98, 104064. [Google Scholar] [CrossRef]
- Noman, E.A.; Al-Gheethi, A.A.S.; Talip, B.A.; Radin Mohamed, R.M.S.; Nagao, H.; Mohd Kassim, A.H. Xenobiotic Organic Compounds in Greywater and Environmental Health Impacts. In Management of Greywater in Developing Countries: Alternative Practices, Treatment and Potential for Reuse and Recycling; Springer International Publishing: Cham, Switzerland, 2019; pp. 89–108. [Google Scholar] [CrossRef]
- Dalamaga, M.; Kounatidis, D.; Tsilingiris, D.; Vallianou, N.G.; Karampela, I.; Psallida, S.; Papavassiliou, A.G. The Role of Endocrine Disruptors Bisphenols and Phthalates in Obesity: Current Evidence, Perspectives and Controversies. Int. J. Mol. Sci. 2024, 25, 675. [Google Scholar] [CrossRef]
- Byndloss, M.X.; Olsan, E.E.; Rivera-Chávez, F.; Tiffany, C.R.; Cevallos, S.A.; Lokken, K.L.; Torres, T.P.; Byndloss, A.J.; Faber, F.; Gao, Y.; et al. Microbiota-Activated PPAR-γ Signaling Inhibits Dysbiotic Enterobacteriaceae Expansion. Science 2017, 357, 570–575. [Google Scholar] [CrossRef]
- Cani, P.D. Gut Microbiota and Obesity: Lessons from the Microbiome. Brief Funct. Genomics 2013, 12, 381–387. [Google Scholar] [CrossRef]
- Hugo, E.R.; Brandebourg, T.D.; Woo, J.G.; Loftus, J.; Alexander, J.W.; Ben-Jonathan, N. Bisphenol A at Environmentally Relevant Doses Inhibits Adiponectin Release from Human Adipose Tissue Explants and Adipocytes. Environ. Health Perspect. 2008, 116, 1642–1647. [Google Scholar] [CrossRef]
- Knudsen, N.; Laurberg, P.; Rasmussen, L.B.; Bülow, I.; Perrild, H.; Ovesen, L.; Jørgensen, T. Small Differences in Thyroid Function May Be Important for Body Mass Index and the Occurrence of Obesity in the Population. J. Clin. Endocrinol. Metab. 2005, 90, 4019–4024. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.X.; Chen, Y.W.; Shih, M.K.; Tain, Y.L.; Yeh, Y.T.; Chiu, M.H.; Chang, S.K.C.; Hou, C.Y. Resveratrol Butyrate Esters Inhibit BPA-Induced Liver Damage in Male Offspring Rats by Modulating Antioxidant Capacity and Gut Microbiota. Int. J. Mol. Sci. 2021, 22, 5273. [Google Scholar] [CrossRef] [PubMed]
- Katsi, V.; Didagelos, M.; Skevofilax, S.; Armenis, I.; Kartalis, A.; Vlachopoulos, C.; Karvounis, H.; Tousoulis, D. GUT Microbiome-GUT Dysbiosis-Arterial Hypertension: New Horizons. Curr. Hypertens. Rev. 2019, 15, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Corrales, J.; Kristofco, L.A.; Steele, W.B.; Yates, B.S.; Breed, C.S.; Williams, E.S.; Brooks, B.W. Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose Response 2015, 13, 1559325815598308. [Google Scholar] [CrossRef]
- Pérez-Bermejo, M.; Mas-Pérez, I.; Murillo-Llorente, M.T. The Role of Bisphenol A in Diabetes and Obesity. Biomedicines 2021, 9, 666. [Google Scholar] [CrossRef]
- Grün, F.; Blumberg, B. Perturbed Nuclear Receptor Signaling by Environmental Obesogens as Emerging Factors in the Obesity Crisis. Rev. Endocr. Metab. Disord. 2007, 8, 161–171. [Google Scholar] [CrossRef]
- Peng, J.; Cao, S.; Hu, Z.; Zhu, J.; Zhu, Y.; Sheng, X.; Cai, Z.; Bai, R.; Xiong, X.; Sheng, J. Heterogeneity Effects of Bisphenol A and Its Substitute, Fluorene-9-Bisphenol, on Intestinal Homeostasis. Environ. Int. 2024, 191, 108948. [Google Scholar] [CrossRef]
- Ashonibare, V.J.; Akorede, B.A.; Ashonibare, P.J.; Akhigbe, T.M.; Akhigbe, R.E. Gut Microbiota-Gonadal Axis: The Impact of Gut Microbiota on Reproductive Functions. Front. Immunol. 2024, 15, 1346035. [Google Scholar] [CrossRef]
- Średnicka, P.; Juszczuk-Kubiak, E.; Wójcicki, M.; Akimowicz, M.; Roszko, M.Ł. Probiotics as a Biological Detoxification Tool of Food Chemical Contamination: A Review. Food Chem. Toxicol. 2021, 153, 112306. [Google Scholar] [CrossRef]
- Giommi, C.; Lombó, M.; Habibi, H.R.; Rossi, G.; Basili, D.; Mangiaterra, S.; Ladisa, C.; Chemello, G.; Carnevali, O.; Maradonna, F. The Probiotic SLAB51 as Agent to Counteract BPA Toxicity on Zebrafish Gut Microbiota-Liver-Brain Axis. Sci. Total Environ. 2024, 912, 169303. [Google Scholar] [CrossRef]
- López-Moreno, A.; Langella, P.; Martín, R.; Aguilera, M. Microbiota Analysis for Risk Assessment of Xenobiotic Exposure and the Impact on Dysbiosis: Identifying Potential Next-Generation Probiotics. EFSA J. 2023, 21 (Suppl. S1), e211010. [Google Scholar] [CrossRef] [PubMed]
- Jan, T.; Negi, R.; Sharma, B.; Kumar, S.; Singh, S.; Rai, A.K.; Shreaz, S.; Rustagi, S.; Chaudhary, N.; Kaur, T.; et al. Next Generation Probiotics for Human Health: An Emerging Perspective. Heliyon 2024, 10, e35980. [Google Scholar] [CrossRef] [PubMed]
- Al-Fakhrany, O.M.; Elekhnawy, E. Next-Generation Probiotics: The Upcoming Biotherapeutics. Mol. Biol. Rep. 2024, 51, 505. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.L.; Shu, C.C.; Lai, W.F.; Tzeng, C.M.; Lai, H.C.; Lu, C.C. Investiture of Next Generation Probiotics on Amelioration of Diseases—Strains Do Matter. Med. Microecol. 2019, 1, 100002. [Google Scholar] [CrossRef]
- Krivohlavek, A.; Mikulec, N.; Budeč, M.; Barušić, L.; Bošnir, J.; Šikić, S.; Jakasa, I.; Begović, T.; Janda, R.; Vitale, K. Migration of BPA from Food Packaging and Household Products on the Croatian Market. Int. J. Environ. Res. Public Health 2023, 20, 2877. [Google Scholar] [CrossRef]
- Melzer, D.; Rice, N.E.; Lewis, C.; Henley, W.E.; Galloway, T.S. Association of Urinary Bisphenol A Concentration with Heart Disease: Evidence from NHANES 2003/06. PLoS ONE 2010, 5, e8673. [Google Scholar] [CrossRef]
- Reina-Pérez, I.; Olivas-Martínez, A.; Mustieles, V.; Ruiz-Ojeda, F.J.; Molina-Molina, J.M.; Olea, N.; Fernández, M.F. Bisphenol F and Bisphenol S Promote Lipid Accumulation and Adipogenesis in Human Adipose-Derived Stem Cells. Food Chem. Toxicol. 2021, 152, 112216. [Google Scholar] [CrossRef]
- Cao, X.L.; Corriveau, J.; Popovic, S. Sources of Low Concentrations of Bisphenol A in Canned Beverage Products. J. Food Prot. 2010, 73, 1548–1551. [Google Scholar] [CrossRef]
- Farrugia, F.; Aquilina, A.; Vassallo, J.; Pace, N.P. Bisphenol A and Type 2 Diabetes Mellitus: A Review of Epidemiologic, Functional, and Early Life Factors. Int. J. Environ. Res. Public Health 2021, 18, 716. [Google Scholar] [CrossRef]
