Apple Pomace Extract Improves MK-801-Induced Memory Impairment in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Apple Pomace Extract
2.2. Animals
2.3. Drugs and Experimental Design
2.3.1. Passive Avoidance Task (Single Treatment)
2.3.2. Passive Avoidance Task (Repeated Treatment)
2.3.3. Novel Object Recognition Test
2.3.4. RNA Sequencing and Real-Time Reverse Transcription PCR Analysis
2.4. Step-Through Passive Avoidance Task
2.5. Novel Object Recognition Test
2.6. RNA Sequencing Analysis
2.7. Real-Time Reverse Transcription PCR
2.8. Determination of Glucosylceramide in APE-AF1 by HPLC-ESI-Q-TOF-MS
2.9. Statistical Analyses
3. Results
3.1. APE-AF1 Reverses MK-801-Induced Associative Memory Impairment in the Passive Avoidance Task
3.2. APE-AF1 Reverses the MK-801-Induced Recognition Memory Impairment in the Novel Object Recognition Test
3.3. RNA Sequencing Analysis
3.4. The Composition of Glucosylceramide Contained in APE-AF1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, J.M.; Holtzman, D.M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell 2019, 179, 312–339. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.; Tsui, K.C.; Ng, J.; Fung, M.L.; Lim, L.W. Regulation of Melatonin and Neurotransmission in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 6841. [Google Scholar] [CrossRef] [PubMed]
- Tzioras, M.; McGeachan, R.I.; Durrant, C.S.; Spires-Jones, T.L. Synaptic degeneration in Alzheimer disease. Nat. Rev. Neurol. 2023, 19, 19–38. [Google Scholar] [CrossRef] [PubMed]
- van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; et al. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 388, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Boxer, A.L.; Sperling, R. Accelerating Alzheimer’s therapeutic development: The past and future of clinical trials. Cell 2023, 186, 4757–4772. [Google Scholar] [CrossRef]
- Pistollato, F.; Iglesias, R.C.; Ruiz, R.; Aparicio, S.; Crespo, J.; Lopez, L.D.; Manna, P.P.; Giampieri, F.; Battino, M. Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia and Alzheimer’s disease: A focus on human studies. Pharmacol. Res. 2018, 131, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Skinner, R.C.; Gigliotti, J.C.; Ku, K.M.; Tou, J.C. A comprehensive analysis of the composition, health benefits, and safety of apple pomace. Nutr. Rev. 2018, 76, 893–909. [Google Scholar] [CrossRef]
- Waldbauer, K.; McKinnon, R.; Kopp, B. Apple Pomace as Potential Source of Natural Active Compounds. Planta Med. 2017, 83, 994–1010. [Google Scholar] [CrossRef]
- Asma, U.; Morozova, K.; Ferrentino, G.; Scampicchio, M. Apples and Apple By-Products: Antioxidant Properties and Food Applications. Antioxidants 2023, 12, 1456. [Google Scholar] [CrossRef]
- Asif, M.; Javaid, T.; Razzaq, Z.U.; Khan, M.K.I.; Maan, A.A.; Yousaf, S.; Usman, A.; Shahid, S. Sustainable utilization of apple pomace and its emerging potential for development of functional foods. Environ. Sci. Pollut. Res. Int. 2023, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Alawadi, A.A.; Benedito, V.A.; Skinner, R.C.; Warren, D.C.; Showman, C.; Tou, J.C. RNA-sequencing revealed apple pomace ameliorates expression of genes in the hypothalamus associated with neurodegeneration in female rats fed a Western diet during adolescence to adulthood. Nutr. Neurosci. 2023, 26, 332–344. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, W.; Li, H.; Liu, J.; Zhang, P.; Cheng, Y.; Qin, X.; Hu, Y.; Wei, Y. The neuroprotective effects of isoquercitrin purified from apple pomace by high-speed countercurrent chromatography in the MPTP acute mouse model of Parkinson’s disease. Food Funct. 2021, 12, 6091–6101. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, A.; Yamakuni, T.; Matsuzaki, K.; Nakata, N.; Onozuka, H.; Yokosuka, A.; Sashida, Y.; Mimaki, Y.; Ohizumi, Y. Nobiletin, a citrus flavonoid, reverses learning impairment associated with N-methyl-D-aspartate receptor antagonism by activation of extracellular signal-regulated kinase signaling. J. Pharmacol. Exp. Ther. 2007, 321, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Shimada, M.; Maeda, H.; Nanashima, N.; Yamada, K.; Nakajima, A. Anthocyanin-rich blackcurrant extract improves long-term memory impairment and emotional abnormality in senescence-accelerated mice. J. Food Biochem. 