Association Between Dietary Diversity and Subjective Cognitive Decline in the Middle-Aged and Elderly Chinese Population: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Cognitive Function Assessment
2.3. Dietary Data Collection and Assessment of Dietary Diversity
2.4. Assessment of Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fischer, M.E.; Cruickshanks, K.J.; Schubert, C.R.; Pinto, A.A.; Carlsson, C.M.; Klein, B.E.K.; Klein, R.; Tweed, T.S. Age-Related Sensory Impairments and Risk of Cognitive Impairment. J. Am. Geriatr. Soc. 2016, 64, 1981–1987. [Google Scholar] [CrossRef] [PubMed]
- Jessen, F.; Amariglio, R.E.; Buckley, R.F.; van der Flier, W.M.; Han, Y.; Molinuevo, J.L.; Rabin, L.; Rentz, D.M.; Rodriguez-Gomez, O.; Saykin, A.J.; et al. The characterisation of subjective cognitive decline. Lancet Neurol. 2020, 19, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Jessen, F.; Amariglio, R.E.; van Boxtel, M.; Breteler, M.; Ceccaldi, M.; Chételat, G.; Dubois, B.; Dufouil, C.; Ellis, K.A.; van der Flier, W.M.; et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimer’s Dement. 2014, 10, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Monahan, Z.; Heath, J.; Santos, A.D.; Ford, A.; Hartwell, M. Comorbidities associated with symptoms of subjective cognitive decline in individuals aged 45–64. J. Osteopath. Med. 2024, 124, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.J.; Beaumont, H.; Ferguson, D.; Yadegarfar, M.; Stubbs, B. Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: Meta-analysis. Acta Psychiatr. Scand. 2014, 130, 439–451. [Google Scholar] [CrossRef]
- Pike, K.E.; Cavuoto, M.G.; Li, L.; Wright, B.J.; Kinsella, G.J. Subjective Cognitive Decline: Level of Risk for Future Dementia and Mild Cognitive Impairment, a Meta-Analysis of Longitudinal Studies. Neuropsychol. Rev. 2022, 32, 703–735. [Google Scholar] [CrossRef]
- van Harten, A.C.; Mielke, M.M.; Swenson-Dravis, D.M.; Hagen, C.E.; Edwards, K.K.; Roberts, R.O.; Geda, Y.E.; Knopman, D.S.; Petersen, R.C. Subjective cognitive decline and risk of MCI: The Mayo Clinic Study of Aging. Neurology 2018, 91, e300–e312. [Google Scholar] [CrossRef]
- Reisberg, B.; Prichep, L.; Mosconi, L.; John, E.R.; Glodzik-Sobanska, L.; Boksay, I.; Monteiro, I.; Torossian, C.; Vedvyas, A.; Ashraf, N.; et al. The pre-mild cognitive impairment, subjective cognitive impairment stage of Alzheimer’s disease. Alzheimer’s Dement. 2008, 4, S98–S108. [Google Scholar] [CrossRef]
- Verlinden, V.J.A.; van der Geest, J.N.; de Bruijn, R.; Hofman, A.; Koudstaal, P.J.; Ikram, M.A. Trajectories of decline in cognition and daily functioning in preclinical dementia. Alzheimer’s Dement. 2016, 12, 144–153. [Google Scholar] [CrossRef]
