Differential Regulation of Circadian Clock Genes by UV-B Radiation and 1,25-Dihydroxyvitamin D: A Pilot Study during Different Stages of Skin Photocarcinogenesis
Abstract
:1. Introduction
2. Methods
2.1. Cellular Models
2.1.1. HaCaT Keratinocytes
2.1.2. SCL-1 Cells
2.1.3. NHEK Cells
2.2. Treatments
2.3. LDH Toxicity Assays
2.4. Sampling of Cells
2.5. Statistical Analysis
2.5.1. Cosinor Analysis with “cosinor2”
2.5.2. Linear Mixed-Effects Modeling with “nlme”
2.5.3. Two-Way Repeated Measures ANOVA
3. Results
3.1. Spontaneously Immortalized Human Epidermal Cells (HaCaT) Express Two Major CCGs (Bmal1 and Per2), with Bmal1 Showing a Robust Circadian Rhythm in Our In Vitro Model
3.2. Treatment of HaCaT Cells with UV-B And/Or 1,25(OH)2D3 Exerts Differential Effects on Expression of Bmal1 and Per2, with Both UVB and 1,25(OH)2D3 Significantly Modulating Bmal1 Rhythmicity Characteristics In Vitro
3.3. Differential Expression and UV-B Effect on BMAL1 in NHEK, HaCaT, and SCL-1 Cells
3.4. UV-B Radiation-Induced Cellular Toxicity Is Only Marginally Altered by Co-Treatment with 1,25(OH)2D3, VDRi, and/or AhRi
4. Discussion
4.1. Implication of UV-B-Regulated Expression of BMAL1 and PER2 in HaCaT Keratinocytes
4.2. Treatment of HaCaT Cells with UV-B and/or 1,25(OH)2D3 Exerts Differential Effects on Expression of Bmal1 and Per2 In Vitro Indicating Alternative Mechanisms of Action
4.3. Differential Expression of BMAL1 in NHEK, HaCaT and SCL-1 Cells Indicates Disruption of Circadian Rhythm during Skin Photocarcinogenesis
4.4. Limitations
- Lack of Cell Synchronization: Not synchronizing the cells prior to treatment may have resulted in varied circadian phases among the cell population, potentially affecting the interpretation of gene expression changes. This could also have influenced the lack of a robust circadian rhythm in Per2 expression, for which reasons the corresponding effects found upon it should be interpreted with caution.
- Intercell differences: The experiment investigating intercell differences was conducted only at one point, which made generalized conclusions difficult. Further studies should explore such differences evidenced here introducing the time factor through multiple measurements.
- Mechanistic Insights: The study primarily focused on expression levels without delving deeply into the underlying molecular mechanisms or the functional consequences of these changes.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Konopka, R.J.; Benzer, S. Clock Mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 1971, 68, 2112–2116. [Google Scholar] [CrossRef]
- Reddy, P.; Zehring, W.A.; Wheeler, D.A.; Pirrotta, V.; Hadfield, C.; Hall, J.C.; Rosbash, M. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 1984, 38, 701–710. [Google Scholar] [CrossRef]
- Lubov, J.E.; Cvammen, W.; Kemp, M.G. The Impact of the Circadian Clock on Skin Physiology and Cancer Development. Int. J. Mol. Sci. 2021, 22, 6112. [Google Scholar] [CrossRef] [PubMed]
- Bargiello, T.A.; Jackson, F.R.; Young, M.W. Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature 1984, 312, 752–754. [Google Scholar] [CrossRef] [PubMed]
- Lalchhandama, K. The path to the 2017 Nobel Prize in Physiology or Medicine. Sci. Vis. 2017, 17, S1–S13. [Google Scholar] [CrossRef]
