Subacute Effects of Moderate-Intensity Aerobic Exercise in the Fasted State on Cell Metabolism and Signaling in Sedentary Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Ethics, and Experimental Design
2.2. Metabolic Measurements
2.3. Protein Quantification and Western Blotting
3. Statistical Analysis
4. Results
4.1. Blood and Tissue Metabolism
4.2. Cellular Signaling
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fiuza-Luces, C.; Santos-Lozano, A.; Joyner, M.; Carrera-Bastos, P.; Picazo, O.; Zugaza, J.L.; Izquierdo, M.; Ruilope, L.M.; Lucia, A. Exercise Benefits in Cardiovascular Disease: Beyond Attenuation of Traditional Risk Factors. Nat. Rev. Cardiol. 2018, 15, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Kohl, H.W.; Craig, C.L.; Lambert, E.V.; Inoue, S.; Alkandari, J.R.; Leetongin, G.; Kahlmeier, S.; Andersen, L.B.; Bauman, A.E.; Blair, S.N.; et al. The Pandemic of Physical Inactivity: Global Action for Public Health. Lancet 2012, 380, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Dunstan, D.W.; Salmon, J.; Healy, G.N.; Shaw, J.E.; Jolley, D.; Zimmet, P.Z.; Owen, N. Association of Television Viewing with Fasting and 2-h Postchallenge Plasma Glucose Levels in Adults without Diagnosed Diabetes. Diabetes Care 2007, 30, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Li, C.; Zhao, G.; Pearson, W.S.; Tsai, J.; Churilla, J.R. Sedentary Behavior, Physical Activity, and Concentrations of Insulin among US Adults. Metabolism 2010, 59, 1268–1275. [Google Scholar] [CrossRef] [PubMed]
- Healy, G.N.; Dunstan, D.W.; Salmon, J.; Cerin, E.; Shaw, J.E.; Zimmet, P.Z.; Owen, N. Objectively Measured Light-Intensity Physical Activity Is Independently Associated with 2-h Plasma Glucose. Diabetes Care 2007, 30, 1384–1389. [Google Scholar] [CrossRef]
- Healy, G.N.; Wijndaele, K.; Dunstan, D.W.; Shaw, J.E.; Salmon, J.; Zimmet, P.Z.; Owen, N. Objectively Measured Sedentary Time, Physical Activity, and Metabolic Risk: The Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Diabetes Care 2008, 31, 369–371. [Google Scholar] [CrossRef]
- Thorp, A.A.; Healy, G.N.; Owen, N.; Salmon, J.; Ball, K.; Shaw, J.E.; Zimmet, P.Z.; Dunstan, D.W. Deleterious Associations of Sitting Time and Television Viewing Time with Cardiometabolic Risk Biomarkers: Australian Diabetes, Obesity and Lifestyle (AusDiab) Study 2004–2005. Diabetes Care 2010, 33, 327–334. [Google Scholar] [CrossRef]
- Knudsen, S.H.; Hansen, L.S.; Pedersen, M.; Dejgaard, T.; Hansen, J.; Van Hall, G.; Thomsen, C.; Solomon, T.P.J.; Pedersen, B.K.; Krogh-Madsen, R. Changes in Insulin Sensitivity Precede Changes in Body Composition during 14 Days of Step Reduction Combined with Overfeeding in Healthy Young Men. J. Appl. Physiol. 2012, 113, 7–15. [Google Scholar] [CrossRef]
- Myers, J.; Kokkinos, P.; Nyelin, E. Cardiorespiratory Fitness, Physical Activity, and Metabolic Syndrome. In Cardiorespiratory Fitness in Cardiometabolic Diseases: Prevention and Management in Clinical Practice; Springer: Cham, Switzerland, 2019; pp. 207–215. [Google Scholar] [CrossRef]
- Roberts, C.K.; Hevener, A.L.; Barnard, R.J. Metabolic Syndrome and Insulin Resistance: Underlying Causes and Modification by Exercise Training. Compr. Physiol. 2013, 3, 1–58. [Google Scholar] [CrossRef]
