Nonalcoholic Fatty Liver Disease Risk and Proprotein Convertase Subtilisin Kexin 9 in Familial Hypercholesterolemia Under Statin Treatment
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernandez, M.L.; West, K.L. Mechanisms by Which Dietary Fatty Acids Modulate Plasma Lipids. J. Nutr. 2005, 135, 2075–2078. [Google Scholar] [CrossRef] [PubMed]
- Gentile, C.L.; Pagliassotti, M.J. The Role of Fatty Acids in the Development and Progression of Nonalcoholic Fatty Liver Disease. J. Nutr. Biochem. 2008, 19, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Labenz, C.; Huber, Y.; Michel, M.; Nagel, M.; Galle, P.R.; Kostev, K.; Schattenberg, J.M. Impact of NAFLD on the Incidence of Cardiovascular Diseases in a Primary Care Population in Germany. Dig. Dis. Sci. 2020, 65, 2112–2119. [Google Scholar] [CrossRef]
- Targher, G.; Day, C.P.; Bonora, E. Risk of Cardiovascular Disease in Patients With Nonalcoholic Fatty Liver Disease. N. Engl. J. Med. 2010, 363, 1341–1350. [Google Scholar] [CrossRef]
- Mabuchi, H.; Koizumi, J.; Shimizu, M.; Takeda, R. Development of Coronary Heart Disease in Familial Hypercholesterolemia. Circulation 1989, 79, 225–232. [Google Scholar] [CrossRef]
- Okamura, T.; Tsukamoto, K.; Arai, H.; Fujioka, Y.; Ishigaki, Y.; Koba, S.; Ohmura, H.; Shoji, T.; Yokote, K.; Yoshida, H.; et al. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2022. J. Atheroscler. Thromb. 2024, 31, 641–853. [Google Scholar] [CrossRef] [PubMed]
- Tada, H.; Kawashiri, M.A.; Yamagishi, M. Clinical Perspectives of Genetic Analyses on Dyslipidemia and Coronary Artery Disease. J. Atheroscler. Thromb. 2017, 24, 452–461. [Google Scholar] [CrossRef]
- Zhou, M.; Zhao, D. Familial Hypercholesterolemia in Asian Populations. J. Atheroscler. Thromb. 2016, 23, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Seidah, N.G. PCSK9 as a Therapeutic Target of Dyslipidemia. Expert Opin. Ther. Targets. 2009, 13, 19–28. [Google Scholar] [CrossRef]
- Tajima, T.; Morita, H.; Ito, K.; Yamazaki, T.; Kubo, M.; Komuro, I.; Momozawa, Y. Blood Lipid-Related Low-Frequency Variants in LDLR and PCSK9 Are Associated With Onset Age and Risk of Myocardial Infarction in Japanese. Sci. Rep. 2018, 8, 8107. [Google Scholar] [CrossRef]
- Noguchi, T.; Katsuda, S.; Kawashiri, M.A.; Tada, H.; Nohara, A.; Inazu, A.; Yamagishi, M.; Kobayashi, J.; Mabuchi, H. The E32K Variant of PCSK9 Exacerbates the Phenotype of Familial Hypercholesterolaemia by Increasing PCSK9 Function and Concentration in the Circulation. Atherosclerosis 2010, 210, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Mabuchi, H.; Nohara, A.; Noguchi, T.; Kobayashi, J.; Kawashiri, M.A.; Inoue, T.; Mori, M.; Tada, H.; Nakanishi, C.; Yagi, K.; et al. Genotypic and Phenotypic Features in Homozygous Familial Hypercholesterolemia Caused by Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Gain-of-Function Mutation. Atherosclerosis 2014, 236, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Drouin-Chartier, J.P.; Tremblay, A.J.; Hogue, J.C.; Ooi, T.C.; Lamarche, B.; Couture, P. The Contribution of PCSK9 Levels to the Phenotypic Severity of Familial Hypercholesterolemia Is Independent of LDL Receptor Genotype. Metabolism 2015, 64, 1541–1547. [Google Scholar] [CrossRef]
- Almontashiri, N.A.; Vilmundarson, R.O.; Ghasemzadeh, N.; Dandona, S.; Roberts, R.; Quyyumi, A.A.; Chen, H.H.; Stewart, A.F. Plasma PCSK9 Levels Are Elevated With Acute Myocardial Infarction in Two Independent Retrospective Angiographic Studies. PLoS ONE 2014, 9, e106294. [Google Scholar] [CrossRef]
