Defatted Flaxseed Flour as a New Ingredient for Foodstuffs: Comparative Analysis with Whole Flaxseeds and Updated Composition of Cold-Pressed Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples and Sample Preparation
2.3. Proximate Composition and Energy Values of Whole Flaxseeds and Defatted Flour
2.4. Fatty Acids (FA) of All Samples
2.5. Vitamin E of All Samples
2.6. Amino Acids (AAs) of Whole Flaxseeds and Defatted Flour
2.7. Protein Quality of Whole Flaxseeds and Defatted Flour
2.7.1. Estimation of Amino Acid Chemical Score (AACS)
2.7.2. Estimation of Essential Amino Acids Index (EAAI)
2.8. Total Phenolics and Total Flavonoids of All Samples
2.9. Ferric Reducing Antioxidant Power (FRAP) of All Samples
2.10. 2,2-Diphenyl-1-picrylhydrazyl Radical (DPPH•) Inhibition of All Samples
2.11. Oxidative Stability of Cold-Pressed Flaxseed Oil
2.12. Peroxide Value of Cold-Pressed Flaxseed Oil
2.13. UV Absorbance of Cold-Pressed Flaxseed Oil
2.14. Colour of Cold-Pressed Flaxseed Oil
2.15. Statistical Analysis
3. Results
3.1. Comparative Analysis of Whole Flaxseeds and Defatted Flour
3.2. Cold-Pressed Flaxseed Oil
4. Discussion
4.1. Comparative Analysis of Whole Flaxseeds and Defatted Flour
4.2. Defatted Flaxseed Flour as a New Ingredient for Foodstuffs
4.3. Cold-Pressed Flaxseed Oil
4.4. Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mozaffarian, D.; Fleischhacker, S.; Andrés, J.R. Prioritizing Nutrition Security in the US. JAMA 2021, 325, 1605–1606. [Google Scholar] [CrossRef] [PubMed]
- Alongi, M.; Anese, M. Re-thinking functional food development through a holistic approach. J. Funct. Foods 2021, 81, 104466. [Google Scholar] [CrossRef]
- Pareek, A.; Singh, N. Seeds as nutraceuticals, their therapeutic potential and their role in improving sports performance. J. Phytol. Res. 2021, 34, 127–138. [Google Scholar]
- Melo, D.; Machado, T.B.; Oliveira, M.B.P.P. Chia seeds: An ancient grain trending in modern human diets. Food Funct. 2019, 10, 3068–3089. [Google Scholar] [CrossRef]
- Melo, D.; Álvarez-Ortí, M.; Nunes, M.A.; Costa, A.S.G.; Machado, S.; Alves, R.C.; Pardo, J.E.; Oliveira, M.B.P.P. Whole or defatted sesame seeds (Sesamum indicum L.)? The effect of cold pressing on oil and cake quality. Foods 2021, 10, 2108. [Google Scholar] [CrossRef]
- Melo, D.; Álvarez-Ortí, M.; Nunes, M.A.; Espírito Santo, L.; Machado, S.; Pardo, J.E.; Oliveira, M.B.P.P. Nutritional and Chemical Characterization of Poppy Seeds, Cold-Pressed Oil, and Cake: Poppy Cake as a High-Fibre and High-Protein Ingredient for Novel Food Production. Foods 2022, 11, 3027. [Google Scholar] [CrossRef]
- Ferreira, D.M.; Nunes, M.A.; Santo, L.E.; Machado, S.; Costa, A.S.G.; Álvarez-Ortí, M.; Pardo, J.E.; Oliveira, M.B.P.P.; Alves, R.C. Characterization of Chia Seeds, Cold-Pressed Oil, and Defatted Cake: An Ancient Grain for Modern Food Production. Molecules 2023, 28, 723. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Food and Agriculture Organisation of the United Nations. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 21 August 2024).
