The Satiating Effect of Extruded Plant Protein Compared with Native Plant and Meat Protein in a Ragú “Bolognaise” Meal: A Randomized Cross-Over Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Measurements
2.3. Participants
2.4. Meals
2.4.1. Standardized Evening Meal
2.4.2. Standardized Breakfast
2.4.3. Test Meals Composition
2.4.4. Ad Libitum Meal Composition
2.5. Procedure
2.5.1. The Days Prior to the Test Days
2.5.2. Test Days
2.6. In Vitro Protein Digestibility (IVPD)
2.7. Chemical Composition and Amino Acid Analysis
2.8. Statistical Analysis
3. Results
3.1. Nutritional Composition of the Meals
3.2. Subjective Appetite
3.3. Ad Libitum Meal
4. Discussion
4.1. Meal Composition
4.2. Meal Experiment
5. Strength and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parlasca, M.C.; Qaim, M. Meat Consumption and Sustainability. Annu. Rev. Resour. Econ. 2022, 14, 17–41. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat Consumption, Health, and the Environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef] [PubMed]
- Qian, F.; Liu, G.; Hu, F.B.; Bhupathiraju, S.N.; Sun, Q. Association Between Plant-Based Dietary Patterns and Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. JAMA Intern. Med. 2019, 179, 1335–1344. [Google Scholar] [CrossRef] [PubMed]
- Satija, A.; Hu, F.B. Plant-Based Diets and Cardiovascular Health. Trends Cardiovasc. Med. 2018, 28, 437–441. [Google Scholar] [CrossRef]
- Madigan, M.; Karhu, E. The Role of Plant-Based Nutrition in Cancer Prevention. J. Unexplored Med. Data 2018, 3, 9. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Hemler, E.C.; Hu, F.B. Plant-Based Diets for Personal, Population, and Planetary Health. Adv. Nutr. 2019, 10, S275–S283. [Google Scholar] [CrossRef]
- Perez-Cueto, F.J.A.; Rini, L.; Faber, I.; Rasmussen, M.A.; Bechtold, K.B.; Schouteten, J.J.; De Steur, H. How Barriers towards Plant-Based Food Consumption Differ According to Dietary Lifestyle: Findings from a Consumer Survey in 10 EU Countries. Int. J. Gastron. Food Sci. 2022, 29, 100587. [Google Scholar] [CrossRef]
- Reipurth, M.F.S.; Hørby, L.; Gregersen, C.G.; Bonke, A.; Perez Cueto, F.J.A. Barriers and Facilitators towards Adopting a More Plant-Based Diet in a Sample of Danish Consumers. Food Qual. Prefer. 2019, 73, 288–292. [Google Scholar] [CrossRef]
- Adhikari, S.; Schop, M.; de Boer, I.J.M.; Huppertz, T. Protein Quality in Perspective: A Review of Protein Quality Metrics and Their Applications. Nutrients 2022, 14, 947. [Google Scholar] [CrossRef]
- Amin, A.; Petersen, I.L.; Malmberg, C.; Orlien, V. Perspective on the Effect of Protein Extraction Method on the Antinutritional Factor (ANF) Content in Seeds. ACS Food Sci. Technol. 2022, 2, 604–612. [Google Scholar] [CrossRef]
- Boukid, F.; Zannini, E.; Carini, E.; Vittadini, E. Pulses for Bread Fortification: A Necessity or a Choice? Trends Food Sci. Technol. 2019, 88, 416–428. [Google Scholar] [CrossRef]
- Nikmaram, N.; Leong, S.Y.; Koubaa, M.; Zhu, Z.; Barba, F.J.; Greiner, R.; Oey, I.; Roohinejad, S. Effect of Extrusion on the Anti-Nutritional Factors of Food Products: An Overview. Food Control 2017, 79, 62–73. [Google Scholar] [CrossRef]