- Vandenberg, L.N.; Hauser, R.; Marcus, M.; Olea, N.; Welshons, W.V. Human Exposure to Bisphenol A (BPA). Reprod. Toxicol. 2007, 24, 139–177. [Google Scholar] [CrossRef]
- Calafat, A.M.; Kuklenyik, Z.; Reidy, J.A.; Caudill, S.P.; Ekong, J.; Needham, L.L. Urinary Concentrations of Bisphenol A and 4-Nonylphenol in a Human Reference Population. Environ. Health Perspect. 2005, 113, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Seo, M.Y.; Choi, K.; Chang, Y.S.; Kim, S.H.; Park, M.J. Urinary Bisphenol A Concentrations and the Risk of Obesity in Korean Adults. Sci. Rep. 2021, 11, 1603. [Google Scholar] [CrossRef] [PubMed]
- Lang, I.A.; Galloway, T.S.; Scarlett, A.; Henley, W.E.; Depledge, M.; Wallace, R.B.; Melzer, D. Association of Urinary Bisphenol A Concentration with Medical Disorders and Laboratory Abnormalities in Adults. JAMA 2008, 300, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Goodson, A.; Robin, H.; Summerfield, W.; Cooper, I. Migration of Bisphenol A from Can Coatings—Effects of Damage, Storage Conditions and Heating. Food Addit. Contam. 2004, 21, 1015–1026. [Google Scholar] [CrossRef]
- Kelishadi, R.; Poursafa, P.; Jamshidi, F. Role of Environmental Chemicals in Obesity: A Systematic Review on the Current Evidence. J. Environ. Public Health 2013, 2013, 896789. [Google Scholar] [CrossRef]
- Lethe, M.C.L.; Paris, V.; Wang, X.; Chan, C.T. Similarities in Structure and Function of UDP-Glycosyltransferase Homologs from Human and Plants. Int. J. Mol. Sci. 2024, 25, 2782. [Google Scholar] [CrossRef]
- Urbanetz, L.A.M.L.; Soares Junior, J.M.; Maciel, G.A.R.; Simões, R.D.S.; Baracat, M.C.P.; Baracat, E.C. Does Bisphenol A (BPA) Participate in the Pathogenesis of Polycystic Ovary Syndrome (PCOS)? Clinics 2023, 78, 100310. [Google Scholar] [CrossRef]
- Deshpande Kaistha, S.; Deshpande, N. Traditional Probiotics, Next-Generation Probiotics and Engineered Live Biotherapeutic Products in Chronic Wound Healing. In Wound Healing Research: Current Trends and Future Directions; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 247–284. [Google Scholar] [CrossRef]
- den Braver-Sewradj, S.P.; van Spronsen, R.; Hessel, E.V.S. Substitution of Bisphenol A: A Review of the Carcinogenicity, Reproductive Toxicity, and Endocrine Disruption Potential of Alternative Substances. Crit. Rev. Toxicol. 2020, 50, 128–147. [Google Scholar] [CrossRef]
- Cimmino, I.; Oriente, F.; D’Esposito, V.; Liguoro, D.; Liguoro, P.; Ambrosio, M.R.; Cabaro, S.; D’Andrea, F.; Beguinot, F.; Formisano, P.; et al. Low-Dose Bisphenol-A Regulates Inflammatory Cytokines through GPR30 in Mammary Adipose Cells. J. Mol. Endocrinol. 2019, 63, 273–283. [Google Scholar] [CrossRef]
- Shahnazaryan, U.; Wójcik, M.; Bednarczuk, T.; Kuryłowicz, A. Role of Obesogens in the Pathogenesis of Obesity. Medicina 2019, 55, 515. [Google Scholar] [CrossRef]
- Cohen, I.C.; Cohenour, E.R.; Harnett, K.G.; Schuh, S.M. BPA, BPAF and TMBPF Alter Adipogenesis and Fat Accumulation in Human Mesenchymal Stem Cells, with Implications for Obesity. Int. J. Mol. Sci. 2021, 22, 5363. [Google Scholar] [CrossRef] [PubMed]
- Sargis, R.M.; Johnson, D.N.; Choudhury, R.A.; Brady, M.J. Environmental Endocrine Disruptors Promote Adipogenesis in the 3T3-L1 Cell Line through Glucocorticoid Receptor Activation. Obesity 2010, 18, 1283–1288. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yin, K.; Chen, L. Bacteria-Mediated Bisphenol A Degradation. Appl. Microbiol. Biotechnol. 2013, 97, 5681–5689. [Google Scholar] [CrossRef] [PubMed]
- Pouokam, G.B.; Ajaezi, G.C.; Mantovani, A.; Orisakwe, O.E.; Frazzoli, C. Use of Bisphenol A-Containing Baby Bottles in Cameroon and Nigeria and Possible Risk Management and Mitigation Measures: Community as Milestone for Prevention. Sci. Total Environ. 2014, 481, 296–302. [Google Scholar] [CrossRef]
- Jin, H.; Xie, J.; Mao, L.; Zhao, M.; Bai, X.; Wen, J.; Shen, T.; Wu, P. Bisphenol Analogue Concentrations in Human Breast Milk and Their Associations with Postnatal Infant Growth. Environ. Pollut. 2020, 259, 113779. [Google Scholar] [CrossRef]
- Morales, M.; de la Fuente, M.; Martín-Folgar, R. BPA and Its Analogues (BPS and BPF) Modify the Expression of Genes Involved in the Endocrine Pathway and Apoptosis and a Multi-Drug Resistance Gene of the Aquatic Midge Chironomus riparius (Diptera). Environ. Pollut. 2020, 265, 114806. [Google Scholar] [CrossRef]
- Qiu, W.; Liu, S.; Chen, H.; Luo, S.; Xiong, Y.; Wang, X.; Xu, B.; Zheng, C.; Wang, K.J. The Comparative Toxicities of BPA, BPB, BPS, BPF, and BPAF on the Reproductive Neuroendocrine System of Zebrafish Embryos and Its Mechanisms. J. Hazard. Mater. 2021, 406, 124303. [Google Scholar] [CrossRef]
- Danzl, E.; Sei, K.; Soda, S.; Ike, M.; Fujita, M. Biodegradation of Bisphenol A, Bisphenol F and Bisphenol S in Seawater. Int. J. Environ. Res. Public Health 2009, 6, 1472–1484. [Google Scholar] [CrossRef]
- Ike, M.; Chen, M.Y.; Jin, C.S.; Fujita, M. Acute Toxicity, Mutagenicity, and Estrogenicity of Biodegradation Products of Bisphenol-A. Environ. Toxicol. 2002, 17, 457–461. [Google Scholar] [CrossRef]
- Zhou, X.; Kramer, J.P.; Calafat, A.M.; Ye, X. Automated On-Line Column-Switching High Performance Liquid Chromatography Isotope Dilution Tandem Mass Spectrometry Method for the Quantification of Bisphenol A, Bisphenol F, Bisphenol S, and 11 Other Phenols in Urine. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 944, 152–156. [Google Scholar] [CrossRef]
- Lehmler, H.J.; Liu, B.; Gadogbe, M.; Bao, W. Exposure to Bisphenol A, Bisphenol F, and Bisphenol S in U.S. Adults and Children: The National Health and Nutrition Examination Survey 2013–2014. ACS Omega 2018, 3, 6523–6532. [Google Scholar] [CrossRef]
- Park, C.; Song, H.; Choi, J.; Sim, S.; Kojima, H.; Park, J.; Iida, M.; Lee, Y. The Mixture Effects of Bisphenol Derivatives on Estrogen Receptor and Androgen Receptor. Environ. Pollut. 2020, 260, 114036. [Google Scholar] [CrossRef] [PubMed]
- Harnett, K.G.; Chin, A.; Schuh, S.M. BPA and BPA Alternatives BPS, BPAF, and TMBPF, Induce Cytotoxicity and Apoptosis in Rat and Human Stem Cells. Ecotoxicol. Environ. Saf. 2021, 216, 112210. [Google Scholar] [CrossRef] [PubMed]