- Nowak, W.; Jeziorek, M. The Role of Flaxseed in Improving Human Health. Healthcare 2023, 11, 395. [Google Scholar] [CrossRef]
- Calado, A.; Neves, P.M.; Santos, T.; Ravasco, P. The Effect of Flaxseed in Breast Cancer: A Literature Review. Front. Nutr. 2018, 5, 4. [Google Scholar] [CrossRef]
- Villarreal-Renteria, A.I.; Herrera-Echauri, D.D.; Rodríguez-Rocha, N.P.; Zuñiga, L.Y.; Muñoz-Valle, J.F.; García-Arellano, S.; Bernal-Orozco, M.F.; Macedo-Ojeda, G. Effect of flaxseed (Linum usitatissimum) supplementation on glycemic control and insulin resistance in prediabetes and type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Med. 2022, 70, 102852. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Sreedhar, R.V.; Akhilender Naidu, K.; Shang, X.; Keum, Y.-S. Omega−3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits—A Review. Antioxidants 2021, 10, 1627. [Google Scholar] [CrossRef]
- Durazzo, A.; Fawzy Ramadan, M.; Lucarini, M. Cold Pressed Oils: A Green Source of Specialty Oils. Front. Nutr. 2022, 8, 836651. [Google Scholar] [CrossRef] [PubMed]
- Grajzer, M.; Szmalcel, K.; Kuźmiński, Ł.; Witkowski, M.; Kulma, A.; Prescha, A. Characteristics and Antioxidant Potential of Cold-Pressed Oils—Possible Strategies to Improve Oil Stability. Foods 2020, 9, 1630. [Google Scholar] [CrossRef] [PubMed]
- Nations, U. Goal 2: Zero Hunger. Available online: https://www.un.org/sustainabledevelopment/hunger/ (accessed on 28 August 2024).
- Ferreira, D.M.; Barreto-Peixoto, J.; Andrade, N.; Machado, S.; Silva, C.; Lobo, J.C.; Nunes, M.A.; Álvarez-Rivera, G.; Ibáñez, E.; Cifuentes, A.; et al. Comprehensive analysis of the phytochemical composition and antitumoral activity of an olive pomace extract obtained by mechanical pressing. Food Biosci. 2024, 61, 104759. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 21st ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2019. [Google Scholar]
- Tontisirin, K. Chapter 2: Methods of food analysis. Food Energy: Methods of Analysis and Conversion Factors: Report of a Technical Workshop; Food and Agriculture Organization of the United Nations: Rome, Italy, 2003. [Google Scholar]
- European Commission. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers. Off. J. Eur. Union 2011, 54, 18–61. [Google Scholar]
- ISO 12966; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters: Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: Geneva, Switzerland, 2017.
- Machado, S.; Costa, A.S.G.; Pimentel, F.B.; Oliveira, M.B.P.P.; Alves, R.C. A study on the protein fraction of coffee silverskin: Protein/non-protein nitrogen and free and total amino acid profiles. Food Chem. 2020, 326, 126940. [Google Scholar] [CrossRef] [PubMed]
- WHO/FAO/UNU. Protein and Amino Acid Requirements in Human Nutrition; WHO: Geneva, Switzerland, 2007; pp. 93–102. ISSN 0512-3054. [Google Scholar]
- Oser, B.L. An Integrated Essential Amino Acid Index for Predicting the Biological Value of Proteins. Protein and Amino Acid Nutrition; Elsevier: Amsterdam, The Netherlands, 1959; Volume 281. [Google Scholar]
- NP 904; Edible Fats and Oils—Determination of Peroxide Value. ISO: Geneva, Switzerland, 1987; Volume 904.
- ISO 3656; Animal and Vegetable Fats and Oils—Determination of Ultraviolet Absorbance Expressed as Specific UV Extinction. ISO: Geneva, Switzerland, 2011.
- NP 937; Edible Fats and Oils—Oils Colour Determination and Their Chromatic Characteristics. ISO: Geneva, Switzerland, 1987.