- Scarmeas, N.; Anastasiou, C.A.; Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018, 17, 1006–1015. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, L.; Folch, A.; Rojas, M.; Cantero, J.L.; Atienza, M.; Folch, J.; Camins, A.; Ruiz, A.; Papandreou, C.; Bulló, M. Effects of Nutrition on Cognitive Function in Adults with or without Cognitive Impairment: A Systematic Review of Randomized Controlled Clinical Trials. Nutrients 2021, 13, 3728. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.S.; Yuan, C.; Ascherio, A.; Rosner, B.A.; Blacker, D.; Willett, W.C. Long-term intake of total energy and fat in relation to subjective cognitive decline. Eur. J. Epidemiol. 2022, 37, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Fondell, E.; Ascherio, A.; Okereke, O.I.; Grodstein, F.; Hofman, A.; Willett, W.C. Long-Term Intake of Dietary Carotenoids Is Positively Associated with Late-Life Subjective Cognitive Function in a Prospective Study in US Women. J. Nutr. 2020, 150, 1871–1879. [Google Scholar] [CrossRef] [PubMed]
- Yeh, T.S.; Yuan, C.; Ascherio, A.; Rosner, B.A.; Willett, W.C.; Blacker, D. Long-term Dietary Flavonoid Intake and Subjective Cognitive Decline in US Men and Women. Neurology 2021, 97, E1041–E1056. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Cao, Y.; Ascherio, A.; Okereke, O.I.; Zong, G.; Grodstein, F.; Hofman, A.; Willett, W.C. Long-term diet quality and its change in relation to late-life subjective cognitive decline. Am. J. Clin. Nutr. 2022, 115, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Wesselman, L.M.P.; Doorduijn, A.S.; de Leeuw, F.A.; Verfaillie, S.C.J.; van Leeuwenstijn-Koopman, M.; Slot, R.E.R.; Kester, M.I.; Prins, N.D.; van de Rest, O.; de van der Schueren, M.A.E.; et al. Dietary patterns are related to clinical characteristics in memory clinic patients with subjective cognitive decline: The SCIENCe project. Nutrients 2019, 11, 1057. [Google Scholar] [CrossRef]
- Song, Y.; Wu, F.; Sharma, S.; Clendenen, T.V.; India-Aldana, S.; Afanasyeva, Y.; Gu, Y.; Koenig, K.L.; Zeleniuch-Jacquotte, A.; Chen, Y. Mid-life adherence to the Dietary Approaches to Stop Hypertension (DASH) diet and late-life subjective cognitive complaints in women. Alzheimer’s Dement. 2024, 20, 1076–1088. [Google Scholar] [CrossRef]
- WHO. Healthy Diet. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 13 August 2024).
- Chines Nutrition Society. The Chinese Dietary Guideline; People’s Health Publishing House: Beijing, China, 2022. [Google Scholar]
- U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025 ed.; U.S. Government Printing Office: Washington, DC, USA, 2020.
- Yin, Z.; Fei, Z.; Qiu, C.; Brasher, M.S.; Kraus, V.B.; Zhao, W.; Shi, X.; Zeng, Y. Dietary Diversity and Cognitive Function among Elderly People: A Population-Based Study. J. Nutr. Health Aging 2017, 21, 1089–1094. [Google Scholar] [CrossRef]
- Otsuka, R.; Nishita, Y.; Tange, C.; Tomida, M.; Kato, Y.; Nakamoto, M.; Imai, T.; Ando, F.; Shimokata, H. Dietary diversity decreases the risk of cognitive decline among Japanese older adults. Geriatr. Gerontol. Int. 2017, 17, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhou, R.; Li, F.; Chen, L.; Wu, K.; Huang, J.; Liu, H.; Huang, Z.; Xu, L.; Yuan, Z.; et al. Association between dietary diversity and cognitive impairment among the oldest-old: Findings from a nationwide cohort study. Clin. Nutr. 2021, 40, 1452–1462. [Google Scholar] [CrossRef]
