Intestinal Morphology and Glucose Transporter Gene Expression under a Chronic Intake of High Sucrose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Diets
2.2. ITT, OGTT, and OFTT
2.3. Quantitative Reverse-Transcription Polymerase Chain Reaction (RT-PCR)
2.4. Collection of Intestine Samples and Tissue Clearing
2.5. Image Acquisition and Processing
2.6. Statistical an Alysis
3. Results
3.1. Effect of Sucrose Diet on Body and Tissue Weight and Insulin Sensitivity
3.2. Morphology of Small Intestine
3.3. Morphology of Colon
3.4. Gene Expression of mRNA Involved in Glucose and Fructose Absorption in Small Intestine
3.5. Blood Glucose and Insulin Levels after Glucose and Fructose Ingestion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, Y.; Li, S.; Khan, J.; Dai, Z.; Li, C.; Hu, X.; Shen, Q.; Xue, Y. Sugar- and artificially sweetened beverages consumption linked to type 2 diabetes, cardiovascular diseases, and all-cause mortality: A systematic review and dose-response meta-analysis of prospective cohort studies. Nutrients 2021, 13, 2636. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Despres, J.-P.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: A meta-analysis. Diabetes Care 2010, 33, 2477–2483. [Google Scholar] [CrossRef] [PubMed]
- Dahlqvist, A.; Thomson, D.L. The digestion and absorption of sucrose by the intact rat. J. Physiol. 1963, 167, 193–209. [Google Scholar] [CrossRef] [PubMed]
- Bray, G.A.; Nielsen, S.J.; Popkin, B.M. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr. 2004, 79, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Marriott, B.P.; Cole, N.; Lee, E. National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J. Nutr. 2009, 139, 1228S–1235S. [Google Scholar] [CrossRef] [PubMed]
- Powell, E.S.; Smith-Taillie, L.P.; Popkin, B.M. Added sugars intake across the distribution of US children and adult consumers: 1977–2012. J. Acad. Nutr. Diet. 2016, 116, 1543–1550.e1. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Softic, S.; Stanhope, K.L.; Boucher, J.; Divanovic, S.; Lanaspa, M.A.; Johnson, R.J.; Kahn, C.R. Fructose and hepatic insulin resistance. Crit. Rev. Clin. Lab. Sci. 2020, 57, 308–322. [Google Scholar] [CrossRef]
- Dahlqvist, A.; Borgstrom, B. Digestion and absorption of disaccharides in man. Biochem. J. 1962, 81, 411–418. [Google Scholar] [CrossRef]
- Jang, C.; Hui, S.; Lu, W.; Cowan, A.J.; Morscher, R.J.; Lee, G.; Liu, W.; Tesz, G.J.; Birnbaum, M.J.; Rabinowitz, J.D. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 2018, 27, 351–361.e3. [Google Scholar] [CrossRef]
- Andrade, N.; Marques, C.; Andrade, S.; Silva, C.; Rosrigues, I.; Guardao, L.; Guimaraes, J.T.; Keating, E.; Calhau, C.; Martel, F. Effect of chrysin on changes in intestinal environment and microbiome induced by fructose-feeding in rats. Food Funct. 2019, 10, 4566–4576. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.R.; Ramsamooj, S.; Liang, R.J.; Katti, A.; Pozovskiy, R.; Vasan, N.; Hwang, S.-K.; Nahiyaan, N.; Francoeur, N.J.; Schatoff, E.M.; et al. Dietary fructose improves intestinal cell survival and nutrient absorption. Nature 2021, 597, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Hatoko, T.; Harada, N.; Tokumoto, S.; Yamane, S.; Ikeguchi-Ogura, E.; Kato, T.; Yasuda, T.; Tatsuoka, H.; Shimazu-Kuwahara, S.; Yabe, D.; et al. An analysis of intestinal morphology and incretin-producing cells using tissue optical clearing and 3-D imaging. Sci. Rep. 2022, 12, 17530. [Google Scholar] [CrossRef] [PubMed]