- Arancio, A.L.; Cole, K.D.; Dominguez, A.R.; Cohenour, E.R.; Kadie, J.; Maloney, W.C.; Cilliers, C.; Schuh, S.M. Bisphenol A, Bisphenol AF, Di-n-butyl Phthalate, and 17β-Estradiol Have Shared and Unique Dose-Dependent Effects on Early Embryo Cleavage Divisions and Development in Xenopus laevis. Reprod. Toxicol. 2019, 84, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Pirzada, M.; Jahan, S.; Ullah, H.; Shaheen, G.; Rehman, H.; Siddiqui, M.F.; Butt, M.A. Bisphenol A and Its Analogs Bisphenol B, Bisphenol F, and Bisphenol S: Comparative In vitro and In vivo Studies on the Sperms and Testicular Tissues of Rats. Chemosphere 2018, 209, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.Á.; Blanco, J.; Rovira, J.; Kumar, V.; Domingo, J.L.; Schuhmacher, M. Bisphenol A Analogues (BPS and BPF) Present a Greater Obesogenic Capacity in 3T3-L1 Cell Line. Food Chem. Toxicol. 2020, 140, 111298. [Google Scholar] [CrossRef] [PubMed]
- Ramskov Tetzlaff, C.N.; Svingen, T.; Vinggaard, A.M.; Rosenmai, A.K.; Taxvig, C. Bisphenols B, E, F, and S and 4-Cumylphenol Induce Lipid Accumulation in Mouse Adipocytes Similarly to Bisphenol A. Environ. Toxicol. 2020, 35, 543–552. [Google Scholar] [CrossRef]
- Eladak, S.; Grisin, T.; Moison, D.; Guerquin, M.J.; N’Tumba-Byn, T.; Pozzi-Gaudin, S.; Benachi, A.; Livera, G.; Rouiller-Fabre, V.; Habert, R. A New Chapter in the Bisphenol A Story: Bisphenol S and Bisphenol F Are Not Safe Alternatives to This Compound. Fertil. Steril. 2015, 103, 11–21. [Google Scholar] [CrossRef]
- Meslin, M.; Beausoleil, C.; Zeman, F.A.; Antignac, J.P.; Kolossa-Gehring, M.; Rousselle, C.; Apel, P. Human Biomonitoring Guidance Values (HBM-GVs) for Bisphenol S and Assessment of the Risk Due to the Exposure to Bisphenols A and S, in Europe. Toxics 2022, 10, 228. [Google Scholar] [CrossRef]
- Rochester, J.R.; Bolden, A.L. Bisphenol S and F: A Systematic Review and Comparison of the Hormonal Activity of Bisphenol A Substitutes. Environ. Health Perspect. 2015, 123, 643–650. [Google Scholar] [CrossRef]
- Russo, G.; Barbato, F.; Grumetto, L. Monitoring of Bisphenol A and Bisphenol S in Thermal Paper Receipts from the Italian Market and Estimated Transdermal Human Intake: A Pilot Study. Sci. Total Environ. 2017, 599, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Liu, F.; Kannan, K. Bisphenol S, a New Bisphenol Analogue, in Paper Products and Currency Bills and Its Association with Bisphenol A Residues. Environ. Sci. Technol. 2012, 46, 6515–6522. [Google Scholar] [CrossRef] [PubMed]
- Siracusa, J.S.; Yin, L.; Measel, E.; Liang, S.; Yu, X. Effects of Bisphenol A and Its Analogs on Reproductive Health: A Mini Review. Reprod. Toxicol. 2018, 79, 96–123. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tang, S.; Zhou, X.; Gao, R.; Liu, Z.; Song, X.; Zeng, F. Urinary Concentrations of Bisphenol Analogues in the South of China Population and Their Contribution to the Per Capita Mass Loads in Wastewater. Environ. Res. 2022, 204, 112398. [Google Scholar] [CrossRef]
- Tang, S.; He, C.; Thai, P.K.; Heffernan, A.; Vijayasarathy, S.; Toms, L.; Thompson, K.; Hobson, P.; Tscharke, B.J.; O’Brien, J.W.; et al. Urinary Concentrations of Bisphenols in the Australian Population and Their Association with the Per Capita Mass Loads in Wastewater. Environ. Sci. Technol. 2020, 54, 10141–10148. [Google Scholar] [CrossRef]
- Mulhall, H.; DiChiara, J.M.; Deragon, M.; Iyer, R.; Huck, O.; Amar, S. Akkermansia muciniphila and Its Pili-Like Protein Amuc_1100 Modulate Macrophage Polarization in Experimental Periodontitis. Infect. Immun. 2020, 89, e00500-20. [Google Scholar] [CrossRef]
- Thayer, K.A.; Taylor, K.W.; Garantziotis, S.; Schurman, S.H.; Kissling, G.E.; Hunt, D.; Herbert, B.; Church, R.; Jankowich, R.; Churchwell, M.I.; et al. Bisphenol A, Bisphenol S, and 4-Hydroxyphenyl 4-Isoprooxyphenylsulfone (BPSIP) in Urine and Blood of Cashiers. Environ. Health Perspect. 2016, 124, 437–444. [Google Scholar] [CrossRef]
- LaPlante, C.D.; Catanese, M.C.; Bansal, R.; Vandenberg, L.N. Bisphenol S Alters the Lactating Mammary Gland and Nursing Behaviors in Mice Exposed During Pregnancy and Lactation. Endocrinology 2017, 158, 3448–3461. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Wu, Y.; Zhao, Y.; Luo, F.; Li, S.; Yang, L.; Moez, E.K.; Dinu, I.; Martin, J.W. Bisphenol A Metabolites and Bisphenol S in Paired Maternal and Cord Serum. Environ. Sci. Technol. 2017, 51, 2456–2463. [Google Scholar] [CrossRef]
- Connors, L.T.; Zhu, H.L.; Gill, M.; Walsh, E.; Singh, R.D.; Easson, S.; Ahmed, S.B.; Habibi, H.R.; Cole, W.C.; Thompson, J.A. Prenatal Exposure to a Low Dose of BPS Causes Sex-Dependent Alterations to Vascular Endothelial Function in Adult Offspring. Front. Toxicol. 2022, 4, 933572. [Google Scholar] [CrossRef]
- Kolla, S.; Morcos, M.; Martin, B.; Vandenberg, L.N. Low Dose Bisphenol S or Ethinyl Estradiol Exposures During the Perinatal Period Alter Female Mouse Mammary Gland Development. Reprod. Toxicol. 2018, 78, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Catanese, M.C.; Vandenberg, L.N. Bisphenol S (BPS) Alters Maternal Behavior and Brain in Mice Exposed During Pregnancy/Lactation and Their Daughters. Endocrinology 2017, 158, 516–530. [Google Scholar] [CrossRef] [PubMed]
- Thoene, M.; Dzika, E.; Gonkowski, S.; Wojtkiewicz, J. Bisphenol S in Food Causes Hormonal and Obesogenic Effects Comparable to or Worse than Bisphenol A: A Literature Review. Nutrients 2020, 12, 532. [Google Scholar] [CrossRef] [PubMed]
- Andújar, N.; Gálvez-Ontiveros, Y.; Zafra-Gómez, A.; Rodrigo, L.; Álvarez-Cubero, M.J.; Aguilera, M.; Monteagudo, C.; Rivas, A.A. Bisphenol A Analogues in Food and Their Hormonal and Obesogenic Effects: A Review. Nutrients 2019, 11, 2136. [Google Scholar] [CrossRef]
- Adamovsky, O.; Groh, K.J.; Białk-Bielińska, A.; Escher, B.I.; Beaudouin, R.; Mora Lagares, L.; Tollefsen, K.E.; Fenske, M.; Mulkiewicz, E.; Creusot, N.; et al. Exploring BPA Alternatives—Environmental Levels and Toxicity Review. Environ. Int. 2024, 189, 108728. [Google Scholar] [CrossRef]