2022, 46, e14295. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, A.; Aoyama, Y.; Shin, E.J.; Nam, Y.; Kim, H.C.; Nagai, T.; Yokosuka, A.; Mimaki, Y.; Yokoi, T.; Ohizumi, Y.; et al. Nobiletin, a citrus flavonoid, improves cognitive impairment and reduces soluble Aβ levels in a triple transgenic mouse model of Alzheimer’s disease (3XTg-AD). Behav. Brain Res. 2015, 289, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Abe, N.; Sasaki, M.; Nakajima, A. Tetrabromobisphenol A and hexabromocyclododecane, brominated flame retardants, trigger endoplasmic reticulum stress and activate necroptosis signaling in PC12 cells. Environ. Toxicol. Pharmacol. 2023, 98, 104056. [Google Scholar] [CrossRef]
- Prieto, C.; Barrios, D. RaNA-Seq: Interactive RNA-Seq analysis from FASTQ files to functional analysis. Bioinformatics 2020, 36, 1955–1956. [Google Scholar] [CrossRef]
- Fernandes, G.W.; Bocco, B.M.L.C.; Fonseca, T.L.; McAninch, E.A.; Jo, S.; Lartey, L.J.; O-Sullivan, I.; Unterman, T.G.; Preite, N.Z.; Voigt, R.M.; et al. The Foxo1-Inducible Transcriptional Repressor Zfp125 Causes Hepatic Steatosis and Hypercholesterolemia. Cell Rep. 2018, 22, 523–534. [Google Scholar] [CrossRef]
- Chen, S.; Alhassen, W.; Yoshimura, R.; De Silva, A.; Abbott, G.W.; Baldi, P.; Alachkar, A. Metabolomic and transcriptomic signatures of prenatal excessive methionine support nature rather than nurture in schizophrenia pathogenesis. Commun. Biol. 2020, 3, 409. [Google Scholar] [CrossRef]
- Strange, R.C.; Spiteri, M.A.; Ramachandran, S.; Fryer, A.A. Glutathione-S-transferase family of enzymes. Mutat. Res. 2001, 482, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.H.; Chang, K.H.; Clawson, S.; Ghosh, S.; Mirzaei, H.; Regnier, F.; Shah, K. Glutathione-S-transferase P1 is a critical regulator of Cdk5 kinase activity. J. Neurochem. 2011, 118, 902–914. [Google Scholar] [CrossRef] [PubMed]
- Riedel, G.; Platt, B.; Micheau, J. Glutamate receptor function in learning and memory. Behav. Brain Res. 2003, 140, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Ojea Ramos, S.; Feld, M.; Fustiñana, M.S. Contributions of extracellular-signal regulated kinase 1/2 activity to the memory trace. Front. Mol. Neurosci. 2022, 15, 988790. [Google Scholar] [CrossRef] [PubMed]
- Levenson, J.M.; O’Riordan, K.J.; Brown, K.D.; Trinh, M.A.; Molfese, D.L.; Sweatt, J.D. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem. 2004, 279, 40545–40559. [Google Scholar] [CrossRef] [PubMed]
- Chwang, W.B.; O’Riordan, K.J.; Levenson, J.M.; Sweatt, J.D. ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learn Mem. 2006, 13, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Cargnin, S.T.; Gnoatto, S.B. Ursolic acid from apple pomace and traditional plants: A valuable triterpenoid with functional properties. Food Chem. 2017, 220, 477–489. [Google Scholar] [CrossRef]
- Gudoityte, E.; Arandarcikaite, O.; Mazeikiene, I.; Bendokas, V.; Liobikas, J. Ursolic and Oleanolic Acids: Plant Metabolites with Neuroprotective Potential. Int. J. Mol. Sci. 2021, 22, 4599. [Google Scholar] [CrossRef]
- Yin, M.C.; Lin, M.C.; Mong, M.C.; Lin, C.Y. Bioavailability, distribution, and antioxidative effects of selected triterpenes in mice. J. Agric. Food Chem. 2012, 60, 7697–7701. [Google Scholar] [CrossRef]
- Tsai, S.J.; Yin, M.C. Anti-oxidative, anti-glycative and anti-apoptotic effects of oleanolic acid in brain of mice treated by D-galactose. Eur. J. Pharmacol. 2012, 689, 81–88. [Google Scholar] [CrossRef]
- Liang, W.; Zhao, X.; Feng, J.; Song, F.; Pan, Y. Ursolic acid attenuates beta-amyloid-induced memory impairment in mice. Arq. Neuropsiquiatr. 2016, 74, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Mirza, F.J.; Amber, S.; Sumera; Hassan, D.; Ahmed, T.; Zahid, S. Rosmarinic acid and ursolic acid alleviate deficits in cognition, synaptic regulation and adult hippocampal neurogenesis in an Aβ1-42-induced mouse model of Alzheimer’s disease. Phytomedicine 2021, 83, 153490. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.J.; Lee, H.J.; Lee, H.E.; Park, S.J.; Gwon, Y.; Kim, H.; Zhang, J.; Shin, C.Y.; Kim, D.H.; Ryu, J.H. Oleanolic acid ameliorates cognitive dysfunction caused by cholinergic blockade via TrkB-dependent BDNF signaling. Neuropharmacology 2017, 113 Pt A, 100–109. [Google Scholar] [CrossRef]
