Effects of a Functional Cone Mushroom (Termitomyces fuliginosus) Protein Snack Bar on Cognitive Function in Middle Age: A Randomized Double-Blind Placebo-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of a Functional Cone Mushroom Protein Snack Bar
2.1.1. Preparation of a Cone-Mushroom-Derived Protein Concentrate
2.1.2. Preparation of a Functional Cone Mushroom Protein Snack Bar
2.2. Determination of Total Phenolic Content of a Function Cone Mushroom Protein Snack Bar
2.3. Determination of Total Flavonoid Content in a Functional Cone Mushroom Protein Snack Bar
2.4. Determination of the Amino Acid Profile of a Cone-Mushroom-Derived Protein Concentrate or Functional Cone Mushroom (FCM) Protein Snack Bar
2.5. Determination of Antioxidant Activity
2.5.1. DPPH (1,1-Diphenyl-2-Picrylhydrazyl Radical) Inhibition of a Functional Cone Mushroom (FCM) Snack Bar
2.5.2. ABTS (2,2′-Azino-Bis-(3-Ethylbenzthiazoline-6-Sulphonic Acid Radical) Inhibition of a Functional Cone Mushroom (FCM) Snack Bar
2.6. Determination of Anti-Inflammation Activities by COX-II (Cyclooxygenase-II) Inhibition of a Functional Cone Mushroom (FCM) Snack Bar
2.7. Determination of Neurotransmitter Inhibition Activity
2.7.1. AChE (Acetylcholinesterase Enzyme) Inhibition of a Functional Cone Mushroom (FCM) Snack Bar
2.7.2. MAO (Monoamine Oxidase Enzyme) Inhibition of a Functional Cone Mushroom (FCM) Snack Bar
2.8. Study Design and Participants
2.9. Sample Size Calculation
2.10. Cognitive Function Assessment
2.11. Computerized Assessment Battery Test
2.12. Statistical Analysis
3. Results
3.1. Amino Acid Profile of Cone Mushroom and Cone Mushroom Protein Concentrate
3.2. Amino Acid Profile of FCM Snack Bar
3.3. Nutritional Content of the FCM Snack Bar
3.4. Phytochemical Contents of the FCM Snack Bar
3.5. Biological Activities of the FCM Snack Bar
3.6. Effect of the FCM Snack Bar Depending on Subjects’ Demographic Data
3.7. Effect of the FCM Snack Bar on Body Composition
3.8. Effect of the FCM Snack Bar on Cognitive Processing
3.9. Effect of the FCM Snack Bar on Memory
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, W.; Chen, P.; Cai, H.; Zhang, Q.; Su, Z.; Cheung, T.; Jackson, T.; Sha, S.; Xiang, Y.T. Worldwide prevalence of mild cognitive impairment among community dwellers aged 50 years and older: A meta-analysis and systematic review of epidemiology studies. Age Ageing 2022, 51, afac173. [Google Scholar] [PubMed]
- Pais, R.; Ruano, L.; Carvalho, O.P.; Barros, H. Global Cognitive Impairment Prevalence and Incidence in Community Dwelling Older Adults—A Systematic Review. Geriatrics 2020, 5, 84. [Google Scholar] [CrossRef] [PubMed]
- Shiojima, Y.; Takahashi, M.; Takahashi, R.; Moriyama, H.; Bagchi, D.; Bagchi, M.; Akanuma, M. Effect of Dietary Pyrroloquinoline Quinone Disodium Salt on Cognitive Function in Healthy Volunteers: A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study. J. Am. Nutr. Assoc. 2022, 41, 796–809. [Google Scholar] [CrossRef] [PubMed]
- Avgerinos, K.I.; Spyrou, N.; Bougioukas, K.I.; Kapogiannis, D. Effects of creatine supplementation on cognitive function of healthy individuals: A systematic review of randomized controlled trials. Exp. Gerontol. 2018, 108, 166–173. [Google Scholar] [CrossRef]