- Gallart-Ayala, H.; Moyano, E.; Galceran, M.T. Analysis of Bisphenols in Soft Drinks by On-Line Solid Phase Extraction Fast Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chim. Acta 2011, 683, 227–233. [Google Scholar] [CrossRef]
- Rosenmai, A.K.; Dybdahl, M.; Pedersen, M.; van Vugt-Lussenburg, B.M.A.; Wedebye, E.B.; Taxvig, C.; Vinggaard, A.M. Are Structural Analogues to Bisphenol A Safe Alternatives? Toxicol. Sci. 2014, 139, 35–47. [Google Scholar] [CrossRef]
- Norgren, K.; Tuck, A.; Vieira Silva, A.; Burkhardt, P.; Öberg, M.; Munic Kos, V. High Throughput Screening of Bisphenols and Their Mixtures Under Conditions of Low-Intensity Adipogenesis of Human Mesenchymal Stem Cells (hMSCs). Food Chem. Toxicol. 2022, 161, 112842. [Google Scholar] [CrossRef]
- Sendra, M.; Štampar, M.; Fras, K.; Novoa, B.; Figueras, A.; Žegura, B. Adverse (Geno)toxic Effects of Bisphenol A and Its Analogues in Hepatic 3D Cell Model. Environ. Int. 2022, 171, 107721. [Google Scholar] [CrossRef]
- Forbes, J.D.; Van Domselaar, G.; Bernstein, C.N. The Gut Microbiota in Immune-Mediated Inflammatory Diseases. Front. Microbiol. 2016, 7, 1081. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, H.F.; Algonaiman, R.; Alduwayghiri, R.; Aljutaily, T.; Algheshairy, R.M.; Almutairi, A.S.; Alharbi, R.M.; Alfurayh, L.A.; Alshahwan, A.A.; Alsadun, A.F.; et al. Exposure to Bisphenol A Substitutes, Bisphenol S and Bisphenol F, and Its Association with Developing Obesity and Diabetes Mellitus: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 15918. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.H.; Woodward, M.; Bao, W.; Liu, B.; Trasande, L. Urinary Bisphenols and Obesity Prevalence Among U.S. Children and Adolescents. J. Endocr. Soc. 2019, 3, 1715–1726. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Lehmler, H.J.; Sun, Y.; Xu, G.; Sun, Q.; Snetselaar, L.G.; Wallace, R.B.; Bao, W. Association of Bisphenol A and Its Substitutes, Bisphenol F and Bisphenol S, with Obesity in United States Children and Adolescents. Diabetes Metab. J. 2019, 43, 59–75. [Google Scholar] [CrossRef]
- Gajjar, P.; Liu, Y.; Li, N.; Buckley, J.P.; Chen, A.; Lanphear, B.P.; Kalkwarf, H.J.; Cecil, K.M.; Yolton, K.; Braun, J.M. Associations of Mid-Childhood Bisphenol A and Bisphenol S Exposure with Mid-Childhood and Adolescent Obesity. Environ. Epidemiol. 2021, 6, e187. [Google Scholar] [CrossRef]
- Drobna, Z.; Talarovicova, A.; Schrader, H.E.; Fennell, T.R.; Snyder, R.W.; Rissman, E.F. Bisphenol F Has Different Effects on Preadipocytes Differentiation and Weight Gain in Adult Mice as Compared with Bisphenol A and S. Toxicology 2019, 420, 66–72. [Google Scholar] [CrossRef]
- Pelch, K.E.; Li, Y.; Perera, L.; Thayer, K.A.; Korach, K.S. Characterization of Estrogenic and Androgenic Activities for Bisphenol A-like Chemicals (BPs): In vitro Estrogen and Androgen Receptors Transcriptional Activation, Gene Regulation, and Binding Profiles. Toxicol. Sci. 2019, 172, 23–37. [Google Scholar] [CrossRef]
- Choi, S.I.; Lee, J.S.; Lee, S.; Sim, W.S.; Kim, Y.C.; Lee, O.H. Potentilla rugulosa Nakai Extract Attenuates Bisphenol A-, S- and F-Induced ROS Production and Differentiation of 3T3-L1 Preadipocytes in the Absence of Dexamethasone. Antioxidants 2020, 9, 113. [Google Scholar] [CrossRef]
- Serra, H.; Beausoleil, C.; Habert, R.; Minier, C.; Picard-Hagen, N.; Michel, C. Evidence for Bisphenol B Endocrine Properties: Scientific and Regulatory Perspectives. Environ. Health Perspect. 2019, 127, 106001. [Google Scholar] [CrossRef]
- Cunha, S.C.; Fernandes, J.O. Quantification of Free and Total Bisphenol A and Bisphenol B in Human Urine by Dispersive Liquid-Liquid Microextraction (DLLME) and Heart-Cutting Multidimensional Gas Chromatography-Mass Spectrometry (MD-GC/MS). Talanta 2010, 83, 117–125. [Google Scholar] [CrossRef]
- González, N.; Cunha, S.C.; Ferreira, R.; Fernandes, J.O.; Marquès, M.; Nadal, M.; Domingo, J.L. Concentrations of Nine Bisphenol Analogues in Food Purchased from Catalonia (Spain): Comparison of Canned and Non-Canned Foodstuffs. Food Chem. Toxicol. 2020, 136, 110992. [Google Scholar] [CrossRef] [PubMed]
- González, N.; Marquès, M.; Cunha, S.C.; Fernandes, J.O.; Domingo, J.L.; Nadal, M. Biomonitoring of Co-Exposure to Bisphenols by Consumers of Canned Foodstuffs. Environ. Int. 2020, 140, 105760. [Google Scholar] [CrossRef] [PubMed]
- Schiano, M.E.; Sodano, F.; Magli, E.; Corvino, A.; Fiorino, F.; Rimoli, M.G.; Seccia, S.; Albrizio, S. Quantitative Determination of BPA, BPB, BPF and BPS Levels in Canned Legumes from Italian Market. Food Chem. 2023, 416, 135642. [Google Scholar] [CrossRef] [PubMed]
- Štefunková, N.; Greifová, H.; Jambor, T.; Tokárová, K.; Zuščíková, L.; Bažány, D.; Massányi, P.; Capcarová, M.; Lukáč, N. Comparison of the Effect of BPA and Related Bisphenols on Membrane Integrity, Mitochondrial Activity, and Steroidogenesis of H295R Cells In vitro. Life 2023, 14, 3. [Google Scholar] [CrossRef]
- Ullah, A.; Pirzada, M.; Jahan, S.; Ullah, H.; Khan, M.J. Bisphenol A Analogues Bisphenol B, Bisphenol F, and Bisphenol S Induce Oxidative Stress, Disrupt Daily Sperm Production, and Damage DNA in Rat Spermatozoa: A Comparative In vitro and In vivo Study. Toxicol. Ind. Health 2019, 35, 294–303. [Google Scholar] [CrossRef]
- Wang, S.; Rijk, J.C.; Besselink, H.T.; Houtman, R.; Peijnenburg, A.A.; Brouwer, A.; Rietjens, I.M.; Bovee, T.F. Extending an In vitro Panel for Estrogenicity Testing: The Added Value of Bioassays for Measuring Antiandrogenic Activities and Effects on Steroidogenesis. Toxicol. Sci. 2014, 141, 78–89. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Moriguchi, Y.; Oshima, H.; Kawaguchi, M.; Miyazaki, K.; Nakamura, M. Measurement of Estrogenic Activity of Chemicals for the Development of New Dental Polymers. Toxicol. Vitr. 2001, 15, 421–425. [Google Scholar] [CrossRef]
- Kidani, T.; Kamei, S.; Miyawaki, J.; Aizawa, J.; Sakayama, K.; Masuno, H. Bisphenol A Downregulates Akt Signaling and Inhibits Adiponectin Production and Secretion in 3T3-L1 Adipocytes. J. Atheroscler. Thromb. 2010, 17, 834–843. [Google Scholar] [CrossRef]