- Huang, Q.; Zhong, W.; Chen, Z.; Li, Z.; Zhang, P.; Zhang, Y.; Chen, P.; Fu, Q.; Song, W.; Lyu, Y.; et al. Associations Between Specific Diets, Dietary Diversity, and Cognitive Frailty in Older Adults—China, 2002–2018. China CDC Wkly. 2023, 5, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Kiuchi, Y.; Doi, T.; Tsutsumimoto, K.; Nakakubo, S.; Kurita, S.; Nishimoto, K.; Makizako, H.; Shimada, H. Association between dietary diversity and cognitive impairment in community-dwelling older adults. Geriatr. Gerontol. Int. 2024, 24, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, A.; Wu, W.; Yang, C.; Ren, Z.; Wang, M.; Wang, P.; Zhang, Y. Dietary Diversity Is Associated With Memory Status in Chinese Adults: A Prospective Study. Front. Aging Neurosci. 2020, 12, 580760. [Google Scholar] [CrossRef] [PubMed]
- Herforth, A.W.; Wiesmann, D.; Martinez-Steele, E.; Andrade, G.; Monteiro, C.A. Introducing a Suite of Low-Burden Diet Quality Indicators That Reflect Healthy Diet Patterns at Population Level. Curr. Dev. Nutr. 2020, 4, nzaa168. [Google Scholar] [CrossRef] [PubMed]
- Herforth, A.W.; Ballard, T.; Rzepa, A. Development of the Diet Quality Questionnaire for Measurement of Dietary Diversity and Other Diet Quality Indicators. Curr. Dev. Nutr. 2024, 8, 103798. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, H.; Zou, Z. Inverse Association between Dietary Diversity Score Calculated from the Diet Quality Questionnaire and Psychological Stress in Chinese Adults: A Prospective Study from China Health and Nutrition Survey. Nutrients 2022, 14, 3297. [Google Scholar] [CrossRef]
- Wang, H.; Herforth, A.W.; Xi, B.; Zou, Z. Validation of the Diet Quality Questionnaire in Chinese Children and Adolescents and Relationship with Pediatric Overweight and Obesity. Nutrients 2022, 14, 3551. [Google Scholar] [CrossRef]
- Borson, S.; Scanlan, J.; Brush, M.; Vitaliano, P.; Dokmak, A. The mini-cog: A cognitive ‘vital signs’ measure for dementia screening in multi-lingual elderly. Int. J. Geriatr. Psychiatry 2000, 15, 1021–1027. [Google Scholar] [CrossRef]
- Tsoi, K.K.; Chan, J.Y.; Hirai, H.W.; Wong, S.Y.; Kwok, T.C. Cognitive Tests to Detect Dementia: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2015, 175, 1450–1458. [Google Scholar] [CrossRef]
- Gifford, K.A.; Liu, D.; Romano, R.R.; Jones, R.N.; Jefferson, A.L. Development of a subjective cognitive decline questionnaire using item response theory: A pilot study. Alzheimer’s Dement. 2015, 1, 429–439. [Google Scholar] [CrossRef]
- Hao, L.; Hu, X.; Han, Y.; Jia, J. Localization of Subjective Cognitive Decline Questionnaire and Its Reliability and Validity Test. Chin. Gen. Pract. 2019, 22, 3238–3245. [Google Scholar]
- Hao, L.; Sun, Y.; Li, Y.; Wang, J.; Wang, Z.; Zhang, Z.; Wei, Z.; Gao, G.; Jia, J.; Xing, Y.; et al. Demographic characteristics and neuropsychological assessments of subjective cognitive decline (SCD) (plus). Ann. Clin. Transl. Neurol. 2020, 7, 1002–1012. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liu, Y.; Yang, Q.; Wang, S.; Hu, Q.; Zheng, C.; Zhang, P. Correlation of Subjective Cognitive Decline with Multimorbidity among Elderly People. Chin. Gen. Pract. 2023, 26, 1241–1249. [Google Scholar] [CrossRef]