- Wattanathorn, J.; Somboonporn, W.; Thukham-Mee, W.; Sungkamnee, S. Memory-Enhancing Effect of 8-Week Consumption of the Quercetin-Enriched Culinary Herbs-Derived Functional Ingredients: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Foods 2022, 11, 2678. [Google Scholar] [CrossRef]
- Vyas, C.M.; Manson, J.E.; Sesso, H.D.; Rist, P.M.; Weinberg, A.; Kim, E.; Moorthy, M.V.; Cook, N.R.; Okereke, O.I. Effect of cocoa extract supplementation on cognitive function: Results from the clinic subcohort of the COSMOS trial. Am. J. Clin. Nutr. 2024, 119, 39–48. [Google Scholar] [CrossRef]
- Dimopoulou, M.; Vareltzis, P.; Floros, S.; Androutsos, O.; Bargiota, A.; Gortzi, O. Development of a Functional Acceptable Diabetic and Plant-Based Snack Bar Using Mushroom (Coprinus comatus) Powder. Foods 2023, 12, 2702. [Google Scholar] [CrossRef]
- Singh, A.; Kumari, A.; Chauhan, A.K. Formulation and evaluation of novel functional snack bar with amaranth, rolled oat, and unripened banana peel powder. J. Food Sci. Technol. 2022, 59, 3511–3521. [Google Scholar] [CrossRef]
- Pinto, V.R.A.; Freitas, T.B.O.; Dantas, M.I.S.; Della Lucia, S.M.; Melo, L.F.; Minim, V.P.R.; Bressan, J. Influence of package and health-related claims on perception and sensory acceptability of snack bars. Food Res. Int. 2017, 101, 103–113. [Google Scholar] [CrossRef]
- Paloi, S.; Kumla, J.; Paloi, B.P.; Srinuanpan, S.; Hoijang, S.; Karunarathna, S.C.; Acharya, K.; Suwannarach, N.; Lumyong, S. Termite Mushrooms (Termitomyces), a Potential Source of Nutrients and Bioactive Compounds Exhibiting Human Health Benefits: A Review. J. Fungi 2023, 9, 112. [Google Scholar] [CrossRef]
- Hsieh, H.M.; Ju, Y.M. Medicinal components in Termitomyces mushrooms. Appl. Microbiol. Biotechnol. 2018, 102, 4987–4994. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Kim, Y.S.; Kwon, E.; Yun, J.W.; Kang, B.C. Genotoxicity Evaluation of Termite Mushroom, Termitomyces albuminosus (Agaricomycetes), Powder. Int. J. Med. Mushrooms 2021, 23, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Sitati, C.N.W.; Ogila, K.O.; Waihenya, R.W.; Ochola, L.A. Phytochemical Profile and Antimicrobial Activities of Edible Mushroom Termitomyces striatus. Evid. Based Complement. Alternat. Med. 2021, 2021, 3025848. [Google Scholar] [CrossRef] [PubMed]
- Docherty, S.; Doughty, F.L.; Smith, E.F. The Acute and Chronic Effects of Lion’s Mane Mushroom Supplementation on Cognitive Function, Stress and Mood in Young Adults: A Double-Blind, Parallel Groups, Pilot Study. Nutrients 2023, 15, 4842. [Google Scholar] [CrossRef]
- Cavanna, F.; Muller, S.; de la Fuente, L.A.; Zamberlan, F.; Palmucci, M.; Janeckova, L.; Kuchar, M.; Pallavicini, C.; Tagliazucchi, E. Microdosing with psilocybin mushrooms: A double-blind placebo-controlled study. Transl. Psychiatry 2022, 12, 307. [Google Scholar] [CrossRef]
- Li, I.C.; Lee, L.Y.; Tzeng, T.T.; Chen, W.P.; Chen, Y.P.; Shiao, Y.J.; Chen, C.C. Neurohealth Properties of Hericium erinaceus Mycelia Enriched with Erinacines. Behav. Neurol. 2018, 2018, 5802634. [Google Scholar]
- Nagano, M.; Shimizu, K.; Kondo, R.; Hayashi, C.; Sato, D.; Kitagawa, K.; Ohnuki, K. Reduction of depression and anxiety by 4 weeks Hericium erinaceus intake. Biomed. Res. 2010, 31, 231–237. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, D.; Qi, R.; Chen, Y.; Sheng, B.; Zhang, X. Association between Intake of Edible Mushrooms and Algae and the Risk of Cognitive Impairment in Chinese Older Adults. Nutrients 2024, 16, 637. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Im, K.H.; Choi, J.; Shin, P.G.; Lee, T.S. Evaluation of Antioxidant, Anti-cholinesterase, and Anti-inflammatory Effects of Culinary Mushroom Pleurotus pulmonarius. Mycobiology 2016, 44, 291–301. [Google Scholar] [CrossRef]