- Matsui, M.S.; Pelle, E.; Dong, K.; Pernodet, N. Biological Rhythms in the Skin. Int. J. Mol. Sci. 2016, 17, 801. [Google Scholar] [CrossRef] [PubMed]
- Plikus, M.V.; Van Spyk, E.N.; Pham, K.; Geyfman, M.; Kumar, V.; Takahashi, J.S.; Andersen, B. The Circadian Clock in Skin. J. Biol. Rhythm. 2015, 30, 163–182. [Google Scholar] [CrossRef]
- Panda, S. Circadian physiology of metabolism. Science 2016, 354, 1008–1015. [Google Scholar] [CrossRef]
- Husse, J.; Eichele, G.; Oster, H. Synchronization of the mammalian circadian timing system: Light can control peripheral clocks independently of the SCN clock: Alternate routes of entrainment optimize the alignment of the body’s circadian clock network with external time. BioEssays 2015, 37, 1119–1128. [Google Scholar] [CrossRef]
- Hardman, J.A.; Tobin, D.J.; Haslam, I.S.; Farjo, N.; Farjo, B.; Al-Nuaimi, Y.; Grimaldi, B.; Paus, R. The Peripheral Clock Regulates Human Pigmentation. J. Investig. Dermatol. 2015, 135, 1053–1064. [Google Scholar] [CrossRef]
- Al-Nuaimi, Y.; Hardman, J.A.; Bíró, T.; Haslam, I.S.; Philpott, M.P.; Tóth, B.I.; Farjo, N.; Farjo, B.; Baier, G.; Watson, R.E.; et al. A Meeting of Two Chronobiological Systems: Circadian Proteins Period1 and BMAL1 Modulate the Human Hair Cycle Clock. J. Investig. Dermatol. 2014, 134, 610–619. [Google Scholar] [CrossRef]
- Slominski, A.T.; Hardeland, R.; Reiter, R.J. When the Circadian Clock Meets the Melanin Pigmentary System. J. Investig. Dermatol. 2015, 135, 943–945. [Google Scholar] [CrossRef] [PubMed]
- Gaddameedhi, S.; Selby, C.P.; Kaufmann, W.K.; Smart, R.C.; Sancar, A. Control of skin cancer by the circadian rhythm. Proc. Natl. Acad. Sci. USA 2011, 108, 18790–18795. [Google Scholar] [CrossRef] [PubMed]
- Janich, P.; Toufighi, K.; Solanas, G.; Luis, N.M.; Minkwitz, S.; Serrano, L.; Lehner, B.; Benitah, S.A. Human Epidermal Stem Cell Function Is Regulated by Circadian Oscillations. Cell Stem Cell 2013, 13, 745–753. [Google Scholar] [CrossRef]
- Narayanan, D.L.; Saladi, R.N.; Fox, J.L. Ultraviolet radiation and skin cancer. Int. J. Dermatol. 2010, 49, 978–986. [Google Scholar] [CrossRef]
- Desotelle, J.A.; Wilking, M.J.; Ahmad, N. The Circadian Control of Skin and Cutaneous Photodamage. Photochem. Photobiol. 2012, 88, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.P.; Häder, D.-P. UV-induced DNA damage and repair: A review. Photochem. Photobiol. Sci. 2002, 1, 225–236. [Google Scholar] [CrossRef]
- Reardon, J.T.; Sancar, A. Nucleotide Excision Repair. Prog. Nucleic Acid. Res. Mol. Biol. 2005, 79, 183–235. [Google Scholar]
- Gaddameedhi, S.; Selby, C.P.; Kemp, M.G.; Ye, R.; Sancar, A. The Circadian Clock Controls Sunburn Apoptosis and Erythema in Mouse Skin. J. Investig. Dermatol. 2015, 135, 1119–1127. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, P.; Li, H.; Dai, J. BMAL1 and CLOCK proteins in regulating UVB-induced apoptosis and DNA damage responses in human keratinocytes. J. Cell. Physiol. 2018, 233, 9563–9574. [Google Scholar] [CrossRef]
- Kawamura, G.; Hattori, M.; Takamatsu, K.; Tsukada, T.; Ninomiya, Y.; Benjamin, I.; Sassone-Corsi, P.; Ozawa, T.; Tamaru, T. Cooperative interaction among BMAL1, HSF1, and p53 protects mammalian cells from UV stress. Commun. Biol. 2018, 1, 204. [Google Scholar] [CrossRef] [PubMed]