- Zeyda, M.; Stulnig, T.M. Obesity, Inflammation, and Insulin Resistance—A Mini-Review. Gerontology 2009, 55, 379–386. [Google Scholar] [CrossRef]
- Krause, M.; Bock, P.M.; Takahashi, H.K.; de Bittencourt, P.I.H.; Newsholme, P. The Regulatory Roles of NADPH Oxidase, Intra- and Extra-Cellular HSP70 in Pancreatic Islet Function, Dysfunction and Diabetes. Clin. Sci. 2015, 128, 789–803. [Google Scholar] [CrossRef] [PubMed]
- Egan, B.; Zierath, J.R. Exercise Metabolism and the Molecular Regulation of Skeletal Muscle Adaptation. Cell Metab. 2013, 17, 162–184. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.F.; Costa, R.R.; Macedo, R.C.O.; Coconcelli, L.; Kruel, L.F.M. Effects of Aerobic Exercise Performed in Fasted v. Fed State on Fat and Carbohydrate Metabolism in Adults: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2016, 116, 1153–1164. [Google Scholar] [CrossRef] [PubMed]
- Coyle, E.F.; Jeukendrup, A.E.; Wagenmakers, A.J.M.; Saris, W.H.M. Fatty Acid Oxidation Is Directly Regulated by Carbohydrate Metabolism during Exercise. Am. J. Physiol. Endocrinol. Metab. 1997, 273, E268–E275. [Google Scholar] [CrossRef] [PubMed]
- Krause, M.; Heck, T.G.; Bittencourt, A.; Scomazzon, S.P.; Newsholme, P.; Curi, R.; de Bittencourt, P.I.H. The Chaperone Balance Hypothesis: The Importance of the Extracellular to Intracellular HSP70 Ratio to Inflammation-Driven Type 2 Diabetes, the Effect of Exercise, and the Implications for Clinical Management. Mediat. Inflamm. 2015, 2015, 249205. [Google Scholar] [CrossRef]
- Krause, M.; Gerchman, F.; Friedman, R. Coronavirus Infection (SARS-CoV-2) in Obesity and Diabetes Comorbidities: Is Heat Shock Response Determinant for the Disease Complications? Diabetol. Metab. Syndr. 2020, 12, 63. [Google Scholar] [CrossRef]
- Newsholme, P.; de Bittencourt, P.I.H., Jr. The Fat Cell Senescence Hypothesis: A Mechanism Responsible for Abrogating the Resolution of Inflammation in Chronic Disease. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 295–305. [Google Scholar] [CrossRef]
- Schroeder, H.T.; De Lemos Muller, C.H.; Heck, T.G.; Krause, M.; de Bittencourt, P.I.H. Heat Shock Response during the Resolution of Inflammation and Its Progressive Suppression in Chronic-Degenerative Inflammatory Diseases. Cell Stress Chaperones 2024, 29, 116–142. [Google Scholar] [CrossRef]
- Schroeder, H.T.; De Lemos Muller, C.H.; Heck, T.G.; Krause, M.; de Bittencourt, P.I.H. The Dance of Proteostasis and Metabolism: Unveiling the Caloristatic Controlling Switch. Cell Stress Chaperones 2024, 29, 175–200. [Google Scholar] [CrossRef]
- Vogt, É.L.; Von Dentz, M.C.; Rocha, D.S.; Argenta Model, J.F.; Kowalewski, L.S.; de Souza, S.K.; Girelli, V.d.O.; de Bittencourt, P.I.H., Jr.; Friedman, R.; Krause, M.; et al. Metabolic and Molecular Subacute Effects of a Single Moderate-Intensity Exercise Bout, Performed in the Fasted State, in Obese Male Rats. Int. J. Environ. Res. Public. Health 2021, 18, 7543. [Google Scholar] [CrossRef]
- Cozer, A.G.; Trapp, M.; Martins, T.L.; De Fraga, L.S.; Vieira Marques, C.; Model, J.F.A.; Schein, V.; Kucharski, L.C.; Da Silva, R.S.M. Effects of Stanniocalcin-1 on Glucose Flux in Rat Brown Adipose Tissue. Biochimie 2017, 138, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Andrade Júnior, M.C. Metabolism during Fasting and Starvation: Understanding the Basics to Glimpse New Boundaries. J. Nutr. Diet. 2017, 1, e102. [Google Scholar]