- Parikh, V.; Bangasser, D.A. Cholinergic Signaling Dynamics and Cognitive Control of Attention. Curr. Top. Behav. Neurosci. 2020, 45, 71–87. [Google Scholar]
- Bernaud, V.E.; Hiroi, R.; Poisson, M.L.; Castaneda, A.J.; Kirshner, Z.Z.; Gibbs, R.B.; Bimonte-Nelson, H.A. Age Impacts the Burden That Reference Memory Imparts on an Increasing Working Memory Load and Modifies Relationships With Cholinergic Activity. Front. Behav. Neurosci. 2021, 15, 610078. [Google Scholar] [CrossRef] [PubMed]
- Ashby, F.G.; Zetzer, H.A.; Conoley, C.W.; Pickering, A.D. Just do it: A neuropsychological theory of agency, cognition, mood, and dopamine. J. Exp. Psychol. Gen. 2024, 153, 1582–1604. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.N.; Mishra, D.; Singh, P.; Vamanu, E.; Singh, M.P. Therapeutic applications of mushrooms and their biomolecules along with a glimpse of in silico approach in neurodegenerative diseases. Biomed. Pharmacother. 2021, 137, 111377. [Google Scholar] [CrossRef] [PubMed]
- Szucko-Kociuba, I.; Trzeciak-Ryczek, A.; Kupnicka, P.; Chlubek, D. Neurotrophic and Neuroprotective Effects of Hericium erinaceus. Int. J. Mol. Sci. 2023, 24, 15960. [Google Scholar] [CrossRef]
- Magni, G.; Riboldi, B.; Petroni, K.; Ceruti, S. Flavonoids bridging the gut and the brain: Intestinal metabolic fate, and direct or indirect effects of natural supporters against neuroinflammation and neurodegeneration. Biochem. Pharmacol. 2022, 205, 115257. [Google Scholar] [CrossRef]
- Polyiam, P.; Thukhammee, W. A Comparison of Phenolic, Flavonoid, and Amino Acid Compositions and In Vitro Antioxidant and Neuroprotective Activities in Thai Plant Protein Extracts. Molecules 2024, 29, 2990. [Google Scholar] [CrossRef]
- Minocha, T.; Birla, H.; Obaid, A.A.; Rai, V.; Sushma, P.; Shivamallu, C.; Moustafa, M.; Al-Shehri, M.; Al-Emam, A.; Tikhonova, M.A.; et al. Flavonoids as Promising Neuroprotectants and Their Therapeutic Potential against Alzheimer’s Disease. Oxid. Med. Cell Longev. 2022, 2022, 6038996. [Google Scholar] [CrossRef]
- Calis, Z.; Mogulkoc, R.; Baltaci, A.K. The Roles of Flavonols/Flavonoids in Neurodegeneration and Neuroinflammation. Mini Rev. Med. Chem. 2020, 20, 1475–1488. [Google Scholar] [CrossRef]
- Wood, E.; Hein, S.; Mesnage, R.; Fernandes, F.; Abhayaratne, N.; Xu, Y.; Zhang, Z.; Bell, L.; Williams, C.; Rodriguez-Mateos, A. Wild blueberry (poly)phenols can improve vascular function and cognitive performance in healthy older individuals: A double-blind randomized controlled trial. Am. J. Clin. Nutr. 2023, 117, 1306–1319. [Google Scholar] [CrossRef]
- Liuzzi, G.M.; Petraglia, T.; Latronico, T.; Crescenzi, A.; Rossano, R. Antioxidant Compounds from Edible Mushrooms as Potential Candidates for Treating Age-Related Neurodegenerative Diseases. Nutrients 2023, 15, 1913. [Google Scholar] [CrossRef]