- Duque-Estrada, P.; Petersen, I.L. The Sustainability Paradox of Processing Plant Proteins. NPJ Sci. Food 2023, 7, 38. [Google Scholar] [CrossRef] [PubMed]
- Sá, A.G.A.; Moreno, Y.M.F.; Carciofi, B.A.M. Food Processing for the Improvement of Plant Proteins Digestibility. Crit. Rev. Food Sci. Nutr. 2020, 60, 3367–3386. [Google Scholar] [CrossRef]
- Chambers, L.; McCrickerd, K.; Yeomans, M.R. Optimising Foods for Satiety. Trends Food Sci. Technol. 2015, 41, 149–160. [Google Scholar] [CrossRef]
- Morell, P.; Fiszman, S. Revisiting the Role of Protein-Induced Satiation and Satiety. Food Hydrocoll. 2017, 68, 199–210. [Google Scholar] [CrossRef]
- Blundell, J.; De Graaf, C.; Hulshof, T.; Jebb, S.; Livingstone, B.; Lluch, A.; Mela, D.; Salah, S.; Schuring, E.; Van Der Knaap, H.; et al. Appetite Control: Methodological Aspects of the Evaluation of Foods. Obes. Rev. 2010, 11, 251–270. [Google Scholar] [CrossRef]
- Santos-Hernández, M.; Miralles, B.; Amigo, L.; Recio, I. Intestinal Signaling of Proteins and Digestion-Derived Products Relevant to Satiety. J. Agric. Food Chem. 2018, 66, 10123–10131. [Google Scholar] [CrossRef]
- Veldhorst, M.; Smeets, A.; Soenen, S.; Hochstenbach-Waelen, A.; Hursel, R.; Diepvens, K.; Lejeune, M.; Luscombe-Marsh, N.; Westerterp-Plantenga, M. Protein-Induced Satiety: Effects and Mechanisms of Different Proteins. Physiol. Behav. 2008, 94, 300–307. [Google Scholar] [CrossRef]
- Westerterp-Plantenga, M.S.; Lemmens, S.G.; Westerterp, K.R. Dietary Protein—Its Role in Satiety, Energetics, Weight Loss and Health. Br. J. Nutr. 2012, 108, S105–S112. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.; Raben, A.; Blundell, J.E.; Astrup, A. Reproducibility, Power and Validity of Visual Analogue Scales in Assessment of Appetite Sensations in Single Test Meal Studies. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Blomhoff, R.; Andersen, R.; Arnesen, E.K.; Christensen, J.J.; Eneroth, H.; Erkkola, M.; Gudanaviciene, I.; Halldórsson, Þ.I.; Høyer-Lund, A.; Lemming, E.W.; et al. Nordic Nutrition Recommendations 2023; Nordic Council of Ministers: Copenhagen, Denmark, 2023. [Google Scholar] [CrossRef]
- Joehnke, M.S.; Rehder, A.; Sørensen, S.; Bjergegaard, C.; Sørensen, J.C.; Markedal, K.E. In Vitro Digestibility of Rapeseed and Bovine Whey Protein Mixtures. J. Agric. Food Chem. 2018, 66, 711–719. [Google Scholar] [CrossRef]
- WHO. Report of a Joint WHO/FAO/UNU Expert Consultation. Protein and Amino Acid Requirements in Human Nutrition; Technical Report Series 935; World Health Organization: Geneva, Switzerland, 2002; ISBN 9241209356. [Google Scholar]
- Clark, M.J.; Slavin, J.L. The Effect of Fiber on Satiety and Food Intake: A Systematic Review. J. Am. Coll. Nutr. 2013, 32, 200–211. [Google Scholar] [CrossRef]
- Warrilow, A.; Mellor, D.; McKune, A.; Pumpa, K. Dietary Fat, Fibre, Satiation, and Satiety—A Systematic Review of Acute Studies. Eur. J. Clin. Nutr. 2018, 73, 333–344. [Google Scholar] [CrossRef]
- Cunningham, P.M.; Roe, L.S.; Keller, K.L.; Rolls, B.J. Variety and Portion Size Combine to Increase Food Intake at Single-Course and Multi-Course Meals. Appetite 2023, 191, 107089. [Google Scholar] [CrossRef]
- Gibbons, C.; Hopkins, M.; Beaulieu, K.; Oustric, P.; Blundell, J.E. Issues in Measuring and Interpreting Human Appetite (Satiety/Satiation) and Its Contribution to Obesity. Curr. Obes. Rep. 2019, 8, 77–87. [Google Scholar] [CrossRef]