- Koepsell, H. Glucose transporters in the small intestine in health and disease. Pflügers Arch. 2020, 472, 1207–1248. [Google Scholar] [CrossRef] [PubMed]
- Douard, V.; Ferraris, R.P. The role of fructose transporters in diseases linked to excessive fructose intake. J. Physiol. 2013, 591, 401–414. [Google Scholar] [CrossRef]
- Kellett, G.L.; Brot-Laroche, E. Apical GLUT2: A major pathway of intestinal sugar absorption. Diabetes 2005, 54, 3056–3062. [Google Scholar] [CrossRef]
- Gouyon, F.; Caillaud, L.; Carriere, V.; Klein, C.; Dalet, V.; Citadelle, D.; Kellett, G.L.; Thorens, B.; Leturque, A.; Brot-laroche, E. Simple-sugar meals target GLUT2 at enterocyte apical membranes to improve sugar absorption: A study in GLUT2-null mice. J. Physiol. 2003, 552, 823–832. [Google Scholar] [CrossRef]
- Samulitis, B.K.; Goda, T.; Lee, S.M.; Koldovský, O. Inhibitory mechanism of acarbose and 1-deoxynojirimycin derivatives on carbohydrases in rat small intestine. Drugs Exp. Clin. Res. 1987, 13, 517–524. [Google Scholar]
- Barber, E.; Houghton, M.J.; Williamson, G. Flavonoids as human intestinal α-glucosidase inhibitors. Foods 2021, 10, 1939. [Google Scholar] [CrossRef]
- Scott, L.J.; Spencer, C.M. Miglitol: A review of its therapeutic potential in type 2 diabetes mellitus. Drugs 2000, 59, 521–549. [Google Scholar] [CrossRef]
- Hamada, Y.; Nagasaki, H.; Fuchigami, M.; Furuta, S.; Seino, Y.; Nakamura, J.; Oiso, Y. The alpha-glucosidase inhibitor miglitol affects bile acid metabolism and ameliorates obesity and insulin resistance in diabetic mice. Metabolism 2013, 62, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Hiraga, H.; Yokota-Hashimoto, H.; Kitamura, T. Miglitol protects against age-dependent weight gain in mice: A potential role of increased UCP1 content in brown adipose tissue. Endocr. J. 2015, 62, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Shimazu-kuwahara, S.; Harada, N.; Yamane, S.; Joo, E.; Sankoda, A.; Kieffer, T.J.; Inagaki, N. Attenuated secretion of glucose-dependent insulinotropic polypeptide (GIP) does not alleviate hyperphagic obesity and insulin resistance in ob/ob mice. Mol. Metab. 2017, 6, 288–294. [Google Scholar] [CrossRef] [PubMed]
- El Marjou, F.; Janssen, K.-P.; Chang, B.H.-J.; Li, M.; Hindie, V.; Chan, L.; Louvard, D.; Chambon, P.; Metzger, D.; Robine, S. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 2004, 39, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Harada, N.; Hatoko, T.; Ichimura, A.; Ikeguchi-Ogura, E.; Murata, Y.; Wada, N.; Kiyobayashi, S.; Yamane, S.; Hirasawa, A.; et al. Inhibition of GPR120 signaling in intestine ameliorates insulin resistance and fatty liver under high-fat diet feeding. Am. J. Physiol. Endocrinol. Metab. 2023, 324, E449–E460. [Google Scholar] [CrossRef] [PubMed]
- Ikeguchi, E.; Harada, N.; Kanemaru, Y.; Sankoda, A.; Yamane, S.; Iwasaki, K.; Imajo, M.; Murata, Y.; Suzuki, K.; Joo, E.; et al. Transcriptional factor Pdx1 is involved in age-related GIP hypersecretion in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2018, 315, G272–G282. [Google Scholar] [CrossRef] [PubMed]