- Quettier-Deleu, C.; Gressier, B.; Vasseur, J.; Dine, T.; Brunet, C.; Luyckx, M.; Cazin, M.; Cazin, J.C.; Bailleul, F.; Trotin, F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol. 2000, 72, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Wattanathorn, J.; Kawvised, S.; Thukham-Mee, W. Encapsulated Mulberry Fruit Extract Alleviates Changes in an Animal Model of Menopause with Metabolic Syndrome. Oxid. Med. Cell Longev. 2019, 2019, 5360560. [Google Scholar] [CrossRef] [PubMed]
- Sakpal, T.V. Sample size estimation in clinical trial. Perspect. Clin. Res. 2010, 1, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Hunerli, D.; Emek-Savas, D.D.; Cavusoglu, B.; Donmez Colakoglu, B.; Ada, E.; Yener, G.G. Mild cognitive impairment in Parkinson’s disease is associated with decreased P300 amplitude and reduced putamen volume. Clin. Neurophysiol. 2019, 130, 1208–1217. [Google Scholar] [CrossRef]
- Peth-Nui, T.; Wattanathorn, J.; Muchimapura, S.; Tong-Un, T.; Piyavhatkul, N.; Rangseekajee, P.; Ingkaninan, K.; Vittaya-Areekul, S. Effects of 12-Week Bacopa monnieri Consumption on Attention, Cognitive Processing, Working Memory, and Functions of Both Cholinergic and Monoaminergic Systems in Healthy Elderly Volunteers. Evid. Based Complement. Alternat. Med. 2012, 2012, 606424. [Google Scholar] [CrossRef]
- Molole, G.J.; Gure, A.; Abdissa, N. Determination of total phenolic content and antioxidant activity of Commiphora mollis (Oliv.) Engl. resin. BMC Chem. 2022, 16, 48. [Google Scholar] [CrossRef]
- Duncan, E.; Roach, B.J.; Massa, N.; Hamilton, H.K.; Bachman, P.M.; Belger, A.; Carrion, R.E.; Johannesen, J.K.; Light, G.A.; Niznikiewicz, M.A.; et al. Auditory N100 amplitude deficits predict conversion to psychosis in the North American Prodrome Longitudinal Study (NAPLS-2) cohort. Schizophr. Res. 2022, 248, 89–97. [Google Scholar] [CrossRef]
- Naatanen, R.; Picton, T. The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology 1987, 24, 375–425. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, T.; He, Y.; Meng, F.; Zhang, K.; Jin, X.; Cui, X.; Luo, X. Value of P300 amplitude in the diagnosis of untreated first-episode schizophrenia and psychosis risk syndrome in children and adolescents. BMC Psychiatry 2023, 23, 743. [Google Scholar] [CrossRef]
- Dallmer-Zerbe, I.; Popp, F.; Lam, A.P.; Philipsen, A.; Herrmann, C.S. Transcranial Alternating Current Stimulation (tACS) as a Tool to Modulate P300 Amplitude in Attention Deficit Hyperactivity Disorder (ADHD): Preliminary Findings. Brain Topogr. 2020, 33, 191–207. [Google Scholar] [CrossRef]
- Thomaschewski, M.; Heldmann, M.; Uter, J.C.; Varbelow, D.; Munte, T.F.; Keck, T. Changes in attentional resources during the acquisition of laparoscopic surgical skills. BJS Open 2021, 5, zraa012. [Google Scholar] [CrossRef] [PubMed]
- Toyoshima, K.; Toyomaki, A.; Miyazaki, A.; Martinez-Aran, A.; Vieta, E.; Kusumi, I. Associations between cognitive impairment and P300 mean amplitudes in individuals with bipolar disorder in remission. Psychiatry Res. 2020, 290, 113125. [Google Scholar] [CrossRef] [PubMed]
- Herzog, N.D.; Steinfath, T.P.; Tarrasch, R. Critical Dynamics in Spontaneous Resting-State Oscillations Are Associated With the Attention-Related P300 ERP in a Go/Nogo Task. Front. Neurosci. 2021, 15, 632922. [Google Scholar] [CrossRef]
- Santopetro, N.J.; Brush, C.J.; Bruchnak, A.; Klawohn, J.; Hajcak, G. A reduced P300 prospectively predicts increased depressive severity in adults with clinical depression. Psychophysiology 2021, 58, e13767. [Google Scholar] [CrossRef]