- Muhlhausler, B.S.; Belobrajdic, D.; Wymond, B.; Benassi-Evans, B. Assessing the Effect of Plant-Based Mince on Fullness and Post-Prandial Satiety in Healthy Male Subjects. Nutrients 2022, 14, 5326. [Google Scholar] [CrossRef]
- Bayham, B.E.; Greenway, F.L.; Johnson, W.D.; Dhurandhar, N.V. A Randomized Trial to Manipulate the Quality Instead of Quantity of Dietary Proteins to Influence the Markers of Satiety. J. Diabetes Complicat. 2014, 28, 547–552. [Google Scholar] [CrossRef]
- Klementova, M.; Thieme, L.; Haluzik, M.; Pavlovicova, R.; Hill, M.; Pelikanova, T.; Kahleova, H. A Plant-Based Meal Increases Gastrointestinal Hormones and Satiety More Than an Energy- and Macronutrient-Matched Processed-Meat Meal in T2D, Obese, and Healthy Men: A Three-Group Randomized Crossover Study. Nutrients 2019, 11, 157. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, M.D.; Bendsen, N.T.; Christensen, S.M.; Astrup, A.; Raben, A. Meals Based on Vegetable Protein Sources (Beans and Peas) Are More Satiating than Meals Based on Animal Protein Sources (Veal and Pork)—A Randomized Cross-over Meal Test Study. Food Nutr. Res. 2016, 60, 32634. [Google Scholar] [CrossRef] [PubMed]
- Vanhatalo, S.; Lappi, J.; Rantala, J.; Farooq, A.; Sand, A.; Raisamo, R.; Sozer, N. Meat- and Plant-Based Products Induced Similar Satiation Which Was Not Affected by Multimodal Augmentation. Appetite 2024, 194, 107171. [Google Scholar] [CrossRef] [PubMed]
- Kehlet, U.; Kofod, J.; Holst, J.J.; Ritz, C.; Aaslyng, M.D.; Raben, A. Addition of Rye Bran and Pea Fiber to Pork Meatballs Enhances Subjective Satiety in Healthy Men, but Does Not Change Glycemic or Hormonal Responses: A Randomized Crossover Meal Test Study. J. Nutr. 2017, 147, 1700–1708. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.V.; Kristensen, M.D.; Klingenberg, L.; Ritz, C.; Belza, A.; Astrup, A.; Raben, A. Protein from Meat or Vegetable Sources in Meals Matched for Fiber Content Has Similar Effects on Subjective Appetite Sensations and Energy Intake—A Randomized Acute Cross-Over Meal Test Study. Nutrients 2018, 10, 96. [Google Scholar] [CrossRef]
- Pham, T.; Knowles, S.; Bermingham, E.; Brown, J.; Hannaford, R.; Cameron-Smith, D.; Braakhuis, A. Plasma Amino Acid Appearance and Status of Appetite Following a Single Meal of Red Meat or a Plant-Based Meat Analog: A Randomized Crossover Clinical Trial. Curr. Dev. Nutr. 2022, 6, nzac082. [Google Scholar] [CrossRef]
- Saini, P.; Islam, M.; Das, R.; Shekhar, S.; Sinha, A.S.K.; Prasad, K. Wheat Bran as Potential Source of Dietary Fiber: Prospects and Challenges. J. Food Compos. Anal. 2023, 116, 105030. [Google Scholar] [CrossRef]
- Nedeljković, N.; Hadnađev, M.; Dapčević Hadnađev, T.; Šarić, B.; Pezo, L.; Sakač, M.; Pajin, B. Partial Replacement of Fat with Oat and Wheat Bran Gels: Optimization Study Based on Rheological and Textural Properties. LWT 2017, 86, 377–384. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Wang, L.; Qiu, J.; Li, Z.; Wang, L. Milling of Wheat Bran: Influence on Digestibility, Hydrolysis and Nutritional Properties of Bran Protein during in Vitro Digestion. Food Chem. 2023, 404, 134559. [Google Scholar] [CrossRef]