- Geyfman, M.; Kumar, V.; Liu, Q.; Ruiz, R.; Gordon, W.; Espitia, F.; Cam, E.; Millar, S.E.; Smyth, P.; Ihler, A.; et al. Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. Proc. Natl. Acad. Sci. USA 2012, 109, 11758–11763. [Google Scholar] [CrossRef] [PubMed]
- Nikkola, V.; Grönroos, M.; Huotari-Orava, R.; Kautiainen, H.; Ylianttila, L.; Karppinen, T.; Partonen, T.; Snellman, E. Circadian Time Effects on NB-UVB–Induced Erythema in Human Skin In Vivo. J. Investig. Dermatol. 2017, 138, 464–467. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Gaddameedhi, S. UV-B-Induced Erythema in Human Skin: The Circadian Clock Is Ticking. J. Investig. Dermatol. 2018, 138, 248–251. [Google Scholar] [CrossRef]
- Kolarski, D.; Sugiyama, A.; Breton, G.; Rakers, C.; Ono, D.; Schulte, A.; Tama, F.; Itami, K.; Szymanski, W.; Hirota, T.; et al. Controlling the Circadian Clock with High Temporal Resolution through Photodosing. J. Am. Chem. Soc. 2019, 141, 15784–15791. [Google Scholar] [CrossRef]
- Boukamp, P.; Petrussevska, R.T.; Breitkreutz, D.; Hornung, J.; Markham, A.; Fusenig, N.E. Normal Keratinization in a Spontaneously Immortalized Aneuploid Human Keratinocyte Cell Line. J. Cell Biol. 1988, 106, 761–771. [Google Scholar] [CrossRef]
- Spörl, F.; Schellenberg, K.; Blatt, T.; Wenck, H.; Wittern, K.-P.; Schrader, A.; Kramer, A. A Circadian Clock in HaCaT Keratinocytes. J. Investig. Dermatol. 2011, 131, 338–348. [Google Scholar] [CrossRef]
- Boukamp, P.; Tilgen, W.; Dzarlieva, R.T.; Breitkreutz, D.; Haag, D.; Riehl, R.K.; Bohnert, A.; Fusenig, N.E. Phenotypic and Genotypic Characteristics of a Cell Line from a Squamous Cell Carcinoma of Human Skin2. JNCI J. Natl. Cancer Inst. 1982, 68, 415–427. [Google Scholar] [CrossRef]
- Farshadi, E.; van der Horst, G.T.; Chaves, I. Molecular Links between the Circadian Clock and the Cell Cycle. J. Mol. Biol. 2020, 432, 3515–3524. [Google Scholar] [CrossRef]
- Jubiz, W.; Canterbury, J.M.; Reiss, E.; Tyler, F.H. Circadian rhythm in serum parathyroid hormone concentration in human subjects: Correlation with serum calcium, phosphate, albumin, and growth hormone levels. J. Clin. Investig. 1972, 51, 2040–2046. [Google Scholar] [CrossRef]
- Egstrand, S.; Olgaard, K.; Lewin, E. Circadian rhythms of mineral metabolism in chronic kidney disease-mineral bone disorder. Curr. Opin. Nephrol. Hypertens. 2020, 29, 367. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Wunder, M.B.; Norris, D.A.; Shellman, Y.G. A Simple Protocol for Using a LDH-Based Cytotoxicity Assay to Assess the Effects of Death and Growth Inhibition at the Same Time. PLoS ONE 2011, 6, e26908. [Google Scholar] [CrossRef] [PubMed]
- Nelson, W.; Tong, Y.L.; Lee, J.K.; Halberg, F. Methods for cosinor-rhythmometry. Chronobiologia 1979, 6, 305–323. [Google Scholar] [PubMed]
- Refinetti, R. The circadian rhythm of body temperature. Front. Biosci. 2010, 15, 564. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, G. Cosinor-based rhythmometry. Theor. Biol. Med. Model. 2014, 11, 16. [Google Scholar] [CrossRef]