- Costa-Pinto, R.; Gantner, D. Macronutrients, minerals, vitamins and energy. Anaesth. Intensive Care Med. 2020, 21, 157–161. [Google Scholar] [CrossRef]
- Bernacchia, R.; Preti, R.; Vinci, G. Chemical composition and health benefits of flaxseed. Austin J. Nutri. Food Sci. 2014, 2, 1045. [Google Scholar]
- Devi, R.; Bhatia, M. Thiol functionalization of flaxseed mucilage: Preparation, characterization and evaluation as mucoadhesive polymer. Int. J. Biol. Macromol. 2019, 126, 101–106. [Google Scholar] [CrossRef]
- Parikh, M.; Netticadan, T.; Pierce, G.N. Flaxseed: Its bioactive components and their cardiovascular benefits. Am. J. Physiol. Heart Circ. Physiol. 2018, 314, H146–H159. [Google Scholar] [CrossRef]
- Shim, Y.Y.; Gui, B.; Arnison, P.G.; Wang, Y.; Reaney, M.J.T. Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: A review. Trends Food Sci. Technol. 2014, 38, 5–20. [Google Scholar] [CrossRef]
- Deme, T.; Haki, G.; Retta, N.; Woldegiorgis, A.; Geleta, M. Fatty Acid Profile, Total Phenolic Content, and Antioxidant Activity of Niger Seed (Guizotia abyssinica) and Linseed (Linum usitatissimum). Front. Nutr. 2021, 8, 674882. [Google Scholar] [CrossRef] [PubMed]
- Bekhit, A.E.-D.A.; Shavandi, A.; Jodjaja, T.; Birch, J.; Teh, S.; Mohamed Ahmed, I.A.; Al-Juhaimi, F.Y.; Saeedi, P.; Bekhit, A.A. Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatal. Agric. Biotechnol. 2018, 13, 129–152. [Google Scholar] [CrossRef]
- Mannucci, A.; Castagna, A.; Santin, M.; Serra, A.; Mele, M.; Ranieri, A. Quality of flaxseed oil cake under different storage conditions. LWT 2019, 104, 84–90. [Google Scholar] [CrossRef]
- Durante, W. The Emerging Role of l-Glutamine in Cardiovascular Health and Disease. Nutrients 2019, 11, 2092. [Google Scholar] [CrossRef]
- Landete, J.M. Plant and mammalian lignans: A review of source, intake, metabolism, intestinal bacteria and health. Food Res. Int. 2012, 46, 410–424. [Google Scholar] [CrossRef]
- Garros, L.; Drouet, S.; Corbin, C.; Decourtil, C.; Fidel, T.; Lebas de Lacour, J.; Leclerc, E.A.; Renouard, S.; Tungmunnithum, D.; Doussot, J.; et al. Insight into the Influence of Cultivar Type, Cultivation Year, and Site on the Lignans and Related Phenolic Profiles, and the Health-Promoting Antioxidant Potential of Flax (Linum usitatissimum L.) Seeds. Molecules 2018, 23, 2636. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J.J. Naturally Lignan-Rich Foods: A Dietary Tool for Health Promotion? Molecules 2019, 24, 917. [Google Scholar] [CrossRef] [PubMed]
- Quezada, N.; Cherian, G. Lipid characterization and antioxidant status of the seeds and meals of Camelina sativa and flax. Eur. J. Lipid Sci. Technol. 2012, 114, 974–982. [Google Scholar] [CrossRef]
- Fardet, A. Characterization of the Degree of Food Processing in Relation With Its Health Potential and Effects. Adv. Food Nutr. Res. 2018, 85, 79–129. [Google Scholar] [CrossRef]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2019, 30, 67–77.e63. [Google Scholar] [CrossRef] [PubMed]