- Ma, S.; Herforth, A.W.; Vogliano, C.; Zou, Z. Most Commonly-Consumed Food Items by Food Group, and by Province, in China: Implications for Diet Quality Monitoring. Nutrients 2022, 14, 1754. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Li, Y.; Liu, S.; Liu, C.; Jia, C.; Wang, S. Physical activity influences the mobile phone addiction among Chinese undergraduates: The moderating effect of exercise type. J. Behav. Addict. 2021, 10, 799–810. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F., III; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Yuan, C.; Fondell, E.; Bhushan, A.; Ascherio, A.; Okereke, O.I.; Grodstein, F.; Willett, W.C. Long-term intake of vegetables and fruits and subjective cognitive function in US men. Neurology 2019, 92, e63–e75. [Google Scholar] [CrossRef]
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef]
- Gehlich, K.H.; Beller, J.; Lange-Asschenfeldt, B.; Kocher, W.; Meinke, M.C.; Lademann, J. Consumption of fruits and vegetables: Improved physical health, mental health, physical functioning and cognitive health in older adults from 11 European countries. Aging Ment. Health 2020, 24, 634–641. [Google Scholar] [CrossRef]
- Jiang, X.; Huang, J.; Song, D.; Deng, R.; Wei, J.; Zhang, Z. Increased Consumption of Fruit and Vegetables Is Related to a Reduced Risk of Cognitive Impairment and Dementia: Meta-Analysis. Front. Aging Neurosci. 2017, 9, 18. [Google Scholar] [CrossRef]
- Godos, J.; Grosso, G. Dietary Antioxidants and Brain Health: Focus on Cognitive and Affective Disorders. Antioxidants 2021, 10, 1659. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Li, Y.; Li, B.; Li, T.; Li, F.; Li, Y.; Chen, L.; Zhao, Z.; Wang, Q.; Rong, S. Dietary Diversity and Mild Cognitive Impairment in Middle-Aged and Older Chinese People: A Cross-Sectional Study. J. Alzheimer’s Dis. Rep. 2023, 7, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, S.; Fang, Y.; Zhao, X.; Cao, T.; Sun, Y.; Wan, Q. Sleep characteristics in older adults with different levels of risk for dementia: A cross-sectional study. Curr. Alzheimer Res. 2022, 19, 954–964. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.Q.; Lin, L.H.; Ding, K.R.; Ke, Y.F.; Huang, J.H.; Hou, C.L.; Jia, F.J.; Wang, S.B. The role of depression and anxiety in the relationship between poor sleep quality and subjective cognitive decline in Chinese elderly: Exploring parallel, serial, and moderated mediation. J. Affect. Disord. 2021, 294, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.H.; Wang, S.B.; Xu, W.Q.; Hu, Q.; Zhang, P.; Ke, Y.F.; Huang, J.H.; Ding, K.R.; Li, X.L.; Hou, C.L.; et al. Subjective cognitive decline symptoms and its association with socio-demographic characteristics and common chronic diseases in the southern Chinese older adults. BMC Public Health 2022, 22, 1–9. [Google Scholar] [CrossRef]
- Luo, L.; Jiang, N.; Zheng, X.; Wang, P.; Bi, J.; Xu, F.; Xie, Z.; Yang, L. Effect of visual impairment on subjective cognitive decline in older adults: A cross-sectional study in China. BMJ Open 2024, 14, e072626. [Google Scholar] [CrossRef]
Variables | Total (n = 871) | SCD | |||
---|---|---|---|---|---|
No (n = 513) | Yes (n = 358) | p b | |||
SCD Score | 4.0 (2.0) | 2.6 (1.4) | 5.9 (0.9) | ||
Age, yrs | 70.8 (8.3) | 70.5 (8.3) | 71.2 (8.3) | 0.26 | |
Sex, n(%) | Man | 346 (39.7) | 220 (42.9) | 126 (35.2) | 0.02 * |