- Dan, Z.; Li, H.; Xie, J. Efficacy of donepezil plus hydrogen-oxygen mixture inhalation for treatment of patients with Alzheimer disease: A retrospective study. Medicine 2023, 102, e34382. [Google Scholar] [CrossRef]
- Tarawneh, H.Y.; Mulders, W.; Sohrabi, H.R.; Martins, R.N.; Jayakody, D.M.P. Investigating Auditory Electrophysiological Measures of Participants with Mild Cognitive Impairment and Alzheimer’s Disease: A Systematic Review and Meta-Analysis of Event-Related Potential Studies. J. Alzheimers Dis. 2021, 84, 419–448. [Google Scholar] [CrossRef]
- Li, I.C.; Chang, H.H.; Lin, C.H.; Chen, W.P.; Lu, T.H.; Lee, L.Y.; Chen, Y.W.; Chen, Y.P.; Chen, C.C.; Lin, D.P. Prevention of Early Alzheimer’s Disease by Erinacine A-Enriched Hericium erinaceus Mycelia Pilot Double-Blind Placebo-Controlled Study. Front. Aging Neurosci. 2020, 12, 155. [Google Scholar] [CrossRef]
- Chong, P.S.; Fung, M.-L.; Wong, K.H.; Lim, L.W. Therapeutic Potential of Hericium erinaceus for Depressive Disorder. Int. J. Mol. Sci. 2020, 21, 163. [Google Scholar] [CrossRef]
- Yang, C.; Mao, Z.; Wu, S.; Yin, S.; Sun, Y.; Cui, D. Influencing factors, gender differences and the decomposition of inequalities in cognitive function in Chinese older adults: A population-based cohort study. BMC Geriatr. 2024, 24, 371. [Google Scholar] [CrossRef]
- Kim, M.; Park, J.M. Factors affecting cognitive function according to gender in community-dwelling elderly individuals. Epidemiol. Health 2017, 39, e2017054. [Google Scholar] [CrossRef]
- Behl, T.; Kaur, D.; Sehgal, A.; Singh, S.; Sharma, N.; Zengin, G.; Andronie-Cioara, F.L.; Toma, M.M.; Bungau, S.; Bumbu, A.G. Role of Monoamine Oxidase Activity in Alzheimer’s Disease: An Insight into the Therapeutic Potential of Inhibitors. Molecules 2021, 26, 3724. [Google Scholar] [CrossRef] [PubMed]
- Olasehinde, T.A.; Oyeleye, S.I.; Ibeji, C.U.; Oboh, G. Beetroot supplemented diet exhibit anti-amnesic effect via modulation of cholinesterases, purinergic enzymes, monoamine oxidase and attenuation of redox imbalance in the brain of scopolamine treated male rats. Nutr. Neurosci. 2022, 25, 1011–1025. [Google Scholar] [CrossRef]
- Hong, R.; Li, X. Discovery of monoamine oxidase inhibitors by medicinal chemistry approaches. MedChemComm 2019, 10, 10–25. [Google Scholar] [CrossRef]
- Phan, C.W.; David, P.; Naidu, M.; Wong, K.H.; Sabaratnam, V. Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: Diversity, metabolite, and mechanism. Crit. Rev. Biotechnol. 2015, 35, 355–368. [Google Scholar] [CrossRef]
- Sepčić, K.; Sabotič, J.; Ohm, R.O.; Drobne, D.; Jemec Kokalj, A. First evidence of cholinesterase-like activity in Basidiomycota. PLoS ONE 2019, 14, e0216077. [Google Scholar] [CrossRef]
- Lazur, J.; Hnatyk, K.; Kała, K.; Sułkowska-Ziaja, K.; Muszyńska, B. Discovering the Potential Mechanisms of Medicinal Mushrooms Antidepressant Activity: A Review. Antioxidants 2023, 12, 623. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, L.; Zeng, X.; Zhang, X.; Liu, Y.; Wu, Z.; Weng, P. The intervention of unique plant polysaccharides—Dietary fiber on depression from the gut-brain axis. Int. J. Biol. Macromol. 2021, 170, 336–342. [Google Scholar] [CrossRef]
- Cheatham, C.L.; Nieman, D.C.; Neilson, A.P.; Lila, M.A. Enhancing the Cognitive Effects of Flavonoids With Physical Activity: Is There a Case for the Gut Microbiome? Front. Neurosci. 2022, 16, 833202. [Google Scholar] [CrossRef]