- Escrivá, L.; Zilliacus, J.; Hessel, E.; Beronius, A. Assessment of the Endocrine Disrupting Properties of Bisphenol AF: A Case Study Applying the European Regulatory Criteria and Guidance. Environ. Health 2021, 20, 48. [Google Scholar] [CrossRef]
- Yang, M.; Wang, J.H.; Shin, J.H.; Lee, D.; Lee, S.N.; Seo, J.G.; Shin, J.H.; Nam, Y.D.; Kim, H.; Sun, X. Pharmaceutical Efficacy of Novel Human-Origin Faecalibacterium prausnitzii Strains on High-Fat-Diet-Induced Obesity and Associated Metabolic Disorders in Mice. Front. Endocrinol. 2023, 14, 1220044. [Google Scholar] [CrossRef]
- Ye, X.; Wong, L.Y.; Kramer, J.; Zhou, X.; Jia, T.; Calafat, A.M. Urinary Concentrations of Bisphenol A and Three Other Bisphenols in Convenience Samples of U.S. Adults During 2000-2014. Environ. Sci. Technol. 2015, 49, 11834–11839. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yang, Y.; Yang, Y.; Yin, J.; Zhang, J.; Feng, Y.; Shao, B. Biotransformation of Bisphenol AF to Its Major Glucuronide Metabolite Reduces Estrogenic Activity. PLoS ONE 2013, 8, e83170. [Google Scholar] [CrossRef] [PubMed]
- Mallen, T.R.; Abston, K.D.; Parizek, N.J.; Negley, J.; Shores, K.S.; Canatsey, R.D.; Dubail, S.; Maier, M.S.; Maffini, M.V. Characterization of a New Polymeric Food Contact Coating with Emphasis on the Chemical Analysis and Safety Assessment of Non-Intentionally Added Substances (NIAS). Food Chem. Toxicol. 2023, 173, 113635. [Google Scholar] [CrossRef] [PubMed]
- Soto, A.M.; Schaeberle, C.; Maier, M.S.; Sonnenschein, C.; Maffini, M.V. Evidence of Absence: Estrogenicity Assessment of a New Food-Contact Coating and the Bisphenol Used in Its Synthesis. Environ. Sci. Technol. 2017, 51, 1718–1726. [Google Scholar] [CrossRef] [PubMed]
- Szafran, A.T.; Stossi, F.; Mancini, M.G.; Walker, C.L.; Mancini, M.A. Characterizing Properties of Non-Estrogenic Substituted Bisphenol Analogs Using High Throughput Microscopy and Image Analysis. PLoS ONE 2017, 12, e0180141. [Google Scholar] [CrossRef]
- Maffini, M.V.; Canatsey, R.D. An Expanded Toxicological Profile of Tetramethyl Bisphenol F (TMBPF), a Precursor for a New Food-Contact Metal Packaging Coating. Food Chem. Toxicol. 2020, 135, 110889. [Google Scholar] [CrossRef]
- Chakraborti, C.K. New-Found Link Between Microbiota and Obesity. World J. Gastrointest. Pathophysiol. 2015, 6, 110–119. [Google Scholar] [CrossRef]
- Nuttall, F.Q. Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutr. Today 2015, 50, 117–128. [Google Scholar] [CrossRef]
- Wiciński, M.; Gębalski, J.; Gołębiewski, J.; Malinowski, B. Probiotics for the Treatment of Overweight and Obesity in Humans—A Review of Clinical Trials. Microorganisms 2020, 8, 1148. [Google Scholar] [CrossRef]
- Bibbò, S.; Ianiro, G.; Giorgio, V.; Scaldaferri, F.; Masucci, L.; Gasbarrini, A.; Cammarota, G. The Role of Diet on Gut Microbiota Composition. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4742–4749. [Google Scholar]
- Ohkusa, T.; Koido, S.; Nishikawa, Y.; Sato, N. Gut Microbiota and Chronic Constipation: A Review and Update. Front. Med. 2019, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Javurek, A.B.; Spollen, W.G.; Johnson, S.A.; Bivens, N.J.; Bromert, K.H.; Givan, S.A.; Rosenfeld, C.S. Effects of Exposure to Bisphenol A and Ethinyl Estradiol on the Gut Microbiota of Parents and Their Offspring in a Rodent Model. Gut Microbes 2016, 7, 471–485. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.P.; Chung, Y.T.; Li, R.; Wan, H.T.; Wong, C.K. Bisphenol A Alters Gut Microbiome: Comparative Metagenomics Analysis. Environ. Pollut. 2016, 218, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Catron, T.R.; Keely, S.P.; Brinkman, N.E.; Zurlinden, T.J.; Wood, C.E.; Wright, J.R.; Phelps, D.; Wheaton, E.; Kvasnicka, A.; Gaballah, S.; et al. Host Developmental Toxicity of BPA and BPA Alternatives Is Inversely Related to Microbiota Disruption in Zebrafish. Toxicol. Sci. 2019, 167, 468–483. [Google Scholar] [CrossRef]
- Reddivari, L.; Veeramachaneni, D.N.R.; Walters, W.A.; Lozupone, C.; Palmer, J.; Hewage, M.K.K.; Bhatnagar, R.; Amir, A.; Kennett, M.J.; Knight, R.; et al. Perinatal Bisphenol A Exposure Induces Chronic Inflammation in Rabbit Offspring via Modulation of Gut Bacteria and Their Metabolites. MSystems 2017, 2, e00093-17. [Google Scholar] [CrossRef]
- Koestel, Z.L.; Backus, R.C.; Tsuruta, K.; Spollen, W.G.; Johnson, S.A.; Javurek, A.B.; Ellersieck, M.R.; Wiedmeyer, C.E.; Kannan, K.; Xue, J.; et al. Bisphenol A (BPA) in the Serum of Pet Dogs Following Short-Term Consumption of Canned Dog Food and Potential Health Consequences of Exposure to BPA. Sci. Total Environ. 2017, 579, 1804–1814. [Google Scholar] [CrossRef]
- Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity Alters Gut Microbial Ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070–11075. [Google Scholar] [CrossRef]
- Abdelsalam, N.A.; Ramadan, A.T.; ElRakaiby, M.T.; Aziz, R.K. Toxicomicrobiomics: The Human Microbiome vs. Pharmaceutical, Dietary, and Environmental Xenobiotics. Front. Pharmacol. 2020, 11, 390. [Google Scholar] [CrossRef]
- Kang, J.H.; Kondo, F.; Katayama, Y. Human Exposure to Bisphenol A. Toxicology 2006, 226, 79–89. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Prabhu, N.B.; Kabekkodu, S.P.; Rai, P.S. Review on Bisphenol A and the Risk of Polycystic Ovarian Syndrome: An Insight from Endocrine and Gene Expression. Environ. Sci. Pollut. Res. Int. 2022, 29, 32631–32650. [Google Scholar] [CrossRef]
- Claus, S.P.; Guillou, H.; Ellero-Simatos, S. The Gut Microbiota: A Major Player in the Toxicity of Environmental Pollutants? Npj Biofilms Microbiomes 2016, 2, 16003. [Google Scholar] [CrossRef] [PubMed]
- Koppel, N.; Maini Rekdal, V.; Balskus, E.P. Chemical Transformation of Xenobiotics by the Human Gut Microbiota. Science 2017, 356, eaag2770. [Google Scholar] [CrossRef] [PubMed]
- Bock, K.W. Homeostatic Control of Xeno- and Endobiotics in the Drug-Metabolizing Enzyme System. Biochem. Pharmacol. 2014, 90, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mackenzie, P.I.; Hu, D.G.; Gardner-Stephen, D.A. The Regulation of UDP-Glucuronosyltransferase Genes by Tissue-Specific and Ligand-Activated Transcription Factors. Drug Metab. Rev. 2010, 42, 99–109. [Google Scholar] [CrossRef]