- Bingham, C.; Arbogast, B.; Guillaume, G.C.; Lee, J.K.; Halberg, F. Inferential statistical methods for estimating and comparing cosinor parameters. Chronobiologia 1982, 9, 397–439. [Google Scholar]
- Sigrist, C.; Jakob, H.; Beeretz, C.J.; Schmidt, S.J.; Kaess, M.; Koenig, J. Diurnal variation of cardiac autonomic activity in adolescent non-suicidal self-injury. Eur. Arch. Psychiatry Clin. Neurosci. 2023, 274, 1–20. [Google Scholar] [CrossRef]
- Breitkreutz, D.; Stark, H.-J.; Plein, P.; Baur, M.; Fusenig, N.E. Differential modulation of epidermal keratinization in im-mortalized (HaCaT) and tumorigenic human skin keratinocytes (HaCaT-ras) by retinoic acid and extracellular Ca2+. Differentiation 1993, 54, 201–217. [Google Scholar] [CrossRef]
- Han, J.; Farnsworth, R.L.; Tiwari, J.L.; Tian, J.; Lee, H.; Ikonomi, P.; Byrnes, A.P.; Goodman, J.L.; Puri, R.K. Quality prediction of cell substrate using gene expression profiling. Genomics 2006, 87, 552–559. [Google Scholar] [CrossRef]
- Kawara, S.; Mydlarski, R.; Shivji, G.; Tavadia, S.K.; Suzuki, H.; Mamelak, A.J.; Freed, I.; Wang, B.; Watanabe, H.; Bjarnason, G.A.; et al. Low-dose Ultraviolet B Rays Alter the mRNA Expression of the Circadian Clock Genes in Cultured Human Keratinocytes. J. Investig. Dermatol. 2002, 119, 1220–1223. [Google Scholar] [CrossRef]
- Park, S.; Lee, E.-S.; Park, N.-H.; Hwang, K.; Cho, E.-G. Circadian Expression of TIMP3 Is Disrupted by UVB Irradiation and Recovered by Green Tea Extracts. Int. J. Mol. Sci. 2019, 20, 862. [Google Scholar] [CrossRef] [PubMed]
- Nikkola, V.; Miettinen, M.E.; Karisola, P.; Grönroos, M.; Ylianttila, L.; Alenius, H.; Snellman, E.; Partonen, T. Ultraviolet B radiation modifies circadian time in epidermal skin and in subcutaneous adipose tissue. Photodermatol. Photoimmunol. Photomed. 2018, 35, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; van Spyk, E.; Liu, Q.; Geyfman, M.; Salmans, M.L.; Kumar, V.; Ihler, A.; Li, N.; Takahashi, J.S.; Andersen, B. Time-Restricted Feeding Shifts the Skin Circadian Clock and Alters UVB-Induced DNA Damage. Cell Rep. 2017, 20, 1061–1072. [Google Scholar] [CrossRef] [PubMed]
- Khalil, C.; Shebaby, W. UVB damage onset and progression 24 h post exposure in human-derived skin cells. Toxicol. Rep. 2017, 4, 441–449. [Google Scholar] [CrossRef]
- Jung, C.-H.; Kim, E.M.; Park, J.K.; Hwang, S.-G.; Moon, S.-K.; Kim, W.-J.; Um, H.-D. Bmal1 suppresses cancer cell invasion by blocking the phosphoinositide 3-kinase-Akt-MMP-2 signaling pathway. Oncol. Rep. 2013, 29, 2109–2113. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-M.; Lin, S.-F.; Lu, C.-T.; Lin, P.-M.; Yang, M.-Y. Altered expression of circadian clock genes in head and neck squamous cell carcinoma. Tumor Biol. 2011, 33, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.-L.; Yeh, K.-T.; Lin, P.-M.; Hsu, C.-M.; Hsiao, H.-H.; Liu, Y.-C.; Lin, H.Y.-H.; Lin, S.-F.; Yang, M.-Y. Deregulated expression of circadian clock genes in gastric cancer. BMC Gastroenterol. 2014, 14, 67. [Google Scholar] [CrossRef] [PubMed]
- Kochan, D.Z.; Kovalchuk, O. Circadian disruption and breast cancer: An epigenetic link? Oncotarget 2015, 6, 16866. [Google Scholar] [CrossRef]