- Whyte, A.R.; Cheng, N.; Butler, L.T.; Lamport, D.J.; Williams, C.M. Flavonoid-Rich Mixed Berries Maintain and Improve Cognitive Function Over a 6 h Period in Young Healthy Adults. Nutrients 2019, 11, 2685. [Google Scholar] [CrossRef]
- Cheatham, C.L.; Canipe, L.G., III; Millsap, G.; Stegall, J.M.; Chai, S.C.; Sheppard, K.W.; Lila, M.A. Six-month intervention with wild blueberries improved speed of processing in mild cognitive decline: A double-blind, placebo-controlled, randomized clinical trial. Nutr. Neurosci. 2023, 26, 1019–1033. [Google Scholar] [CrossRef]
- Alharbi, M.H.; Lamport, D.J.; Dodd, G.F.; Saunders, C.; Harkness, L.; Butler, L.T.; Spencer, J.P. Flavonoid-rich orange juice is associated with acute improvements in cognitive function in healthy middle-aged males. Eur. J. Nutr. 2016, 55, 2021–2029. [Google Scholar] [CrossRef] [PubMed]
Amino Acid Profile | Cone Mushroom | Cone Mushroom Protein Concentrate |
---|---|---|
Mg/100 g Protein | ||
EAAs | ||
Arginine | 4542.52 | ND |
Histidine | 2098.65 | 1827.61 |
Isoleucine | 2885.66 | 3414.04 |
Leucine | 5842.37 | 2810.14 |
Lysine | 5399.42 | 3252.26 |
Methionine | 829.49 | ND |
Phenylalanine | 3445.22 | <250.00 |
Threonine | 4037.81 | ND |
Tryptophan | 1898.25 | <150.00 |
Valine | 4717.77 | 5559.13 |
Total EAA | 35,697.15 | 16,863.18 |
NEAAs | ||
Alanine | 5853.87 | 6255.23 |
Aspartic acid | 7941.97 | 6591.89 |
Cysteine | - | - |
Cystine | <200.00 | ND |
Glutamic acid | 14,134.23 | 12,284.87 |
Glycine | 3897.99 | 5124.49 |
Hydroxyproline | ND | ND |
Proline | 3435.40 | 3519.97 |
Serine | 4427.12 | <200.00 |
Tyrosine | 2374.09 | ND |
Total NEAAs | 42,064.67 | 33,776.44 |
Amino Acid Profile | FCM Snack Bar (mg/100 g Sample) |
---|---|
EAAs | |
Arginine | 1345.53 |
Histidine | 307.23 |
Isoleucine | 431.27 |
Leucine | 823.07 |
Lysine | 468.21 |
Methionine | ND |
Phenylalanine | 573.22 |
Threonine | 425.86 |
Tryptophan | 153.72 |
Valine | 646.21 |
Total EAA | 5174.32 |
Parameters | 100 g of Placebo | 100 g of FCM | Method |
---|---|---|---|
Energy (kcal) | 452.57 | 448.09 | Compendium of Method for Food Analysis (2003), p. 2–18 |
Protein (g) | 14.11 | 13.97 | AOAC (2019) 981.10 |
Carbohydrate (g) | 48.65 | 48.17 | Compendium of Method for Food Analysis (2003), p. 2–9 to p. 2–10 |
Total fat (g) | 22.39 | 22.17 | AOAC (2019) 922.06 |
Dietary fiber (g) | 16.80 | 16.63 | In-house method TE-CH-076 based on AOAC (2019) 985.29 |
Phytochemical Contents | Placebo | FCM Snack Bar |
---|---|---|
Total phenolic content (mg of gallic acid/g) | 1.94 ± 0.14 | 2.29 ± 0.15 |
Total flavonoid content (mg of quercetin/g) | 0.08 ± 0.01 | 0.13 ± 0.01 * |
Biological Activities Parameters | Placebo | FCM Snack Bar | ||
---|---|---|---|---|
% Inhibition | IC50 (mg/mL) | % Inhibition | IC50 (mg/mL) | |
DPPH inhibition | 14.83 ± 0.27 | 8.64 ± 0.04 | 16.84 ± 0.26 ** | 7.87 ± 0.04 |
ABTS inhibition | 17.30 ± 0.11 | 5.58 ± 0.02 | 19.40 ± 0.06 *** | 4.38 ± 0.01 |
COX-II inhibition | 10.35 ± 0.10 | 6.89 ± 0.03 | 12.78 ± 0.10 *** | 5.38 ± 0.06 |
Acetylcholinesterase inhibition | 17.95 ± 0.06 | 5.76± 0.02 | 20.37 ± 0.02 *** | 4.48 ± 0.02 |
Monoamine oxidase inhibition | 18.26 ± 0.05 | 5.79 ± 0.01 | 18.97 ± 0.05 * | 5.23 ± 0.03 |
Parameters | Baseline | ||
---|---|---|---|
Placebo (n = 8) | FCM1 (n = 9) | FCM2 (n = 9) | |
Age (year) | 52.50 ± 1.91 | 50.11 ± 1.49 | 52.33 ± 1.03 |