- Mathieu-Denoncourt, J.; Wallace, S.J.; de Solla, S.R.; Langlois, V.S. Influence of Lipophilicity on the Toxicity of Bisphenol A and Phthalates to Aquatic Organisms. Bull. Environ. Contam. Toxicol. 2016, 97, 4–10. [Google Scholar] [CrossRef]
- Khmiri, I.; Côté, J.; Mantha, M.; Khemiri, R.; Lacroix, M.; Gely, C.; Toutain, P.L.; Picard-Hagen, N.; Gayrard, V.; Bouchard, M. Toxicokinetics of Bisphenol-S and Its Glucuronide in Plasma and Urine Following Oral and Dermal Exposure in Volunteers for the Interpretation of Biomonitoring Data. Environ. Int. 2020, 138, 105644. [Google Scholar] [CrossRef]
- Boucher, J.G.; Ahmed, S.; Atlas, E. Bisphenol S Induces Adipogenesis in Primary Human Preadipocytes from Female Donors. Endocrinology 2016, 157, 1397–1407. [Google Scholar] [CrossRef]
- Mao, W.; Mao, L.; Zhou, F.; Shen, J.; Zhao, N.; Jin, H.; Hu, J.; Hu, Z. Influence of Gut Microbiota on Metabolism of Bisphenol A, a Major Component of Polycarbonate Plastics. Toxics 2023, 11, 340. [Google Scholar] [CrossRef]
- Gerona, R.R.; Pan, J.; Zota, A.R.; Schwartz, J.M.; Friesen, M.; Taylor, J.A.; Hunt, P.A.; Woodruff, T.J. Direct Measurement of Bisphenol A (BPA), BPA Glucuronide and BPA Sulfate in a Diverse and Low-Income Population of Pregnant Women Reveals High Exposure, with Potential Implications for Previous Exposure Estimates: A Cross-Sectional Study. Environ. Health 2016, 15, 50. [Google Scholar] [CrossRef]
- Le Fol, V.; Aït-Aïssa, S.; Cabaton, N.; Dolo, L.; Grimaldi, M.; Balaguer, P.; Perdu, E.; Debrauwer, L.; Brion, F.; Zalko, D. Cell-Specific Biotransformation of Benzophenone-2 and Bisphenol-S in Zebrafish and Human In vitro Models Used for Toxicity and Estrogenicity Screening. Environ. Sci. Technol. 2015, 49, 3860–3868. [Google Scholar] [CrossRef]
- Viñas, R.; Watson, C.S. Bisphenol S Disrupts Estradiol-Induced Nongenomic Signaling in a Rat Pituitary Cell Line: Effects on Cell Functions. Environ. Health Perspect. 2013, 121, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Völkel, W.; Colnot, T.; Csanády, G.A.; Filser, J.G.; Dekant, W. Metabolism and Kinetics of Bisphenol A in Humans at Low Doses Following Oral Administration. Chem. Res. Toxicol. 2002, 15, 1281–1287. [Google Scholar] [CrossRef] [PubMed]
- Hanioka, N.; Oka, H.; Nagaoka, K.; Ikushiro, S.; Narimatsu, S. Effect of UDP-Glucuronosyltransferase 2B15 Polymorphism on Bisphenol A Glucuronidation. Arch. Toxicol. 2011, 85, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- Gramec Skledar, D.; Troberg, J.; Lavdas, J.; Peterlin Mašič, L.; Finel, M. Differences in the Glucuronidation of Bisphenols F and S Between Two Homologous Human UGT Enzymes, 1A9 and 1A10. Xenobiotica 2015, 45, 511–519. [Google Scholar] [CrossRef]
- Kurebayashi, H.; Harada, R.; Stewart, R.K.; Numata, H.; Ohno, Y. Disposition of a Low Dose of Bisphenol A in Male and Female Cynomolgus Monkeys. Toxicol. Sci. 2002, 68, 32–42. [Google Scholar] [CrossRef]
- Yokota, H.; Iwano, H.; Endo, M.; Kobayashi, T.; Inoue, H.; Ikushiro, S.; Yuasa, A. Glucuronidation of the Environmental Oestrogen Bisphenol A by an Isoform of UDP-Glucuronosyltransferase, UGT2B1, in the Rat Liver. Biochem. J. 1999, 340, 405–409. [Google Scholar] [CrossRef]
- Street, C.M.; Zhu, Z.; Finel, M.; Court, M.H. Bisphenol-A Glucuronidation in Human Liver and Breast: Identification of UDP-Glucuronosyltransferases (UGTs) and Influence of Genetic Polymorphisms. Xenobiotica 2017, 47, 1–10. [Google Scholar] [CrossRef]
- Trdan Lušin, T.; Roškar, R.; Mrhar, A. Evaluation of Bisphenol A Glucuronidation According to UGT1A1*28 Polymorphism by a New LC-MS/MS Assay. Toxicology 2012, 292, 33–41. [Google Scholar] [CrossRef]
- Ervin, S.M.; Redinbo, M.R. The Gut Microbiota Impact Cancer Etiology Through “Phase IV Metabolism” of Xenobiotics and Endobiotics. Cancer Prev. Res. 2020, 13, 635–642. [Google Scholar] [CrossRef]
- Wilson, I.D.; Nicholson, J.K. Gut Microbiome Interactions with Drug Metabolism, Efficacy, and Toxicity. Transl. Res. 2017, 179, 204–222. [Google Scholar] [CrossRef]
- Collins, S.L.; Patterson, A.D. The Gut Microbiome: An Orchestrator of Xenobiotic Metabolism. Acta Pharm. Sin. B 2020, 10, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Pant, A.; Maiti, T.K.; Mahajan, D.; Das, B. Human Gut Microbiota and Drug Metabolism. Microb. Ecol. 2023, 86, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Kallemeijn, W.W.; Witte, M.D.; Wennekes, T.; Aerts, J.M. Mechanism-Based Inhibitors of Glycosidases: Design and Applications. In Advances in Carbohydrate Chemistry and Biochemistry; Academic Press: London, UK, 2014; Volume 71, pp. 297–338. [Google Scholar] [CrossRef]
- Oishi, K.; Sato, T.; Yokoi, W.; Yoshida, Y.; Ito, M.; Sawada, H. Effect of Probiotics, Bifidobacterium breve and Lactobacillus casei, on Bisphenol A Exposure in Rats. Biosci. Biotechnol. Biochem. 2008, 72, 1409–1415. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Q.; Tian, F.; Zhao, J.; Zhang, H.; Narbad, A.; Chen, W. Oral Administration of Probiotics Inhibits Absorption of the Heavy Metal Cadmium by Protecting the Intestinal Barrier. Appl. Environ. Microbiol. 2016, 82, 4429–4440. [Google Scholar] [CrossRef]
- Muhialdin, B.J.; Saari, N.; Meor Hussin, A.S. Review on the Biological Detoxification of Mycotoxins Using Lactic Acid Bacteria to Enhance the Sustainability of Food Supply. Molecules 2020, 25, 2655. [Google Scholar] [CrossRef]
- Lili, Z.; Junyan, W.; Hongfei, Z.; Baoqing, Z.; Bolin, Z. Detoxification of Carcinogenic Compounds by Lactic Acid Bacteria Strains. Crit. Rev. Food Sci. Nutr. 2018, 58, 2727–2742. [Google Scholar] [CrossRef]
- Chapot-Chartier, M.P.; Kulakauskas, S. Cell Wall Structure and Function in Lactic Acid Bacteria. Microb. Cell Factories 2014, 13 (Suppl. 1), S9. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Yang, C.X.; Luo, B.B.; Zhou, K.; Liu, S.L. Efficiency of Dairy Strains of Lactic Acid Bacteria to Bind Bisphenol A in Phosphate Buffer Saline. Food Control 2017, 73, 1203–1209. [Google Scholar] [CrossRef]