- Sturm, A.C.; Knowles, J.W.; Gidding, S.S.; Ahmad, Z.S.; Ahmed, C.D.; Ballantyne, C.M.; Baum, S.J.; Bourbon, M.; Carrié, A.; Cuchel, M.; et al. Clinical Genetic Testing for Familial Hypercholesterolemia: JACC Scientific Expert Panel. J. Am. Coll. Cardiol. 2018, 72, 662–680. [Google Scholar] [CrossRef]
- Welder, G.; Zineh, I.; Pacanowski, M.A.; Troutt, J.S.; Cao, G.; Konrad, R.J. High-Dose Atorvastatin Causes a Rapid Sustained Increase in Human Serum PCSK9 and Disrupts Its Correlation With LDL Cholesterol. J. Lipid Res. 2010, 51, 2714–2721. [Google Scholar] [CrossRef]
- Ruscica, M.; Ferri, N.; Macchi, C.; Meroni, M.; Lanti, C.; Ricci, C.; Maggioni, M.; Fracanzani, A.L.; Badiali, S.; Fargion, S.; et al. Liver Fat Accumulation Is Associated With Circulating PCSK9. Ann. Med. 2016, 48, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Sugimoto, K.; Inui, H.; Fukusato, T. Current Pharmacological Therapies for Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. World J. Gastroenterol. 2015, 21, 3777–3785. [Google Scholar] [CrossRef]
- Athyros, V.G.; Katsiki, N.; Mikhailidis, D.P. NAFLD and Statins. Dig. Dis. Sci. 2020, 65, 3052–3053. [Google Scholar] [CrossRef]
- Long, M.T.; Pedley, A.; Colantonio, L.D.; Massaro, J.M.; Hoffmann, U.; Muntner, P.; Fox, C.S. Development and Validation of the Framingham Steatosis Index to Identify Persons With Hepatic Steatosis. Clin. Gastroenterol. Hepatol. 2016, 14, 1172–1180.e1172. [Google Scholar] [CrossRef]
- Zou, Y.; Zhong, L.; Hu, C.; Sheng, G. Association Between the Alanine Aminotransferase/Aspartate Aminotransferase Ratio and New-Onset Non-alcoholic Fatty Liver Disease in a Nonobese Chinese Population: A Population-Based Longitudinal Study. Lipids Health Dis. 2020, 19, 245. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, T.; Hirayama, S.; Watanabe, T.; Yokomura, M.; Kohno, M.; Sato, T.; Bujo, H.; Sato, A.; Murata, M.; Miida, T.; et al. Triglyceride Concentrations Should Be Measured After Elimination of Free Glycerol to Exclude Interindividual Variations Due to Adiposity and Fasting Status. Clin. Chem. Lab. Med. 2017, 55, e191–e194. [Google Scholar] [CrossRef] [PubMed]
- Koyama, I.; Imano, H.; Nakamura, M.; Kitamura, A.; Kiyama, M.; Miyamoto, Y.; Iso, H. A Method for Measuring Glycerol-Blanked Triglyceride Concentrations by Using Gas Chromatography-Isotope Dilution Mass Spectrometry. Ann. Clin. Biochem. 2020, 57, 253–261. [Google Scholar] [CrossRef]
- Nakamura, M.; Kiyama, M.; Kitamura, A.; Ishikawa, Y.; Sato, S.; Noda, H.; Yoshiike, N. Revised System to Evaluate Measurement of Blood Chemistry Data From the Japanese National Health and Nutrition Survey and Prefectural Health and Nutrition Surveys. J. Epidemiol. 2013, 23, 28–34. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Hoover, J.; et al. ClinVar: Public Archive of Interpretations of Clinically Relevant Variants. Nucleic Acids Res. 2016, 44, D862–D868. [Google Scholar] [CrossRef]
- Collaboration, N.C.D.R.F. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- Yasuda, T.; Hirata, K.I.; Ishida, T.; Kojima, Y.; Tanaka, H.; Okada, T.; Quertermous, T.; Yokoyama, M. Endothelial Lipase Is Increased by Inflammation and Promotes LDL Uptake in Macrophages. J. Atheroscler. Thromb. 2007, 14, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, G.N.; Landis, C.S.; Jin, G.Y.; Haigh, W.G.; Farrell, G.C.; Kuver, R.; Lee, S.P.; Savard, C. Cholesterol Crystals in Hepatocyte Lipid Droplets Are Strongly Associated With Human Nonalcoholic Steatohepatitis. Hepatol. Commun. 2019, 3, 776–791. [Google Scholar] [CrossRef]