Gender (male/female) | 0/8 | 2/7 | 1/8 |
Blood Temperature (°C) | 36.58 ± 0.05 | 36.58 ± 0.05 | 36.54 ± 0.05 |
Heart rate (beats/min) | 69.63 ± 2.97 | 66.78 ± 1.94 | 70.56 ± 1.94 |
Respiratory rate (breaths/min) | 17.00 ± 0.27 | 17.00 ± 0.17 | 17.1 ± 0.20 |
Systolic BP (mmHg) | 115.75 ± 2.70 | 115.89 ± 3.60 | 115.22 ± 3.15 |
Diastolic BP (mmHg) | 76.75 ± 2.72 | 76.22 ± 3.13 | 73.22 ± 2.40 |
Body weight (kg) | 57.33 ± 4.52 | 59.71 ± 2.88 | 62.14 ± 5.80 |
BMI (kg/m2) | 24.18 ± 1.88 | 23.12 ± 0.89 | 24.74 ± 1.60 |
Parameters | 6 Weeks | ||
---|---|---|---|
Placebo (n = 8) | FCM1 (n = 9) | FCM2 (n = 9) | |
Age (year) | 52.50 ± 1.91 | 50.11 ± 1.49 | 52.33 ± 1.03 |
Gender (male/female) | 0/8 | 2/7 | 1/8 |
Blood temperature (°C) | 36.60 ± 0.05 | 36.57 ± 0.06 | 36.56 ± 0.05 |
Heart rate (beats/min) | 73.75 ± 2.07 | 70.22 ± 1.73 | 74.00 ± 2.46 |
Respiratory rate (breaths/min) | 17.13 ± 0.23 | 17.11 ± 0.11 | 17.67 ± 0.17 |
Systolic BP (mmHg) | 110.63 ± 4.93 | 116.89 ± 4.15 | 110.00 ± 3.08 |
Diastolic BP (mmHg) | 71.38 ± 3.36 | 72.44 ± 2.92 | 69.67 ± 2.86 |
Body weight (kg) | 56.94 ± 4.50 | 59.49 ± 2.88 | 62.20 ± 5.71 |
BMI (kg/m2) | 24.02 ± 1.85 | 23.02 ± 0.87 | 24.76 ± 1.53 |
Parameters | Placebo (n = 8) | FCM1 (n = 9) | FCM2 (n = 9) | |
---|---|---|---|---|
Water (%) | Baseline | 48.25 ± 1.86 | 51.42 ± 2.02 | 49.52 ± 1.70 |
6 weeks | 48.39 ± 1.87 | 51.58 ± 2.02 | 49.17 ± 1.56 | |
Visceral Fat (%) | Baseline | 6.63 ± 1.08 | 7.00 ± 0.55 | 7.78 ± 1.51 |
6 weeks | 6.50 ± 1.05 | 6.89 ± 0.61 | 7.78 ± 1.51 | |
Total Fat (%) | Baseline | 34.11 ± 2.55 | 29.74 ± 2.76 | 32.37 ± 2.32 |
6 weeks | 33.89 ± 2.55 | 29.53 ± 2.75 | 32.84 ± 2.13 | |
Muscle Mass (%) | Baseline | 34.93 ± 1.30 | 39.38 ± 1.95 | 39.18 ± 3.38 |
6 weeks | 34.79 ± 1.31 | 39.32 ± 1.92 | 39.07 ± 3.42 | |
Muscle Mass Fat (%) | Baseline | 4.25 ± 0.31 | 4.33 ± 0.37 | 4.33 ± 0.33 |
6 weeks | 4.13 ± 0.40 | 4.44 ± 0.38 | 4.33 ± 0.33 | |
Bone Mass (%) | Baseline | 2.09 ± 0.12 | 2.34 ± 0.12 | 2.36 ± 0.19 |
6 weeks | 2.06 ± 0.11 | 2.34 ± 0.12 | 2.33 ± 0.19 | |
BMR (kcal) | Baseline | 1098.00 ± 53.44 | 1206.56 ± 52.42 | 1219.78 ± 101.28 |
6 weeks | 1093.13 ± 53.53 | 1204.00 ± 51.49 | 1215.11 ± 102.26 |
Parameters | Placebo (n = 8) | FCM1 (n = 9) | FCM2 (n = 9) | ||
---|---|---|---|---|---|
Fz | N100 Latency (ms) | Baseline | 108.38 ± 1.57 | 106.11 ± 2.00 | 105.78 ± 2.27 |
6 weeks | 110.63 ± 1.98 | 110.44 ± 1.69 | 109.44 ± 1.90 | ||
N100 Amplitude (μV) | Baseline | 5.25 ± 0.79 | 6.68 ± 0.88 | 4.98 ± 0.49 | |
6 weeks | 5.36 ± 0.76 | 7.92 ± 0.61 * | 6.56 ± 0.63 | ||
P300 Latency (ms) | Baseline | 342.63 ± 7.02 | 337.00 ± 4.72 | 348.33 ± 3.94 | |
6 weeks | 336.13 ± 3.33 | 343.56 ± 3.21 | 343.44 ± 2.33 | ||
P300 Amplitude (μV) | Baseline | 25.41 ± 2.36 | 25.13 ± 2.73 | 29.34 ± 2.41 | |
6 weeks | 25.35 ± 2.85 | 24.52 ± 1.24 | 31.63 ± 1.86 * | ||
Cz | N100 Latency (ms) | Baseline | 111.75 ± 1.75 | 106.56 ± 1.82 | 106.25 ± 2.05 |
6 weeks | 107.13 ± 1.47 | 107.78 ± 1.34 | 106.78 ± 1.75 | ||
N100 Amplitude (μV) | Baseline | 6.44 ± 0.88 | 7.11 ± 0.94 | 4.89 ± 0.95 | |
6 weeks | 4.94 ± 0.81 | 5.37 ± 0.80 | 5.64 ± 0.70 | ||
P300 Latency (ms) | Baseline | 344.75 ± 4.05 | 334.22 ± 2.85 | 343.56 ± 3.00 | |
6 weeks | 342.63 ± 5.97 | 345.44 ± 4.73 | 343.44 ± 2.71 | ||
P300 Amplitude (μV) | Baseline | 26.35 ± 3.23 | 22.92 ± 2.58 | 26.36 ± 2.43 | |