- Rodrigues, B.; Figueroa, D.M.; Mostarda, C.T.; Heeren, M.V.; Irigoyen, M.C.; De Angelis, K. Maximal Exercise Test Is a Useful Method for Physical Capacity and Oxygen Consumption Determination in Streptozotocin-Diabetic Rats. Cardiovasc. Diabetol. 2007, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Model, J.F.; Lima, M.V.; Ohlweiler, R.; Vogt, E.L.; Rocha, D.S.; de Souza, S.K.; Türck, P.; da Rosa Araújo, A.S.; Vinagre, A.S. Liraglutide Improves Lipid and Carbohydrate Metabolism of Ovariectomized Rats. Mol. Cell Endocrinol. 2021, 524, 111158. [Google Scholar] [CrossRef] [PubMed]
- Krause, M.; De Vito, G. Type 1 and Type 2 Diabetes Mellitus: Commonalities, Differences and the Importance of Exercise and Nutrition. Nutrients 2023, 15, 4279. [Google Scholar] [CrossRef]
- Newsholme, P.; Krause, M. Diet, Obesity, and Reactive Oxygen Species—Implications for Diabetes and Aging. In Systems Biology of Free Radicals and Antioxidants; Springer: Berlin/Heidelberg, Germany, 2014; pp. 3361–3374. [Google Scholar] [CrossRef]
- Carbone, S.; Del Buono, M.G.; Ozemek, C.; Lavie, C.J. Obesity, Risk of Diabetes and Role of Physical Activity, Exercise Training and Cardiorespiratory Fitness. Prog. Cardiovasc. Dis. 2019, 62, 327–333. [Google Scholar] [CrossRef]
- Fujita, N.; Aono, S.; Karasaki, K.; Sera, F.; Kurose, T.; Fujino, H.; Urakawa, S. Changes in Lipid Metabolism and Capillary Density of the Skeletal Muscle Following Low-Intensity Exercise Training in a Rat Model of Obesity with Hyperinsulinemia. PLoS ONE 2018, 13, e0196895. [Google Scholar] [CrossRef]
- Iwayama, K.; Kawabuchi, R.; Park, I.; Kurihara, R.; Kobayashi, M.; Hibi, M.; Oishi, S.; Yasunaga, K.; Ogata, H.; Nabekura, Y.; et al. Transient Energy Deficit Induced by Exercise Increases 24-h Fat Oxidation in Young Trained Men. J. Appl. Physiol. 2015, 118, 80–85. [Google Scholar] [CrossRef]
- Horowitz, J.F. Regulation of Lipid Mobilization and Oxidation during Exercise in Obesity. Exerc. Sport. Sci. Rev. 2001, 29, 42–46. [Google Scholar] [CrossRef]
- Iwayama, K.; Kawabuchi, R.; Nabekura, Y.; Kurihara, R.; Park, I.; Kobayashi, M.; Ogata, H.; Kayaba, M.; Omi, N.; Satoh, M.; et al. Exercise before Breakfast Increases 24-h Fat Oxidation in Female Subjects. PLoS ONE 2017, 12, e0180472. [Google Scholar] [CrossRef]
- Iwayama, K.; Kurihara, R.; Nabekura, Y.; Kawabuchi, R.; Park, I.; Kobayashi, M.; Ogata, H.; Kayaba, M.; Satoh, M.; Tokuyama, K. Exercise Increases 24-h Fat Oxidation Only When It Is Performed Before Breakfast. eBioMedicine 2015, 2, 2003–2009. [Google Scholar] [CrossRef] [PubMed]
- De Bock, K.; Richter, E.A.; Russell, A.P.; Eijnde, B.O.; Derave, W.; Ramaekers, M.; Koninckx, E.; Léger, B.; Verhaeghe, J.; Hespel, P. Exercise in the Fasted State Facilitates Fibre Type-Specific Intramyocellular Lipid Breakdown and Stimulates Glycogen Resynthesis in Humans. J. Physiol. 2005, 564, 649–660. [Google Scholar] [CrossRef] [PubMed]