- Christofi, C.; Lamnis, L.; Stark, A.; Palm, H.; Römer, K.; Vogt, T.; Reichrath, J. Cross-talk of Aryl Hydrocarbon Receptor (AHR)- and Vitamin D Receptor (VDR)-signaling in Human Keratinocytes. Anticancer Res. 2022, 42, 5049–5067. [Google Scholar] [CrossRef]
- Shimba, S.; Watabe, Y. Crosstalk between the AHR signaling pathway and circadian rhythm. Biochem. Pharmacol. 2009, 77, 560–565. [Google Scholar] [CrossRef]
- Ahmed, R.; Ashimori, A.; Iwamoto, S.; Matsui, T.; Nakahata, Y.; Bessho, Y. Replicative senescent human cells possess altered circadian clocks with a prolonged period and delayed peak-time. Aging 2019, 11, 950–973. [Google Scholar] [CrossRef] [PubMed]
- Reichrath, J.; Saternus, R.; Vogt, T. Endocrine actions of vitamin D in skin: Relevance for photocarcinogenesis of non-melanoma skin cancer, and beyond. Mol. Cell. Endocrinol. 2017, 453, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Saternus, R.; Vogt, T.; Reichrath, J. A Critical Appraisal of Strategies to Optimize Vitamin D Status in Germany, a Population with a Western Diet. Nutrients 2019, 11, 2682. [Google Scholar] [CrossRef] [PubMed]
- Miki, T.; Matsumoto, T.; Zhao, Z.; Lee, C.C. p53 regulates Period2 expression and the circadian clock. Nat. Commun. 2013, 4, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Ahmad, J.; Ashraf, H.; Ali, A. Modeling and analysis of the impacts of jet lag on circadian rhythm and its role in tumor growth. PeerJ 2018, 6, e4877. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Zhao, S.; Jiang, X.; Zhang, E.; Hu, G.; Hu, B.; Zheng, P.; Xiao, J.; Lu, Z.; Lu, Y.; et al. The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway. Cancer Lett. 2016, 371, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yu, Y.; Sun, S.; Zhang, T.; Wang, M. Cry 1 regulates the clock gene network and promotes proliferation and migration via the Akt/P53/P21 pathway in human osteosarcoma cells. J. Cancer 2018, 9, 2480. [Google Scholar] [CrossRef]
- Lamia, K.A. Ticking time bombs: Connections between circadian clocks and cancer. F1000Research 2017, 6, 1910. [Google Scholar] [CrossRef]
- Gutierrez-Monreal, M.A.; Cuevas-Diaz Duran, R.; Moreno-Cuevas, J.E.; Scott, S.P. A role for 1α,25-dihydroxyvitamin D3 in the expression of circadian genes. J. Biol. Rhythm. 2014, 29, 384–388. [Google Scholar] [CrossRef]
- Mengatto, C.M.; Mussano, F.; Honda, Y.; Colwell, C.S.; Nishimura, I. Circadian Rhythm and Cartilage Extracellular Matrix Genes in Osseointegration: A Genome-Wide Screening of Implant Failure by Vitamin D Deficiency. PLoS ONE 2011, 6, e15848. [Google Scholar] [CrossRef]
- Kawai, M.; Kinoshita, S.; Yamazaki, M.; Yamamoto, K.; Rosen, C.J.; Shimba, S.; Ozono, K.; Michigami, T. Intestinal clock system regulates skeletal homeostasis. JCI Insight 2019, 4, e121798. [Google Scholar] [CrossRef] [PubMed]
- Reichrath, J.; Reichrath, S.; Vogt, T.; Römer, K. Crosstalk between vitamin d and p53 signaling in cancer: An update. In Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2020; Volume 1268. [Google Scholar]