- Coda, R.; Rizzello, C.G.; Curiel, J.A.; Poutanen, K.; Katina, K. Effect of Bioprocessing and Particle Size on the Nutritional Properties of Wheat Bran Fractions. Innov. Food Sci. Emerg. Technol. 2014, 25, 19–27. [Google Scholar] [CrossRef]
- Qin, P.; Wang, T.; Luo, Y. A Review on Plant-Based Proteins from Soybean: Health Benefits and Soy Product Development. J. Agric. Food Res. 2022, 7, 100265. [Google Scholar] [CrossRef]
- Duque-Estrada, P.; Hardiman, K.; Bøgebjerg Dam, A.; Dodge, N.; Aaslyng, M.D.; Petersen, I.L. Protein Blends and Extrusion Processing to Improve the Nutritional Quality of Plant Proteins. Food Funct. 2023, 14, 7361–7374. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Sehrawat, R.; Kong, Y. Oat Proteins: A Perspective on Functional Properties. LWT 2021, 152, 112307. [Google Scholar] [CrossRef]
- Kehlet, U.; Pagter, M.; Aaslyng, M.D.; Raben, A. Meatballs with 3% and 6% Dietary Fibre from Rye Bran or Pea Fibre—Effects on Sensory Quality and Subjective Appetite Sensations. Meat Sci. 2017, 125, 66–75. [Google Scholar] [CrossRef]
- Andriessen, C.; Christensen, P.; Vestergaard Nielsen, L.; Ritz, C.; Astrup, A.; Meinert Larsen, T.; Martinez, J.A.; Saris, W.H.M.; van Baak, M.A.; Papadaki, A.; et al. Weight Loss Decreases Self-Reported Appetite and Alters Food Preferences in Overweight and Obese Adults: Observational Data from the DiOGenes Study. Appetite 2018, 125, 314–322. [Google Scholar] [CrossRef]
- Duerlund, M.; Andersen, B.V.; Byrne, D.V. Dynamic Changes in Post-Ingestive Sensations after Consumption of a Breakfast Meal High in Protein or Carbohydrate. Foods 2019, 8, 413. [Google Scholar] [CrossRef]
Characteristics | Values |
---|---|
Age, years | 29 ± 11.3 |
BMI, kg/m2 | 24.1 ± 2.29 |
Physical activity level (PAL) | 1.68 ± 0.18 |
Estimated energy intake standardized evening meal, MJ | 3.71 ± 0.70 |
Test Meal | Recipe |
---|---|
TVP | 42.5 g dry TVP (83% pea, 17% oats), 200 g chopped tomatoes, 67.5 g water, 62.5 g onion, 3 g garlic, 37.5 g parsnip, 37.5 g soymilk, 35 g tomato puree, 25 g coconut milk, 25 g coconut milk light, 15 g sunflower oil, 7.5 g gastrique, 3.8 g miso, 1.6 g salt, 1 g oregano, 1 g thyme, 1 g smoked paprika, 0.8 g pepper. |
Meat | 105 g minced beef (3–6% fat), 200 g chopped tomatoes, 87.5 g parsnip, 75 g onion, 3 g garlic, 35 g tomato puree, 17.5 g sunflower oil, 17.5 g water, 8.75 g wheat bran, 7.5 g gastrique, 1.6 g salt, 1 g oregano, 1 g thyme, 1 g smoked paprika, 0.8 g pepper. |
Green | 143 g soybeans (boiled), 200 g chopped tomatoes, 50 g parsnip, 50 g leek, 3 g garlic, 37.5 g soymilk, 35 g tomato puree, 18.8 g water, 8.75 g sunflower oil, 3.8 g miso, 7.5 g gastrique, 1.6 g salt, 1 g oregano, 1 g thyme, 1 g smoked paprika, 0.8 g pepper. |
Prior to Test Days | Test Days | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Time | 7 p.m. | 8 a.m. | 8–11.59 a.m. | 12.00 p.m. | 12.15 p.m. | 12.30 p.m. | 1.00 p.m. | 1.30 p.m. | 2.00 p.m. | 2.30 p.m. |
(time from baseline, min) | (0) | (15) | (30) | (60) | (90) | (120) | (150) | |||
Procedure | ||||||||||
Standardized evening meal | x | |||||||||
Standardized breakfast | x | |||||||||
Test meal | x | |||||||||
Ad libitum meal | x | |||||||||