- Shoukat, S.; Liu, Y.; Rehman, A.; Zhang, B. Screening of Bifidobacterium Strains with Assignment of Functional Groups to Bind with Benzo[a]pyrene Under Food Stress Factors. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1114, 100–109. [Google Scholar] [CrossRef]
- Endo, Y.; Kimura, N.; Ikeda, I.; Fujimoto, K.; Kimoto, H. Adsorption of Bisphenol A by Lactic Acid Bacteria, Lactococcus Strains. Appl. Microbiol. Biotechnol. 2007, 74, 202–207. [Google Scholar] [CrossRef]
- Solouki, S.; Fazeli, M.R.; Solouki, S. Efficiency of Multispecies Probiotic Supplements in Bioremoval of Bisphenol A: An In vitro Study. Appl. Food Biotechnol. 2018, 5, 37–45. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, R.; Zhang, X. Identification of Overlapping Community Structure in Complex Networks Using Fuzzy C-Means Clustering. Phys. A Stat. Mech. Its Appl. 2007, 374, 483–490. [Google Scholar] [CrossRef]
- Moghaddam, S.; Javadi, A.; Matin, A.A. Reduction of Bisphenol A by Lactobacillus acidophilus and Lactobacillus plantarum in Yoghurt. Int. J. Dairy Technol. 2020, 73, 737–742. [Google Scholar] [CrossRef]
- Kyrila, G.; Katsoulas, A.; Schoretsaniti, V.; Rigopoulos, A.; Rizou, E.; Doulgeridou, S.; Sarli, V.; Samanidou, V.; Touraki, M. Bisphenol A Removal and Degradation Pathways in Microorganisms with Probiotic Properties. J. Hazard. Mater. 2021, 413, 125363. [Google Scholar] [CrossRef]
- Petrariu, O.A.; Barbu, I.C.; Niculescu, A.G.; Constantin, M.; Grigore, G.A.; Cristian, R.E.; Mihaescu, G.; Vrancianu, C.O. Role of Probiotics in Managing Various Human Diseases, from Oral Pathology to Cancer and Gastrointestinal Diseases. Front. Microbiol. 2024, 14, 1296447. [Google Scholar] [CrossRef]
- Abouelela, M.E.; Helmy, Y.A. Next-Generation Probiotics as Novel Therapeutics for Improving Human Health: Current Trends and Future Perspectives. Microorganisms 2024, 12, 430. [Google Scholar] [CrossRef]
- Chang, C.J.; Lin, T.L.; Tsai, Y.L.; Wu, T.R.; Lai, W.F.; Lu, C.C.; Lai, H.C. Next Generation Probiotics in Disease Amelioration. J. Food Drug Anal. 2019, 27, 615–622. [Google Scholar] [CrossRef]
- Almeida, S.; Raposo, A.; Almeida-González, M.; Carrascosa, C. Bisphenol A: Food Exposure and Impact on Human Health. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1503–1517. [Google Scholar] [CrossRef]
- Barbosa, J.C.; Machado, D.; Almeida, D.; Andrade, J.C.; Brandelli, A.; Gomes, A.M.; Freitas, A.C. Next-Generation Probiotics. In Probiotics; Brandelli, A., Ed.; Academic Press: London, UK, 2022; Chapter 24; pp. 483–502. [Google Scholar] [CrossRef]
- Cani, P.D.; de Vos, W.M. Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. Front. Microbiol. 2017, 8, 1765. [Google Scholar] [CrossRef]
- Wrzosek, L.; Miquel, S.; Noordine, M.L.; Bouet, S.; Joncquel Chevalier-Curt, M.; Robert, V.; Philippe, C.; Bridonneau, C.; Cherbuy, C.; Robbe-Masselot, C.; et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii Influence the Production of Mucus Glycans and the Development of Goblet Cells in the Colonic Epithelium of a Gnotobiotic Model Rodent. BMC Biol. 2013, 11, 61. [Google Scholar] [CrossRef]
- Cantoni, C.; Lin, Q.; Dorsett, Y.; Ghezzi, L.; Liu, Z.; Pan, Y.; Chen, K.; Han, Y.; Li, Z.; Xiao, H.; et al. Alterations of Host-Gut Microbiome Interactions in Multiple Sclerosis. EBioMedicine 2022, 76, 103798. [Google Scholar] [CrossRef] [PubMed]
- Gebrayel, P.; Nicco, C.; Al Khodor, S.; Bilinski, J.; Caselli, E.; Comelli, E.M.; Egert, M.; Giaroni, C.; Karpinski, T.M.; Loniewski, I.; et al. Microbiota Medicine: Towards Clinical Revolution. J. Transl. Med. 2022, 20, 111. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, M.; Martín, R.; Torres-Maravilla, E.; Chadi, S.; González-Dávila, P.; Sokol, H.; Langella, P.; Chain, F.; Bermúdez-Humarán, L.G. Butyrate Mediates Anti-Inflammatory Effects of Faecalibacterium prausnitzii in Intestinal Epithelial Cells Through Dact3. Gut Microbes 2020, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L.G.; Gratadoux, J.J.; Blugeon, S.; Bridonneau, C.; Furet, J.P.; Corthier, G.; et al. Faecalibacterium prausnitzii Is an Anti-Inflammatory Commensal Bacterium Identified by Gut Microbiota Analysis of Crohn Disease Patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef]
- Seo, B.; Jeon, K.; Kim, W.K.; Jang, Y.J.; Cha, K.H.; Ko, G. Strain-Specific Anti-Inflammatory Effects of Faecalibacterium prausnitzii Strain KBL1027 in Koreans. In Probiotics and Antimicrobial Proteins; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Hildebrandt, X.; Ibrahim, M.; Peltzer, N. Cell Death and Inflammation During Obesity: “Know My Methods, WAT(son)”. Cell Death Differ. 2023, 30, 279–292. [Google Scholar] [CrossRef]
- Maioli, T.U.; Borras-Nogues, E.; Torres, L.; Barbosa, S.C.; Martins, V.D.; Langella, P.; Azevedo, V.A.; Chatel, J.M. Possible Benefits of Faecalibacterium prausnitzii for Obesity-Associated Gut Disorders. Front. Pharmacol. 2021, 12, 740636. [Google Scholar] [CrossRef]
- Chen, J.; Vitetta, L. The Role of Butyrate in Attenuating Pathobiont-Induced Hyperinflammation. Immune Netw. 2020, 20, e15. [Google Scholar] [CrossRef]
- Thomas, L.V.; Ockhuizen, T.; Suzuki, K. Exploring the Influence of the Gut Microbiota and Probiotics on Health: A Symposium Report. Br. J. Nutr. 2014, 112 (Suppl. S1), S1–S18. [Google Scholar] [CrossRef]
- Huang, J.; Huang, J.; Li, Y.; Lv, H.; Yin, T.; Fan, S.; Zhang, C.; Li, H. Fucoidan Protects Against High-Fat Diet-Induced Obesity and Modulates Gut Microbiota in Institute of Cancer Research Mice. J. Med. Food 2021, 24, 1058–1067. [Google Scholar] [CrossRef]
- Derrien, M.; Collado, M.C.; Ben-Amor, K.; Salminen, S.; de Vos, W.M. The Mucin Degrader Akkermansia muciniphila Is an Abundant Resident of the Human Intestinal Tract. Appl. Environ. Microbiol. 2008, 74, 1646–1648. [Google Scholar] [CrossRef]
- Schneeberger, M.; Everard, A.; Gómez-Valadés, A.G.; Matamoros, S.; Ramírez, S.; Delzenne, N.M.; Gomis, R.; Claret, M.; Cani, P.D. Akkermansia muciniphila Inversely Correlates with the Onset of Inflammation, Altered Adipose Tissue Metabolism, and Metabolic Disorders During Obesity in Mice. Sci. Rep. 2015, 5, 16643. [Google Scholar] [CrossRef] [PubMed]