6 weeks | 25.25 ± 2.81 | 24.64 ± 2.26 | 24.84 ± 1.48 |
Cognitive Domains | Parameters | Placebo (n = 8) | FCM1 (n = 9) | FCM2 (n = 9) | |
---|---|---|---|---|---|
Word Recognition | Time | Baseline | 1255.88 ± 97.31 | 1290.08 ± 105.64 | 1169.48 ± 34.27 |
6 weeks | 1118.16 ± 47.20 | 1152.69 ± 57.01 | 1195.09 ± 76.90 | ||
%Accuracy | Baseline | 90.42 ± 2.13 | 82.96 ± 4.17 | 90.00 ± 2.94 | |
6 weeks | 94.17 ± 1.64 | 88.89 ± 4.12 | 92.59 ± 1.82 | ||
Picture Recognition | Time | Baseline | 1436.75 ± 109.25 | 1379.25 ± 72.31 | 1264.16 ± 43.07 |
6 weeks | 1184.33 ± 64.37 | 1274.51 ± 59.56 | 1224.64 ± 78.72 | ||
%Accuracy | Baseline | 85.00 ± 2.31 | 88.13 ± 2.49 | 89.34 ± 1.99 | |
6 weeks | 85.00 ± 1.71 | 86.11 ± 2.98 | 87.78 ± 2.37 | ||
Sample reaction | Time | Baseline | 691.05 ± 46.18 | 779.40 ± 59.04 | 713.88 ± 25.92 |
6 weeks | 659.08 ± 39.96 | 767.54 ± 50.66 | 669.92 ± 29.11 | ||
Digit vigilance | Time | Baseline | 688.10 ± 13.04 | 679.07 ± 15.76 | 702.84 ± 9.89 |
6 weeks | 687.269 ± 17.38 | 718.71 ± 24.03 | 703.85 ± 9.98 | ||
%Accuracy | Baseline | 90.55 ± 1.86 | 91.03 ± 2.07 | 91.45 ± 1.99 | |
6 weeks | 93.43 ± 1.99 | 91.17 ± 2.20 | 92.88 ± 1.37 | ||
Choice reaction time | Time | Baseline | 935.92 ± 85.49 | 968.16 ± 84.15 | 904.65 ± 32.62 |
6 weeks | 879.90 ± 62.53 | 912.64 ± 59.01 | 843.24 ± 24.81 | ||
%Accuracy | Baseline | 90.55 ± 1.86 | 91.03 ± 2.07 | 91.45 ± 1.99 | |
6 weeks | 93.43 ± 1.99 | 91.17 ± 2.20 | 92.88 ± 1.37 | ||
Spatial memory | Time | Baseline | 1467.67 ± 110.03 | 1550.50 ± 119.26 | 1325.98 ± 86.67 |
6 weeks | 1249.20 ± 102.01 | 1326.77 ± 68.70 | 1316.46 ± 76.29 | ||
%Accuracy | Baseline | 89.93 ± 3.82 | 90.74 ± 3.07 | 91.73 ± 3.82 | |
6 weeks | 95.49 ± 2.16 | 93.21 ± 3.68 | 92.90 ± 3.21 | ||
Numeric working memory | Time | Baseline | 1060.52 ± 45.86 | 1148.97 ± 49.17 | 1051.99 ± 39.83 |
6 weeks | 1048.26 ± 61.02 | 1176.04 ± 51.13 | 1074.11 ± 41.51 | ||
%Accuracy | Baseline | 90.42 ± 4.86 | 87.41 ± 5.35 | 95.56 ± 2.08 | |
6 weeks | 91.43 ± 2.39 | 93.33 ± 3.39 | 98.75 ± 0.60 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muchimapura, S.; Thukham-mee, W.; Tong-un, T.; Sangartit, W.; Phuthong, S. Effects of a Functional Cone Mushroom (Termitomyces fuliginosus) Protein Snack Bar on Cognitive Function in Middle Age: A Randomized Double-Blind Placebo-Controlled Trial. Nutrients 2024, 16, 3616. https://doi.org/10.3390/nu16213616
Muchimapura S, Thukham-mee W, Tong-un T, Sangartit W, Phuthong S. Effects of a Functional Cone Mushroom (Termitomyces fuliginosus) Protein Snack Bar on Cognitive Function in Middle Age: A Randomized Double-Blind Placebo-Controlled Trial. Nutrients. 2024; 16(21):3616. https://doi.org/10.3390/nu16213616
Chicago/Turabian StyleMuchimapura, Supaporn, Wipawee Thukham-mee, Terdthai Tong-un, Weerapon Sangartit, and Sophida Phuthong. 2024. "Effects of a Functional Cone Mushroom (Termitomyces fuliginosus) Protein Snack Bar on Cognitive Function in Middle Age: A Randomized Double-Blind Placebo-Controlled Trial" Nutrients 16, no. 21: 3616. https://doi.org/10.3390/nu16213616
APA StyleMuchimapura, S., Thukham-mee, W., Tong-un, T., Sangartit, W., & Phuthong, S. (2024). Effects of a Functional Cone Mushroom (Termitomyces fuliginosus) Protein Snack Bar on Cognitive Function in Middle Age: A Randomized Double-Blind Placebo-Controlled Trial. Nutrients, 16(21), 3616. https://doi.org/10.3390/nu16213616