- Ogawa, T.; Migita, H.; Shimada, S.; Ichida, J.; Osada, K. The Structure and Level of Glucosylceramide in Apple Pomace. Nippon Shokuhin Kagaku Kogaku Kaishi 2014, 61, 251–257. [Google Scholar] [CrossRef]
- Takakuwa, N.; Saito, K.; Ohnishi, M.; Oda, Y. Determination of glucosylceramide contents in crop tissues and by-products from their processing. Bioresour Technol. 2005, 96, 1089–1092. [Google Scholar] [CrossRef] [PubMed]
- Yuyama, K.; Igarashi, Y. Linking glycosphingolipids to Alzheimer’s amyloid-ß: Extracellular vesicles and functional plant materials. Glycoconj. J. 2022, 39, 613–618. [Google Scholar] [CrossRef]
- Yuyama, K.; Takahashi, K.; Usuki, S.; Mikami, D.; Sun, H.; Hanamatsu, H.; Furukawa, J.; Mukai, K.; Igarashi, Y. Plant sphingolipids promote extracellular vesicle release and alleviate amyloid-β pathologies in a mouse model of Alzheimer’s disease. Sci. Rep. 2019, 9, 16827. [Google Scholar] [CrossRef]
- Lee, Y.; Oliynyk, S.; Jung, J.C.; Han, J.J.; Oh, S. Administration of glucosylceramide ameliorated the memory impairment in aged mice. Evid. Based Complement. Alternat. Med. 2013, 2013, 824120. [Google Scholar] [CrossRef]
- Eguchi, K.; Mikami, D.; Sun, H.; Tsumita, T.; Takahashi, K.; Mukai, K.; Yuyama, K.; Igarashi, Y. Blood-brain barrier permeability analysis of plant ceramides. PLoS ONE 2020, 5, e0241640. [Google Scholar] [CrossRef]
GO_ID | GO_Term | NES | Adjusted p-Value |
---|---|---|---|
GO:0014069 | postsynaptic density | 2.67 | 5.83 × 10−3 |
GO:0045211 | postsynaptic membrane | 2.50 | 5.83 × 10−3 |
GO:0004714 | transmembrane receptor protein tyrosine kinase activity | 2.45 | 5.83 × 10−3 |
GO:0005249 | voltage-gated potassium channel activity | 2.41 | 5.83 × 10−3 |
GO:0043197 | dendritic spine | 2.40 | 5.83 × 10−3 |
GO:0046332 | SMAD binding | 2.37 | 5.83 × 10−3 |
GO:0071805 | potassium ion transmembrane transport | 2.36 | 5.83 × 10−3 |
GO:0004713 | protein tyrosine kinase activity | 2.34 | 5.83 × 10−3 |
GO:0018108 | peptidyl-tyrosine phosphorylation | 2.32 | 5.83 × 10−3 |
GO:0046777 | protein autophosphorylation | 2.28 | 5.83 × 10−3 |
Pathway_ID | Pathway | NES | Adjusted p-Value |
---|---|---|---|
R-MMU-6794362 | Protein–protein interactions at synapses | 2.63 | 2.84 × 10−3 |
R-MMU-112316 | Neuronal system | 2.48 | 2.84 × 10−3 |
R-MMU-6794361 | Interactions of neurexins and neuroligins at synapses | 2.43 | 2.84 × 10−3 |
mmu04520 | Adherens junction | 2.32 | 2.84 × 10−3 |
R-MMU-112314 | Neurotransmitter receptor binding and downstream transmission in the postsynaptic cell | 2.32 | 2.84 × 10−3 |
mmu04713 | Circadian entrainment | 2.31 | 2.84 × 10−3 |
R-MMU-112040 | G-protein mediated events | 2.29 | 2.84 × 10−3 |
mmu04724 | Glutamatergic synapse | 2.28 | 2.84 × 10−3 |
mmu04020 | Calcium signaling pathway | 2.26 | 2.84 × 10−3 |
R-MMU-112315 | Transmission across chemical synapses | 2.24 | 2.84 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, A.; Shimada, M.; Maeda, H.; Narumi, T.; Ichita, J.; Itoku, K.; Nakajima, A. Apple Pomace Extract Improves MK-801-Induced Memory Impairment in Mice. Nutrients 2024, 16, 194. https://doi.org/10.3390/nu16020194
Watanabe A, Shimada M, Maeda H, Narumi T, Ichita J, Itoku K, Nakajima A. Apple Pomace Extract Improves MK-801-Induced Memory Impairment in Mice. Nutrients. 2024; 16(2):194. https://doi.org/10.3390/nu16020194
Chicago/Turabian StyleWatanabe, Ayako, Minori Shimada, Hayato Maeda, Tsuyoshi Narumi, Junji Ichita, Koh Itoku, and Akira Nakajima. 2024. "Apple Pomace Extract Improves MK-801-Induced Memory Impairment in Mice" Nutrients 16, no. 2: 194. https://doi.org/10.3390/nu16020194
APA StyleWatanabe, A., Shimada, M., Maeda, H., Narumi, T., Ichita, J., Itoku, K., & Nakajima, A. (2024). Apple Pomace Extract Improves MK-801-Induced Memory Impairment in Mice. Nutrients, 16(2), 194. https://doi.org/10.3390/nu16020194