- Maguire, O.; Campbell, M.J. Vitamin D and p53—Differentiating their relationship in AML. Cancer Biol. Ther. 2010, 10, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Jagoda, S.V.; Dixon, K.M. Protective effects of 1,25 dihydroxyvitamin D3 and its analogs on ultraviolet radiation-induced oxidative stress: A review. Redox Rep. 2020, 25, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Pawlowska, E.; Wysokinski, D.; Blasiak, J. Nucleotide Excision Repair and Vitamin D—Relevance for Skin Cancer Therapy. Int. J. Mol. Sci. 2016, 17, 372. [Google Scholar] [CrossRef]
Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 | Sample 7 | Sample 8 | Sample 9 | Sample 10 | Sample 11 | Sample 12 | Sample 13 | Sample 14 | Sample 15 | Sample 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UVB | - | + | + | + | + | - | - | - | - | - | + | - | - | + | + | + |
D3 | - | - | + | + | + | + | - | - | - | + | - | + | + | - | - | + |
AhR-i | - | - | - | + | + | + | + | - | + | + | - | - | - | + | + | - |
VDR-i | - | - | - | - | + | + | + | + | - | - | + | + | - | - | + | + |
Gene | Condition | F-Statistic | df1 | df2 | p-Value | Rhythmicity Characteristics | ||
---|---|---|---|---|---|---|---|---|
Bmal1 | Control | 7.217496 | 2 | 28 | 0.002965341 | MESOR | Amplitude | Acrophase |
5.20925 | 1.707255 | −1.601187 | ||||||
Bmal1 | UVB | 4.114259 | 2 | 28 | 0.02713342 | MESOR | Amplitude | Acrophase |
5.457692 | 1.078301 | −4.863345 | ||||||
Bmal1 | D3 | 4.054122 | 2 | 28 | 0.0284265 | MESOR | Amplitude | Acrophase |
6.722672 | 2.43367 | −4.159739 | ||||||
Bmal1 | UVB + D3 | 2.248605 | 2 | 28 | 0.1242703 | omitted due to non-conformity with the cosinor method | ||
Per2 | Control | 2.541108 | 2 | 28 | 0.09680284 | omitted due to non-conformity with the cosinor method | ||
Per2 | UVB | 2.152137 | 2 | 28 | 0.1350743 | omitted due to non-conformity with the cosinor method | ||
Per2 | D3 | 1.630983 | 2 | 28 | 0.2137886 | omitted due to non-conformity with the cosinor method | ||
Per2 | UVB + D3 | 1.167377 | 2 | 28 | 0.3258711 | omitted due to non-conformity with the cosinor method |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamnis, L.; Christofi, C.; Stark, A.; Palm, H.; Roemer, K.; Vogt, T.; Reichrath, J. Differential Regulation of Circadian Clock Genes by UV-B Radiation and 1,25-Dihydroxyvitamin D: A Pilot Study during Different Stages of Skin Photocarcinogenesis. Nutrients 2024, 16, 254. https://doi.org/10.3390/nu16020254
Lamnis L, Christofi C, Stark A, Palm H, Roemer K, Vogt T, Reichrath J. Differential Regulation of Circadian Clock Genes by UV-B Radiation and 1,25-Dihydroxyvitamin D: A Pilot Study during Different Stages of Skin Photocarcinogenesis. Nutrients. 2024; 16(2):254. https://doi.org/10.3390/nu16020254
Chicago/Turabian StyleLamnis, Leandros, Christoforos Christofi, Alexandra Stark, Heike Palm, Klaus Roemer, Thomas Vogt, and Jörg Reichrath. 2024. "Differential Regulation of Circadian Clock Genes by UV-B Radiation and 1,25-Dihydroxyvitamin D: A Pilot Study during Different Stages of Skin Photocarcinogenesis" Nutrients 16, no. 2: 254. https://doi.org/10.3390/nu16020254
APA StyleLamnis, L., Christofi, C., Stark, A., Palm, H., Roemer, K., Vogt, T., & Reichrath, J. (2024). Differential Regulation of Circadian Clock Genes by UV-B Radiation and 1,25-Dihydroxyvitamin D: A Pilot Study during Different Stages of Skin Photocarcinogenesis. Nutrients, 16(2), 254. https://doi.org/10.3390/nu16020254