- Al-Ozairi, E.; Rivard, C.J.; Sanchez-Lozada, L.G.; Lanaspa, M.A.; Bjornstad, P.; Salem, D.A.; Alhubail, A.; Megahed, A.; Kuwabara, M.; Johnson, R.J.; et al. Fructose tolerance test in obese people with and without type 2 diabetes. J. Diabetes 2020, 12, 197–204. [Google Scholar] [CrossRef]
- Ogawa, E.; Hosokawa, M.; Harada, N.; Yamane, S.; Hamasaki, A.; Toyoda, K.; Fujimoto, S.; Fujita, Y.; Fukuda, K.; Tsukiyama, K.; et al. The effect of gastric inhibitory polypeptide on intestinal glucose absorption and intestinal motility in mice. Biochem. Biophys. Res. Commun. 2011, 404, 115–120. [Google Scholar] [CrossRef]
- Bossolani, G.D.P.; Pintelon, I.; Detrez, J.D.; Buckinx, R.; Thys, S.; Zanoni, J.N.; Vos, W.H.D.; Timmermans, J.-P. Comparative analysis reveals Ce3D as optimal clearing method for in toto imaging of the mouse intestine. Neurogastroenterol. Motil. 2019, 31, e13560. [Google Scholar] [CrossRef]
- Ferraris, R.P.; Diamond, J.M. Crypt/villus site of substrate-dependent regulation of mouse intestinal glucose transporters. Proc. Natl. Acad. Sci. USA 1993, 90, 5868–5872. [Google Scholar] [CrossRef]
- Afshar, N.; Safaei, S.; Nickerson, D.P.; Hunter, P.J.; Suresh, V. Computational modelling of glucose uptake by sglt1 and apical glut2 in the enterocyte. Front. Physiol. 2021, 12, 699152. [Google Scholar] [CrossRef] [PubMed]
- Kellett, G.L.; Helliwell, P.A. The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane. Biochem. J. 2000, 15, 155–162. [Google Scholar] [CrossRef]
- Naftalin, R.J. Does apical membrane GLUT2 have a role in intestinal glucose uptake? F1000Research 2014, 3, 304. [Google Scholar] [CrossRef] [PubMed]
- Lovegrove, A.; Edwards, C.H.; De Noni, I.; Patel, H.; El, S.N.; Grassby, T.; Zielke, C.; Ulmius, M.; Nilsson, L.; Butterworth, P.J.; et al. Role of polysaccharides in food, digestion, and health. Crit. Rev. Food Sci. Nutr. 2017, 57, 237–253. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamamoto, K.; Harada, N.; Yasuda, T.; Hatoko, T.; Wada, N.; Lu, X.; Seno, Y.; Kurihara, T.; Yamane, S.; Inagaki, N. Intestinal Morphology and Glucose Transporter Gene Expression under a Chronic Intake of High Sucrose. Nutrients 2024, 16, 196. https://doi.org/10.3390/nu16020196
Yamamoto K, Harada N, Yasuda T, Hatoko T, Wada N, Lu X, Seno Y, Kurihara T, Yamane S, Inagaki N. Intestinal Morphology and Glucose Transporter Gene Expression under a Chronic Intake of High Sucrose. Nutrients. 2024; 16(2):196. https://doi.org/10.3390/nu16020196
Chicago/Turabian StyleYamamoto, Kana, Norio Harada, Takuma Yasuda, Tomonobu Hatoko, Naoki Wada, Xuejing Lu, Youhei Seno, Takashi Kurihara, Shunsuke Yamane, and Nobuya Inagaki. 2024. "Intestinal Morphology and Glucose Transporter Gene Expression under a Chronic Intake of High Sucrose" Nutrients 16, no. 2: 196. https://doi.org/10.3390/nu16020196
APA StyleYamamoto, K., Harada, N., Yasuda, T., Hatoko, T., Wada, N., Lu, X., Seno, Y., Kurihara, T., Yamane, S., & Inagaki, N. (2024). Intestinal Morphology and Glucose Transporter Gene Expression under a Chronic Intake of High Sucrose. Nutrients, 16(2), 196. https://doi.org/10.3390/nu16020196