Woman | 525 (60.3) | 293 (57.1) | 232 (64.8) | ||
Marital Status, n(%) | Married | 723 (83.0) | 422 (82.3) | 301 (84.1) | 0.77 |
Widowed | 137 (15.7) | 84 (16.4) | 53 (14.8) | ||
Other | 11 (1.3) | 7 (1.4) | 4 (1.1) | ||
Educational level, n(%) | Primary school and Lower | 198 (22.7) | 102 (19.9) | 96 (26.8) | 0.03 * |
Middle school | 356 (40.9) | 208 (40.5) | 148 (41.3) | ||
High school | 198 (22.7) | 122 (23.8) | 76 (21.2) | ||
Higher education | 119 (13.7) | 81 (15.8) | 38 (10.6) | ||
Family Income, n(%) | Less than CNY 50,000 | 108 (12.4) | 58 (11.3) | 50 (14.0) | 0.17 |
CNY 50,000–100,000 | 288 (33.1) | 170 (33.1) | 118 (33.0) | ||
CNY 100,000–200,000 | 396 (45.5) | 230 (44.8) | 166 (46.4) | ||
Higher than CNY 200,000 | 79 (9.1) | 55 (10.7) | 24 (6.7) | ||
BMI, kg/m2 | 23.5 (3.3) | 23.6 (3.3) | 23.2 (3.4) | 0.06 | |
Weight Change in the past year, n(%) | No change | 709 (81.4) | 435 (84.8) | 274 (76.5) | <0.01 ** |
Significant Decrease | 114 (13.1) | 52 (10.1) | 62 (17.3) | ||
Significant Increase | 48 (5.5) | 26 (5.1) | 22 (6.1) | ||
Physical Activity level, n(%) | Low | 509 (58.4) | 295 (57.5) | 214 (59.8) | 0.62 |
Moderate | 277 (31.8) | 164 (32.0) | 113 (31.6) | ||
High | 85 (9.8) | 54 (10.5) | 31 (8.7) | ||
Smoking, n(%) | Non-Smoker | 642 (73.7) | 370 (72.1) | 272 (76.0) | 0.21 |
Current smoker | 108 (12.4) | 72 (14.0) | 36 (10.1) | ||
Former smoker | 121 (13.9) | 71 (13.8) | 50 (14.0) | ||
Alcohol Drinking, n(%) | Non-Drinker | 658 (75.5) | 386 (75.2) | 272 (76.0) | 0.09 |
Moderate Drinker | 135 (15.5) | 73 (14.2) | 62 (17.3) | ||
Heavy Drinker | 78 (9.0) | 54 (10.5) | 24 (6.7) | ||
Sleep Quality, n(%) | Good | 349 (40.1) | 244 (47.6) | 105 (29.3) | <0.001 ** |
Poor | 522 (59.9) | 269 (52.4) | 253 (70.7) | ||
Hypertension, n(%) | Yes | 538 (61.8) | 325 (63.4) | 213 (59.5) | 0.25 |
Diabetes, n(%) | Yes | 220 (25.3) | 125 (24.4) | 95 (26.5) | 0.47 |
Hyperlipidemia, n(%) | Yes | 276 (31.7) | 147 (28.7) | 129 (36.0) | 0.02 * |
Heart disease, n(%) | Yes | 109 (12.5) | 57 (11.1) | 52 (14.5) | 0.13 |
Gout, n(%) | Yes | 49 (5.6) | 29 (5.7) | 20 (5.6) | 0.97 |
Chronic kidney disease, n(%) | Yes | 12 (1.4) | 7 (1.4) | 5 (1.4) | 0.97 |
Cancer, n(%) | Yes | 50 (5.7) | 29 (5.7) | 21 (5.9) | 0.89 |
Chronic lung disease, n(%) | Yes | 23 (2.6) | 11 (2.1) | 12 (3.4) | 0.27 |
Hearing Disorder, n(%) | Yes | 18 (2.1) | 7 (1.4) | 11 (3.1) | 0.08 |
Arthritis, n(%) | Yes | 94 (10.8) | 33 (6.4) | 61 (17.0) | <0.001 ** |
Number of comorbidity, n(%) | 0 | 153 (17.6) | 94 (18.3) | 59 (16.5) | <0.01 ** |
1 | 299 (34.3) | 183 (35.7) | 116 (32.4) | ||
2 | 233 (26.8) | 149 (29.0) | 84 (23.5) | ||
3 | 136 (15.6) | 66 (12.9) | 70 (19.6) | ||
4 and more | 50 (5.7) | 21 (4.1) | 29 (8.1) |
Total (n = 871) | SCD | |||
---|---|---|---|---|
No (n = 513) | Yes (n = 358) | p | ||
FGDS, continuous | 6.0 ± 1.5 | 6.1 ± 1.5 | 5.9 ± 1.5 | 0.06 b |
FGDS category | ||||
≤4 | 146 (16.8) | 79 (15.4) | 67 (18.7) | 0.04 c,* |
5–7 | 581 (66.7) | 336 (65.5) | 245 (68.4) | |
≥8 | 144 (16.5) | 98 (19.1) | 46 (12.8) | |
All-5 Score, continuous | 4.2 ± 0.7 | 4.2 ± 0.7 | 4.1 ± 0.7 | <0.01 d,** |
All-5 category | ||||
≤3 | 131 (15.0) | 64 (12.5) | 67 (18.7) | 0.02 c,* |