Beverage | x 1 | x | x | x | x | x | ||||
VAS | x | x | x | x | x | x | x |
TVP | Meat | Green | p (Difference) | |
---|---|---|---|---|
Protein 1, % 2 | 6.75 | 6.30 | 6.45 | 0.42 |
Sum of amino acids 3, % | 5.59 | 5.84 | 5.51 | |
Fat, % | 5.40 | 5.00 | 4.65 | 0.18 |
Carbohydrate, % | 8.8 | 10.2 | 8.9 | 0.17 |
Dietary fiber, % | 4.55 ab | 3.75 b | 5.55 a | 0.02 |
Water, % | 72.9 | 73.4 | 73.0 | 0.50 |
Energy, kJ/100 g | 500 | 494 | 478 | 0.23 |
Meal weight, g | 638 | 638 | 642 | |
Energy/meal, kJ | 3190 | 3152 | 3069 |
WHO 3 | TVP | Meat | Green | |
---|---|---|---|---|
% IVPD, meal | 21.05 ab (1.62 4) | 23.49 a (0.85) | 20.17 b (0.44) | |
% IVPD, “bolognaise” | 20.71 b (1.02) | 30.72 a (0.21) | 22.23 b (2.18) | |
Tyr 1 | 35.2 | 30.4 | 31.1 | |
Thr 1,2 | 22.7 | 49.3 | 38.9 | 34.7 |
Leu 1,2 | 59.1 | 73.9 | 72.6 | 69.5 |
Ile 1,2 | 30.3 | 42.3 | 42.2 | 40.2 |
Phe 1 | 47.5 | 40.5 | 47.5 | |
Trp 1,2 | 6.1 | 8.8 | 8.4 | 11.0 |
Lys 1,2 | 45.5 | 59.9 | 69.3 | 49.4 |
Val 2 | 39.4 | 45.8 | 43.9 | 43.9 |
His 2 | 15.2 | 22.9 | 30.4 | 23.8 |
Met | 10.6 | 20.3 | 12.8 | |
Cys | 14.1 | 11.8 | 16.5 | |
Met + Cys 2 | 22.7 | 24.6 | 32.1 | 29.3 |
Phe + Tyr 2 | 37.9 | 82.7 | 70.9 | 78.6 |
Asp | 110.9 | 94.6 | 106 | |
Ser | 37.0 | 40.5 | 49.4 | |
Glu | 223.6 | 207.8 | 255.9 | |
Pro | 51.1 | 50.7 | 62.2 | |
Gly | 40.5 | 52.4 | 38.4 | |
Ala | 42.3 | 55.7 | 40.2 | |
Arg | 75.7 | 69.3 | 60.3 | |
HPro | 0 | 11.8 | 0 | |
GABA | 8.8 | 8.4 | 7.3 | |
Sum of ketogenic amino acids | 316.9 | 302.4 | 283.4 |
AUC/AOC | TVP | Meat | Green | p (AUC/AOC) | p (repeated) |
---|---|---|---|---|---|
Hunger | 9578 | 9475 | 9597 | 0.93 | 0.90 |
Satiety | 8750 | 8593 | 8775 | 0.87 | 0.75 |
Fullness | 8669 | 8335 | 8727 | 0.52 | 0.31 |
Prospective eating | 9149 | 9034 | 9186 | 0.89 | 0.95 |
TVP | Meat | Green | p (ad lib) | Std. Err | |
---|---|---|---|---|---|
Ad libitum intake, kJ | 758 b | 957 a | 903 ab | 0.02 | 95.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, M.S.; Dynesen, A.W.; Petersen, B.; Petersen, I.L.; Duque-Estrada, P.; Aaslyng, M.D. The Satiating Effect of Extruded Plant Protein Compared with Native Plant and Meat Protein in a Ragú “Bolognaise” Meal: A Randomized Cross-Over Study. Nutrients 2024, 16, 3407. https://doi.org/10.3390/nu16193407
Martin MS, Dynesen AW, Petersen B, Petersen IL, Duque-Estrada P, Aaslyng MD. The Satiating Effect of Extruded Plant Protein Compared with Native Plant and Meat Protein in a Ragú “Bolognaise” Meal: A Randomized Cross-Over Study. Nutrients. 2024; 16(19):3407. https://doi.org/10.3390/nu16193407
Chicago/Turabian StyleMartin, Mille Skov, Anja Weirsøe Dynesen, Birthe Petersen, Iben Lykke Petersen, Patrícia Duque-Estrada, and Margit Dall Aaslyng. 2024. "The Satiating Effect of Extruded Plant Protein Compared with Native Plant and Meat Protein in a Ragú “Bolognaise” Meal: A Randomized Cross-Over Study" Nutrients 16, no. 19: 3407. https://doi.org/10.3390/nu16193407
APA StyleMartin, M. S., Dynesen, A. W., Petersen, B., Petersen, I. L., Duque-Estrada, P., & Aaslyng, M. D. (2024). The Satiating Effect of Extruded Plant Protein Compared with Native Plant and Meat Protein in a Ragú “Bolognaise” Meal: A Randomized Cross-Over Study. Nutrients, 16(19), 3407. https://doi.org/10.3390/nu16193407