- Guiné, R.; Florença, S.; Barroca, M.; Anjos, O. foods The Link between the Consumer and the Innovations in Food Product Development. Foods 2020, 9, 1317. [Google Scholar] [CrossRef] [PubMed]
- Sanmartin, C.; Taglieri, I.; Venturi, F.; Macaluso, M.; Zinnai, A.; Tavarini, S.; Botto, A.; Serra, A.; Conte, G.; Flamini, G.; et al. Flaxseed Cake as a Tool for the Improvement of Nutraceutical and Sensorial Features of Sourdough Bread. Foods 2020, 9, 204. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, M.K.; Selim, K.A.-H.; Mahmoud, A.A.-T.; Ali, R.A. Effect of bioactive compounds of defatted flaxseed meal on rheological and sensorial properties of toast and cake. J. Food Sci. Technol. 2019, 4, 707–719. [Google Scholar] [CrossRef]
- Poppy, G.M.; Jepson, P.C.; Pickett, J.A.; Birkett, M.A. Achieving food and environmental security: New approaches to close the gap. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20120272. [Google Scholar] [CrossRef]
- Herchi, W.; Arráez-Román, D.; Trabelsi, H.; Bouali, I.; Boukhchina, S.; Kallel, H.; Segura-Carretero, A.; Fernández-Gutierrez, A. Phenolic compounds in flaxseed: A review of their properties and analytical methods. An overview of the last decade. J. Oleo Sci. 2014, 63, 7–14. [Google Scholar] [CrossRef]
- Kaushik, P.; Dowling, K.; McKnight, S.; Barrow, C.J.; Adhikari, B. Microencapsulation of flaxseed oil in flaxseed protein and flaxseed gum complex coacervates. Food Res. Int. 2016, 86, 1–8. [Google Scholar] [CrossRef]
- Zhuang, P.; Wang, W.; Wang, J.; Zhang, Y.; Jiao, J. Polyunsaturated fatty acids intake, omega-6/omega-3 ratio and mortality: Findings from two independent nationwide cohorts. Clin. Nutr. 2019, 38, 848–855. [Google Scholar] [CrossRef]
- Tańska, M.; Mikołajczak, N.; Konopka, I. Comparison of the effect of sinapic and ferulic acids derivatives (4-vinylsyringol vs. 4-vinylguaiacol) as antioxidants of rapeseed, flaxseed, and extra virgin olive oils. Food Chem. 2018, 240, 679–685. [Google Scholar] [CrossRef]
- Zeb, A. A comprehensive review on different classes of polyphenolic compounds present in edible oils. Food Res. Int. 2021, 143, 110312. [Google Scholar] [CrossRef]
- Rabail, R.; Shabbir, M.A.; Sahar, A.; Miecznikowski, A.; Kieliszek, M.; Aadil, R.M. An Intricate Review on Nutritional and Analytical Profiling of Coconut, Flaxseed, Olive, and Sunflower Oil Blends. Molecules 2021, 26, 7187. [Google Scholar] [CrossRef] [PubMed]
- Herchi, W.; Ben Ammar, K.; Bouali, I.; Bou Abdallah, I.; Guetat, A.; Boukhchina, S. Heating effects on physicochemical characteristics and antioxidant activity of flaxseed hull oil (Linum usitatissimum L.). Food Sci. Technol. 2016, 36, 97–102. [Google Scholar] [CrossRef]
- Herchi, W.; Sawalha, S.; Arráez-Román, D.; Boukhchina, S.; Segura-Carretero, A.; Kallel, H.; Fernández-Gutierrez, A. Determination of phenolic and other polar compounds in flaxseed oil using liquid chromatography coupled with time-of-flight mass spectrometry. Food Chem. 2011, 126, 332–338. [Google Scholar] [CrossRef]
Parameter | Seeds | Flour |