4 | 434 (49.8) | 254 (49.5) | 180 (50.3) | |
5 | 306 (35.1) | 195 (38.0) | 111 (31.0) |
Non-SCD/SCD (513/358) | Model 1 | Model 2 | Model 3 | |
---|---|---|---|---|
FGDS, continuous | 0.90, 0.82–0.98; 0.02 * | 0.91, 0.83–0.99; 0.04 * | 0.92, 0.83–1.01; 0.08 | |
FGDS category | ||||
≥8 | 98/46 | Reference | Reference | Reference |
5–7 | 336/245 | 1.61, 1.09–2.37; 0.02 * | 1.54, 1.04–2.29; 0.03 * | 1.48, 0.98–2.22; 0.06 |
≤4 | 79/67 | 1.95, 1.20–3.17; <0.01 ** | 1.81, 1.10–2.99; 0.02 * | 1.85, 1.10–3.13; 0.02 * |
All-5 Score, continuous | 0.76, 0.63–0.91; <0.01 ** | 0.77, 0.64–0.94; <0.01 ** | 0.79, 0.65–0.97; 0.02 * | |
All-5 category | ||||
5 | 195/111 | Reference | Reference | Reference |
4 | 254/180 | 1.29, 0.95–1.75; 0.10 | 1.27, 0.93–1.73; 0.13 | 1.2, 0.87–1.66; 0.26 |
≤3 | 64/67 | 1.91, 1.26–2.89; <0.01 ** | 1.83, 1.19–2.81; <0.01 ** | 1.90, 1.21–2.97; <0.01 ** |
Fruit Consumption | Non-SCD/SCD | OR, 95% CI; p |
---|---|---|
All-5 = 5 | 195/111 | Reference |
All-5 < 5 with fruits | 240/171 | 1.17, 0.85–1.62; 0.35 |
All-5 < 5 without fruits | 78/76 | 1.63, 1.07–2.50; 0.03 * |
Cutoff Point at 3 | Cutoff Point at 6 | |||
---|---|---|---|---|
Non-SCD/SCD | OR, 95% CI; p | Non-SCD/SCD | OR, 95% CI; p | |
(316/555) | (756/115) | |||
FGDS, continuous | 0.93, 0.85–1.03; 0.18 | 0.89, 0.77–1.03; 0.12 | ||
FGDS category | ||||
≥8 | 57/87 | Reference | 133/11 | Reference |
5–7 | 210/371 | 1.11, 0.74–1.66; 0.61 | 503/78 | 1.67, 0.84–3.32; 0.14 |
≤4 | 49/97 | 1.29, 0.76–2.18; 0.35 | 120/26 | 2.29, 1.03–5.09; 0.04 * |
All-5 Score, continuous | 0.89, 0.72–1.10; 0.29 | 0.75, 0.57–1.00; 0.05 * | ||
All-5 category | ||||
5 | 115/191 | Reference | 274/32 | Reference |
4 | 162/272 | 0.96, 0.69–1.33; 0.80 | 379/55 | 1.14, 0.70–1.86; 0.59 |
≤3 | 39/92 | 1.42, 0.88–2.29; 0.15 | 103/28 | 2.08, 1.14–3.80; 0.02 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.; Wang, J.; Qiu, Y.; Chen, Y.; Cao, Q.; Pan, Y.; Cao, Y.; Han, S.; Yan, X.; Xu, X.; et al. Association Between Dietary Diversity and Subjective Cognitive Decline in the Middle-Aged and Elderly Chinese Population: A Cross-Sectional Study. Nutrients 2024, 16, 3603. https://doi.org/10.3390/nu16213603
Gao M, Wang J, Qiu Y, Chen Y, Cao Q, Pan Y, Cao Y, Han S, Yan X, Xu X, et al. Association Between Dietary Diversity and Subjective Cognitive Decline in the Middle-Aged and Elderly Chinese Population: A Cross-Sectional Study. Nutrients. 2024; 16(21):3603. https://doi.org/10.3390/nu16213603
Chicago/Turabian StyleGao, Minjie, Jing Wang, Yue Qiu, Yanan Chen, Qiancheng Cao, Yiru Pan, Yifei Cao, Shufen Han, Xiao Yan, Xianrong Xu, and et al. 2024. "Association Between Dietary Diversity and Subjective Cognitive Decline in the Middle-Aged and Elderly Chinese Population: A Cross-Sectional Study" Nutrients 16, no. 21: 3603. https://doi.org/10.3390/nu16213603
APA StyleGao, M., Wang, J., Qiu, Y., Chen, Y., Cao, Q., Pan, Y., Cao, Y., Han, S., Yan, X., Xu, X., Fang, X., & Lian, F. (2024). Association Between Dietary Diversity and Subjective Cognitive Decline in the Middle-Aged and Elderly Chinese Population: A Cross-Sectional Study. Nutrients, 16(21), 3603. https://doi.org/10.3390/nu16213603