- Vogt, É.L.; Von Dentz, M.C.; Rocha, D.S.; Model, J.F.A.; Kowalewski, L.S.; Silveira, D.; de Amaral, M.; de Bittencourt Júnior, P.I.H.; Kucharski, L.C.; Krause, M.; et al. Acute effects of a single moderate-intensity exercise bout performed in fast or fed states on cell metabolism and signaling: Comparison between lean and obese rats. Life Sci. 2023, 315, 121357. [Google Scholar] [CrossRef] [PubMed]
- De Bock, K.; Derave, W.; Eijnde, B.O.; Hesselink, M.K.; Koninckx, E.; Rose, A.J.; Schrauwen, P.; Bonen, A.; Richter, E.A.; Hespel, P. Effect of Training in the Fasted State on Metabolic Responses during Exercise with Carbohydrate Intake. J. Appl. Physiol. 2008, 104, 1045–1055. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Nguyen, A.K.; Henstridge, D.C.; Holmes, A.G.; Chan, M.H.S.; Mesa, J.L.; Lancaster, G.I.; Southgate, R.J.; Bruce, C.R.; Duffy, S.J.; et al. HSP72 Protects against Obesity-Induced Insulin Resistance. Proc. Natl. Acad. Sci. USA 2008, 105, 1739–1744. [Google Scholar] [CrossRef]
- Rodrigues-Krause, J.; Krause, M.; O’Hagan, C.; De Vito, G.; Boreham, C.; Murphy, C.; Newsholme, P.; Colleran, G. Divergence of Intracellular and Extracellular HSP72 in Type 2 Diabetes: Does Fat Matter? Cell Stress Chaperones 2012, 17, 293–302. [Google Scholar] [CrossRef]
- de Lemos Muller, C.H.; de Matos, J.R.; Grigolo, G.B.; Schroeder, H.T.; Rodrigues-Krause, J.; Krause, M. Exercise Training for the Elderly: Inflammaging and the Central Role for HSP70. J. Sci. Sport Exerc. 2019, 1, 97–115. [Google Scholar] [CrossRef]
- Lovell, R.; Madden, L.; Carroll, S.; McNaughton, L. The Time-Profile of the PBMC HSP70 Response to in Vitro Heat Shock Appears Temperature-Dependent. Amino Acids 2007, 33, 137–144. [Google Scholar] [CrossRef]
- Cantó, C.; Gerhart-hines, Z.; Feige, J.N.; Lagouge, M.; Milne, J.C.; Elliott, P.J.; Puigserver, P.; Auwerx, J. AMPK Regulates Energy Expenditure by Modulating NAD + Metabolism and SIRT1 Activity. Nature 2009, 458, 1056–1060. [Google Scholar] [CrossRef]
- Sriwijitkamol, A.; Coletta, D.K.; Wajcberg, E.; Balbontin, G.B.; Reyna, S.M.; Barrientes, J.; Eagan, P.A.; Jenkinson, C.P.; Defronzo, R.A.; Sakamoto, K.; et al. Effect of Acute Exercise on AMPK Signaling in Skeletal Muscle of Subjects With Type 2 Diabetes. Diabetes 2007, 56, 836–848. [Google Scholar] [CrossRef]
- Townsend, K.L.; Tseng, Y.-H. Brown Fat Fuel Utilization and Thermogenesis. Trends Endocrinol. Metab. 2014, 25, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Boström, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Boström, E.A.; Choi, J.H.; Long, J.Z.; et al. A PGC1-α-Dependent Myokine That Drives Brown-Fat-like Development of White Fat and Thermogenesis. Nature 2012, 481, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Fagundo, A.B.; Jiménez-Murcia, S.; Giner-Bartolomé, C.; Agüera, Z.; Sauchelli, S.; Pardo, M.; Crujeiras, A.B.; Granero, R.; Baños, R.; Botella, C.; et al. Modulation of Irisin and Physical Activity on Executive Functions in Obesity and Morbid Obesity. Sci. Rep. 2016, 6, 30820. [Google Scholar] [CrossRef] [PubMed]
- Da Eira, D.; Jani, S.; Ceddia, R.B. An Obesogenic Diet Impairs Uncoupled Substrate Oxidation and Promotes Whitening of the Brown Adipose Tissue in Rats. J. Physiol. 2023, 601, 69–82. [Google Scholar] [CrossRef]