- Madison, B.B. Srebp2: A Master Regulator of Sterol and Fatty Acid Synthesis. J. Lipid Res. 2016, 57, 333–335. [Google Scholar] [CrossRef]
- Raal, F.; Panz, V.; Immelman, A.; Pilcher, G. Elevated PCSK9 Levels in Untreated Patients With Heterozygous or Homozygous Familial Hypercholesterolemia and the Response to High-Dose Statin Therapy. J. Am. Heart Assoc. 2013, 2, e000028. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, R. ER stress and hepatic lipid metabolism. Front. Genet. 2014, 5, 112. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, S.; Gantz, D.L.; Gursky, O. Effects of phospholipase A(2) and its products on structural stability of human LDL: Relevance to formation of LDL-derived lipid droplets. J. Lipid. Res. 2011, 52, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Lambert, G.; Charlton, F.; Rye, K.A.; Piper, D.E. Molecular Basis of PCSK9 Function. Atherosclerosis 2009, 203, 1–7. [Google Scholar] [CrossRef]
- Demers, A.; Samami, S.; Lauzier, B.; Des Rosiers, C.; Ngo Sock, E.T.; Ong, H.; Mayer, G. PCSK9 Induces CD36 Degradation and Affects Long-Chain Fatty Acid Uptake and Triglyceride Metabolism in Adipocytes and in Mouse Liver. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 2517–2525. [Google Scholar] [CrossRef] [PubMed]
- Abdelhameed, F.; Kite, C.; Lagojda, L.; Dallaway, A.; Chatha, K.K.; Chaggar, S.S.; Dalamaga, M.; Kassi, E.; Kyrou, I.; Randeva, H.S. Non-invasive Scores and Serum Biomarkers for Fatty Liver in the Era of Metabolic Dysfunction-associated Steatotic Liver Disease (MASLD): A Comprehensive Review From NAFLD to MAFLD and MASLD. Curr. Obes. Rep. 2024, 13, 510–531. [Google Scholar] [CrossRef]
- Fahy, E.; Cotter, D.; Sud, M.; Subramaniam, S. Lipid classification, structures and tools. Biochim. Biophys. Acta 2011, 1811, 637–647. [Google Scholar] [CrossRef]
Variables | Mean ± SD or Median (IQR) |
---|---|
Age, years | 57 ± 10 |
Male, % | 12% |
BMI, kg/m2 | 23.2 ± 3.1 |
TG, mmol/L | 1.50 ± 0.77 |
HDL-C, mmol/L | 1.82 ± 0.53 |
LDL-C, mmol/L | 3.38 ± 0.78 |
PCSK9, ng/mL | 312 (263–344) |
AST:ALT ratio | 0.88 (0.77–1.07) |
Variables | r | p-Value | β | p-Value |
---|---|---|---|---|
Age, years | −0.12 | 0.56 | - | - |
Male | −0.36 | 0.07 | - | - |
BMI, kg/m2 | 0.02 | 0.93 | - | - |
TG, mmol/L | −0.17 | 0.40 | - | - |
HDL-C, mmol/L | 0.30 | 0.14 | - | - |
LDL-C, mmol/L | −0.36 | 0.07 | −0.47 | 0.06 |
ALT:AST ratio | −0.45 * | 0.02 | −0.67 * | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamasaki, M.; Sakane, N.; Kotani, K. Nonalcoholic Fatty Liver Disease Risk and Proprotein Convertase Subtilisin Kexin 9 in Familial Hypercholesterolemia Under Statin Treatment. Nutrients 2024, 16, 3686. https://doi.org/10.3390/nu16213686
Hamasaki M, Sakane N, Kotani K. Nonalcoholic Fatty Liver Disease Risk and Proprotein Convertase Subtilisin Kexin 9 in Familial Hypercholesterolemia Under Statin Treatment. Nutrients. 2024; 16(21):3686. https://doi.org/10.3390/nu16213686
Chicago/Turabian StyleHamasaki, Masato, Naoki Sakane, and Kazuhiko Kotani. 2024. "Nonalcoholic Fatty Liver Disease Risk and Proprotein Convertase Subtilisin Kexin 9 in Familial Hypercholesterolemia Under Statin Treatment" Nutrients 16, no. 21: 3686. https://doi.org/10.3390/nu16213686
APA StyleHamasaki, M., Sakane, N., & Kotani, K. (2024). Nonalcoholic Fatty Liver Disease Risk and Proprotein Convertase Subtilisin Kexin 9 in Familial Hypercholesterolemia Under Statin Treatment. Nutrients, 16(21), 3686. https://doi.org/10.3390/nu16213686