---|---|---|
Energy Value (kcal/100 g) | 475 ± 1 a | 314 ± 6 b |
Energy Value (kJ/100 g) | 1954 ± 5 a | 1304 ± 26 b |
Moisture (%) | 8.42 ± 0.11 b | 9.78 ± 0.13 a |
Ash (%) | 3.64 ± 0.02 b | 5.64 ± 0.02 a |
Total Protein (%) | 16.07 ± 0.07 b | 28.08 ± 0.82 a |
Total Dietary Fibre (%) | 33.73 ± 0.00 b | 35.61 ± 0.00 a |
Insoluble Fibre (%) | 30.22 ± 0.00 a | 25.66 ± 0.60 b |
Soluble Fibre (%) | 3.51 ± 0.00 b | 9.96 ± 0.43 a |
Remaining Carbohydrates (%) | 0.03 ± 0.13 b | 11.56 ± 0.56 a |
Total Fat (%) | 38.11 ± 0.04 a | 9.33 ± 0.14 b |
Fatty Acids (Relative %) | ||
C16:0 (Palmitic Acid) | 5.06 ± 0.04 b | 6.30 ± 0.07 a |
C16:1c (Palmitoleic Acid) | 0.06 ± 0.00 b | 0.07 ± 0.00 a |
C17:0 (Margaric Acid) | 0.06 ± 0.00 a | 0.05 ± 0.00 b |
C18:0 (Stearic Acid) | 3.35 ± 0.04 a | 3.21 ± 0.15 a |
C18:1n9c (Oleic Acid) | 18.02 ± 0.09 b | 18.28 ± 0.07 a |
C18:2n6c (Linoleic Acid) | 16.58 ± 0.08 b | 17.07 ± 0.16 a |
C18:3n3c (α-Linolenic Acid) | 56.75 ± 0.19 a | 54.88 ± 0.28 b |
C20:0 (Arachidic Acid) | 0.11 ± 0.00 b | 0.13 ± 0.00 a |
∑SFA (Saturated Fatty Acids) | 8.59 ± 0.08 b | 9.70 ± 0.15 a |
∑MUFA (Monounsaturated Fatty Acids) | 18.08 ± 0.09 b | 18.35 ± 0.07 a |
∑PUFA (Polyunsaturated Fatty Acids) | 73.33 ± 0.13 a | 71.95 ± 0.16 b |
n-6/n-3 | 0.29 ± 0.00 b | 0.31 ± 0.00 a |
Total Vitamin E (mg/kg) | 214.68 ± 9.34 a | 48.49 ± 0.66 b |
α-Tocopherol | 73.67 ± 2.01 a | 17.39 ± 0.14 b |
γ-Tocopherol | 141.01 ± 7.49 a | 30.98 ± 0.53 b |
Total Amino Acids (mg/g) | 194.17 ± 8.92 b | 314.18 ± 11.21 a |
Asp | 19.31 ± 0.90 b | 31.31 ± 1.10 a |
Glu | 39.99 ± 1.99 b | 64.94 ± 2.23 a |
Ser | 10.10 ± 0.48 b | 16.14 ± 0.58 a |
Gln | 1.01 ± 0.09 b | 2.03 ± 0.24 a |
* His | 6.24 ± 0.27 b | 9.56 ± 0.27 a |
Gly | 12.42 ± 1.59 b | 22.30 ± 0.92 a |
* Thr | 7.75 ± 0.35 b | 12.15 ± 0.34 a |
Arg | 22.70 ± 1.18 b | 36.59 ± 1.34 a |
Ala | 9.20 ± 0.43 b | 14.90 ± 0.54 a |
Tyr | 4.33 ± 0.19 b | 6.43 ± 0.25 a |
* Val | 9.55 ± 0.51 b | 15.41 ± 0.51 a |
* Met | 2.80 ± 0.39 b | 3.95 ± 0.16 a |
* Trp | 1.39 ± 0.03 a | 1.47 ± 0.25 a |
* Phe | 9.75 ± 0.22 b | 15.87 ± 1.87 a |
* Ile | 8.54 ± 0.48 b | 12.94 ± 0.47 a |
* Leu | 11.83 ± 0.41 b | 18.76 ± 0.77 a |
* Lys | 9.12 ± 0.92 b | 15.98 ± 0.70 a |
Hyp | 1.50 ± 0.02 b | 2.47 ± 0.07 a |
Pro | 6.63 ± 0.16 b | 10.99 ± 0.30 a |
Total Phenolics (mg GAE/100 g) | 142.5 ± 7.2 b | 204.9 ± 19.9 a |
Total Flavonoids (mg EE/100 g) | 53.9 ± 2.4 b | 78.2 ± 4.5 a |
FRAP (mmol FSE/100 g) | 8.5 ± 0.4 b | 14.3 ± 1.9 a |
DPPH∙ Inhibition (mg TE/100 g) | 57.2 ± 11.0 b | 233.3 ± 22.6 a |
EAA | AA Estimates for Adults * (mg/g Protein) | Seeds (mg/g Protein) | Flour (mg/g Protein) | Seed AACS (%) | Flour AACS (%) |
---|---|---|---|---|---|
His | 15 | 38.81 ± 1.68 a | 34.04 ± 0.98 b | 258.72 ± 11.19 A | 226.90 ± 6.53 B |
Ile | 30 | 53.14 ± 2.98 a | 46.08 ± 1.67 b | 177.15 ± 9.95 A | 153.59 ± 5.56 B |
Leu | 59 | 73.63 ± 2.53 a | 66.82 ± 2.74 b | 124.79 ± 4.28 A | 113.25 ± 4.64 B |
Lys | 45 | 56.75 ± 5.75 a | 56.89 ± 2.49 a | 126.11 ± 12.78 A | 126.43 ± 5.54 A |