- McKie, G.L.; Medak, K.D.; Knuth, C.M.; Shamshoum, H.; Townsend, L.K.; Peppler, W.T.; Wright, D.C. Housing Temperature Affects the Acute and Chronic Metabolic Adaptations to Exercise in Mice. J. Physiol. 2019, 597, 4581–4600. [Google Scholar] [CrossRef]
- Peres Valgas da Silva, C.; Hernández-Saavedra, D.; White, J.D.; Stanford, K.I. Cold and Exercise: Therapeutic Tools to Activate Brown Adipose Tissue and Combat Obesity. Biology 2019, 8, 9. [Google Scholar] [CrossRef]
- Sepa-Kishi, D.M.; Ceddia, R.B. Exercise-Mediated Effects on White and Brown Adipose Tissue Plasticity and Metabolism. Exerc. Sport. Sci. Rev. 2016, 44, 37–44. [Google Scholar] [CrossRef]
- Li, Y.; Wang, D.; Ping, X.; Zhang, Y.; Zhang, T.; Wang, L.; Jin, L.; Zhao, W.; Guo, M.; Shen, F.; et al. Local Hyperthermia Therapy Induces Browning of White Fat and Treats Obesity. Cell 2022, 185, 949–966.e19. [Google Scholar] [CrossRef]
- Wu, M.V.; Bikopoulos, G.; Hung, S.; Ceddia, R.B. Thermogenic Capacity Is Antagonistically Regulated in Classical Brown and White Subcutaneous Fat Depots by High Fat Diet and Endurance Training in Rats: Impact on Whole-Body Energy Expenditure. J. Biol. Chem. 2014, 289, 34129–34140. [Google Scholar] [CrossRef]
- Wade, G.; McGahee, A.; Ntambi, J.M.; Simcox, J. Lipid Transport in Brown Adipocyte Thermogenesis. Front. Physiol. 2021, 12, 787535. [Google Scholar] [CrossRef]
- Moraes, R.M.; Portari, G.V.; Ferraz, A.S.M.; Silva, T.E.O.; Marocolo, M. Effects of Intermitent Fasting and Chronic Swimming. Appl. Physiol. Nutr. Andm. Metab. 2017, 42, 1341–1346. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayres, L.R.; Vogt, É.L.; Schroeder, H.T.; Russo, M.K.B.; Von Dentz, M.C.; Rocha, D.S.; Model, J.F.A.; Kowalewski, L.S.; de Souza, S.K.; de Oliveira Girelli, V.; et al. Subacute Effects of Moderate-Intensity Aerobic Exercise in the Fasted State on Cell Metabolism and Signaling in Sedentary Rats. Nutrients 2024, 16, 3529. https://doi.org/10.3390/nu16203529
Ayres LR, Vogt ÉL, Schroeder HT, Russo MKB, Von Dentz MC, Rocha DS, Model JFA, Kowalewski LS, de Souza SK, de Oliveira Girelli V, et al. Subacute Effects of Moderate-Intensity Aerobic Exercise in the Fasted State on Cell Metabolism and Signaling in Sedentary Rats. Nutrients. 2024; 16(20):3529. https://doi.org/10.3390/nu16203529
Chicago/Turabian StyleAyres, Layane Ramos, Éverton Lopes Vogt, Helena Trevisan Schroeder, Mariana Kras Borges Russo, Maiza Cristina Von Dentz, Débora Santos Rocha, Jorge Felipe Argenta Model, Lucas Stahlhöfer Kowalewski, Samir Khal de Souza, Vitória de Oliveira Girelli, and et al. 2024. "Subacute Effects of Moderate-Intensity Aerobic Exercise in the Fasted State on Cell Metabolism and Signaling in Sedentary Rats" Nutrients 16, no. 20: 3529. https://doi.org/10.3390/nu16203529
APA StyleAyres, L. R., Vogt, É. L., Schroeder, H. T., Russo, M. K. B., Von Dentz, M. C., Rocha, D. S., Model, J. F. A., Kowalewski, L. S., de Souza, S. K., de Oliveira Girelli, V., da Rosa Coelho, J., de Souza Vargas, N., Reischak-Oliveira, A., de Bittencourt, P. I. H., Jr., Wilhelm, E. N., Vinagre, A. S., & Krause, M. (2024). Subacute Effects of Moderate-Intensity Aerobic Exercise in the Fasted State on Cell Metabolism and Signaling in Sedentary Rats. Nutrients, 16(20), 3529. https://doi.org/10.3390/nu16203529