- Depommier, C.; Everard, A.; Druart, C.; Plovier, H.; Van Hul, M.; Vieira-Silva, S.; Falony, G.; Raes, J.; Maiter, D.; Delzenne, N.M.; et al. Supplementation with Akkermansia muciniphila in Overweight and Obese Human Volunteers: A Proof-of-Concept Exploratory Study. Nat. Med. 2019, 25, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
- Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M.; et al. Cross-Talk Between Akkermansia muciniphila and Intestinal Epithelium Controls Diet-Induced Obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 9066–9071. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhao, Y.; Yang, Y.; Gong, W.; Sun, X.; Yang, L.; Zhang, Q.; Jin, M. Akkermansia muciniphila Improves Host Defense Against Influenza Virus Infection. Front. Microbiol. 2021, 11, 586476. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, G.; Azimirad, M.; Goudarzi, H.; Amirkamali, S.; Yadegar, A.; Ghalavand, Z.; Shahrokh, S.; Asadzadeh Aghdaei, H.; Zali, M.R. The Inhibitory Effects of Live and UV-Killed Akkermansia muciniphila and Its Derivatives on Cytotoxicity and Inflammatory Response Induced by Clostridioides difficile RT001 In vitro. Int. Microbiol. 2024, 27, 393–409. [Google Scholar] [CrossRef]
- Xie, S.; Li, J.; Lyu, F.; Xiong, Q.; Gu, P.; Chen, Y.; Chen, M.; Bao, J.; Zhang, X.; Wei, R.; et al. Novel Tripeptide RKH Derived from Akkermansia muciniphila Protects Against Lethal Sepsis. Gut 2023, 73, 78–91. [Google Scholar] [CrossRef]
Reference | Compound | Matrix | Incubation Conditions, Removal Mechanism | Microorganism | Concentration of Compound | Removal Ratio [%] |
---|---|---|---|---|---|---|
Endo [153] (2007) | DPP | Medium | 1 h at 30 °C, Bioadsorption | L. lactis subsp. lactis 712 | 2 (μg/mL) | 38.4 ± 1.1 |
BP | 1.2 ± 0.2 | |||||
DDM | 1.3 ± 0.2 | |||||
EBP | 2.2 ± 0.8 | |||||
BPA | L. lactis subsp. cremoris C60 | 17.2 ± 1.6 | ||||
L. lactis subsp. Lactis 527 | 18.9 ± 0.4 | |||||
L. lactis subsp. lactis 712 | 22.4 ± 6.5 | |||||
L. lactis subsp. lactis 712 | 3.8 ± 1.0 | |||||
L. lactis subsp. lactis bv. diacetylactis 8W | 13.1 ± 1.8 | |||||
L. lactis subsp. lactis bv. diacetylactis C66 | 16.5 ± 1.2 | |||||
L. lactis subsp. lactis bv. diacetylactis DRC1 | 9.1 ± 8.1 | |||||
L. lactis subsp. lactis bv. diacetylactis H59 | 11.1 ± 3.0 | |||||
L. lactis subsp. lactis bv. diacetylactis N7 | 18.0 ± 0.5 | |||||
L. lactis subsp. lactis G46 | 11.7 ± 1.8 | |||||
L. lactis subsp. lactis H46 | 9.9 ± 4.1 | |||||
BPAA | L. lactis subsp. lactis 712 | 4.4 ± 1.5 | ||||
BPAM | 9.2 ± 0.3 | |||||
Zhu [151] (2017) | BPA | PBS solution | Acid-treated for 1.5 h, Bioadsorption | L. acidophilus | 5 (mg/L) | 66.33 ± 0.20 |
L. bulgaricus | 47.12 ± 1.02 | |||||
L. paracasei | 62.45 ± 0.48 | |||||
L. plantarum | 61.84 ± 0.41 | |||||
L. rhamnosus | 45.94 ± 0.13 | |||||
S. thermophilus | 35.77 ± 0.70 | |||||
Heat-treated for 24 h at 120 °C, Bioadsorption | L. acidophilus | 70.25 ± 0.75 | ||||
L. bulgaricus | 54.78 ± 0.65 | |||||
L. paracasei | 67.89 ± 0.64 | |||||
L. plantarum | 72.26 ± 0.36 | |||||
L. rhamnosus | 51.11 ± 0.51 | |||||
S. thermophilus | 37.87 ± 0.67 | |||||
Viable for 24 h at 30 °C, Bioadsorption | L. acidophilus | 48.44 ± 0.36 | ||||
L. bulgaricus | 33.17 ± 0.57 | |||||
L. paracasei | 40.28 ± 0.56 | |||||
L. plantarum | 50.80 ± 0.24 | |||||
L. rhamnosus | 27.94 ± 0.29 | |||||
S. thermophilus | 24.48 ± 0.80 | |||||
Solouki [154] (2018) | BPA | Saline basal medium | 24 h at 37 °C, Bioadsorption | Familact, L. casei, L. acidophilus, L. rhamnosus, L. bulgaricus, B. breve, B. longum, S. thermophilus | 0.5 (mg/L) | 86.06 ± 0.55 |
Gerilact, L. casei, L. acidophilus, L. rhamnosus, L. bulgaricus, B. breve, B. longum, S. thermophilus | 87.70 ± 0.49 | |||||
Kidilact zink, L. casei, L. acidophilus, L. rhamnosus, L. bulgaricus, B. breve, B.infantis, S. thermophilus | 24.96 ± 0.10 | |||||
Kidilact, L. casei, L. acidophilus, L. rhamnosus, L. bulgaricus, B. breve, B.infantis, S. thermophilus | 85.67 ± 0.44 | |||||
Lactocare, L. casei, L. acidophilus, L. rhamnosus, L. bulgaricus, B. breve, B. longum, S. thermophilus | 92.00 ± 0.82 | |||||
Lactofem, L. acidophilus, L. plantarum, L. fermentum, L.gasseri | 88.11 ± 0.47 | |||||
Ju [155] (2019) | BPA | Black tea beverage | 48 h at 37 °C, Biodegradation | L. reuteri | 31.7 μg/L | 92.74 |
Orange juice beverage | 31.3 μg/L | 92.33 | ||||
Mung bean cold tea | 31.4 μg/L | 92.33 | ||||
Moghaddam [156] (2020) | BPA | Yogurt | 28 d at 37 °C, Biodegradation | L. acidophilus | 54.36 mg/L | 90.77 |
L. plantarum | 36.64 mg/L | 95.30 | ||||
Kyrila [157] (2021) | BPA | Medium | 96 h at 30 °C, Biodegradation | B. subtilis | 23.78 ± 0.29 (μg/mL) | 51.90 |
E. faecalis | 27.16 ± 0.21 (μg/mL) | 45.30 | ||||
L. lactis | 29.54 ± 0.15 (μg/mL) | 39.10 | ||||
L. plantarum | 28.15 ± 0.59 (μg/mL) | 41.60 | ||||
S. cerevisiae | 27.51 ± 0.17 (μg/mL) | 44.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emanowicz, P.; Średnicka, P.; Wójcicki, M.; Roszko, M.; Juszczuk-Kubiak, E. Mitigating Dietary Bisphenol Exposure Through the Gut Microbiota: The Role of Next-Generation Probiotics in Bacterial Detoxification. Nutrients 2024, 16, 3757. https://doi.org/10.3390/nu16213757
Emanowicz P, Średnicka P, Wójcicki M, Roszko M, Juszczuk-Kubiak E. Mitigating Dietary Bisphenol Exposure Through the Gut Microbiota: The Role of Next-Generation Probiotics in Bacterial Detoxification. Nutrients. 2024; 16(21):3757. https://doi.org/10.3390/nu16213757
Chicago/Turabian StyleEmanowicz, Paulina, Paulina Średnicka, Michał Wójcicki, Marek Roszko, and Edyta Juszczuk-Kubiak. 2024. "Mitigating Dietary Bisphenol Exposure Through the Gut Microbiota: The Role of Next-Generation Probiotics in Bacterial Detoxification" Nutrients 16, no. 21: 3757. https://doi.org/10.3390/nu16213757
APA StyleEmanowicz, P., Średnicka, P., Wójcicki, M., Roszko, M., & Juszczuk-Kubiak, E. (2024). Mitigating Dietary Bisphenol Exposure Through the Gut Microbiota: The Role of Next-Generation Probiotics in Bacterial Detoxification. Nutrients, 16(21), 3757. https://doi.org/10.3390/nu16213757