Met | 16 | 17.44 ± 2.42 a | 14.07 ± 0.56 a | 109.03 ± 15.15 A | 87.96 ± 3.47 A |
Phe + Tyr | 38 | 87.67 ± 2.54 a | 79.44 ± 7.51 a | 230.70 ± 6.69 A | 209.04 ± 19.77 A |
Thr | 23 | 48.20 ± 2.18 a | 43.26 ± 1.21 b | 209.56 ± 9.46 A | 188.10 ± 5.28 B |
Trp | 6 | 8.68 ± 0.16 a | 5.25 ± 0.91 b | 144.67 ± 2.66 A | 87.50 ± 15.10 B |
Val | 39 | 59.42 ± 3.15 a | 54.86 ± 1.81 a | 152.36 ± 8.08 A | 140.68 ± 4.63 A |
LAA (%) | - | - | - | Met 109.03 ± 15.15 A | Trp 87.50 ± 15.10 A |
EAAI (%) | - | 129.45 ± 6.26 a | 111.83 ± 2.23 b | - | - |
Parameter | Oil |
---|---|
Oxidative Stability (h) | 1.3 ± 0.1 |
Peroxide Value (meq O2/kg) | 2.4 ± 0.0 |
K232nm | 0.016 ± 0.001 |
K270nm | 0.0500 ± 0.0005 |
Chromatic coordinates (x, y) | (0.4749, 0.4801) |
Transparency (%) | 65.8 |
Dominant wavelength (nm) | 577.8 |
Purity | 88.0 |
Fatty Acids (Relative %) | |
C16:0 (Palmitic Acid) | 4.81 ± 0.02 |
C18:0 (Stearic Acid) | 3.18 ± 0.09 |
C18:1n9c (Oleic Acid) | 18.47 ± 0.12 |
C18:2n6c (Linoleic Acid) | 16.03 ± 0.08 |
C18:3n3c (α-Linolenic Acid) | 57.51 ± 0.13 |
∑SFA (Saturated Fatty Acids) | 7.99 ± 0.11 |
∑MUFA (Monounsaturated Fatty Acids) | 18.47 ± 0.12 |
∑PUFA (Polyunsaturated Fatty Acids) | 73.54 ± 0.21 |
n-6/n-3 | 0.28 ± 0.00 |
Total Vitamin E (mg/kg) | 443.91 ± 6.23 |
α-Tocopherol | 3.96 ± 0.10 |
α-Tocotrienol | 3.68 ± 0.05 |
γ-Tocopherol | 431.72 ± 6.39 |
δ-Tocopherol | 4.55 ± 0.32 |
Total Phenolics (mg GAE/100 g) | 2.3 ± 0.2 |
Total Flavonoids (mg EE/100 g) | 0.4 ± 0.1 |
FRAP (μmol FSE/100 g) | 96.0 ± 1.8 |
DPPH∙ Inhibition (mg TE/100 g) | 0.2 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, D.M.; Machado, S.; Espírito Santo, L.; Nunes, M.A.; Costa, A.S.G.; Álvarez-Ortí, M.; Pardo, J.E.; Alves, R.C.; Oliveira, M.B.P.P. Defatted Flaxseed Flour as a New Ingredient for Foodstuffs: Comparative Analysis with Whole Flaxseeds and Updated Composition of Cold-Pressed Oil. Nutrients 2024, 16, 3482. https://doi.org/10.3390/nu16203482
Ferreira DM, Machado S, Espírito Santo L, Nunes MA, Costa ASG, Álvarez-Ortí M, Pardo JE, Alves RC, Oliveira MBPP. Defatted Flaxseed Flour as a New Ingredient for Foodstuffs: Comparative Analysis with Whole Flaxseeds and Updated Composition of Cold-Pressed Oil. Nutrients. 2024; 16(20):3482. https://doi.org/10.3390/nu16203482
Chicago/Turabian StyleFerreira, Diana Melo, Susana Machado, Liliana Espírito Santo, Maria Antónia Nunes, Anabela S. G. Costa, Manuel Álvarez-Ortí, José E. Pardo, Rita C. Alves, and Maria Beatriz P. P. Oliveira. 2024. "Defatted Flaxseed Flour as a New Ingredient for Foodstuffs: Comparative Analysis with Whole Flaxseeds and Updated Composition of Cold-Pressed Oil" Nutrients 16, no. 20: 3482. https://doi.org/10.3390/nu16203482
APA StyleFerreira, D. M., Machado, S., Espírito Santo, L., Nunes, M. A., Costa, A. S. G., Álvarez-Ortí, M., Pardo, J. E., Alves, R. C., & Oliveira, M. B. P. P. (2024). Defatted Flaxseed Flour as a New Ingredient for Foodstuffs: Comparative Analysis with Whole Flaxseeds and Updated Composition of Cold-Pressed Oil. Nutrients, 16(20), 3482. https://doi.org/10.3390/nu16203482