New Perspectives on the Old Uses of Traditional Medicinal and Edible Herbs: Extract and Spent Material of Persicaria hydropiper (L.) Delarbre
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. A Survey Regarding the Traditional Herbs Usability, Zero-Waste Culture and Eating Behaviors
2.3. Extract Preparation
2.4. Chemical Analysis
2.5. Antibacterial Activity of the PH Extract
2.5.1. Growth Conditions and Strains Used in Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Assay
2.5.2. MIC and MBC Assay
2.6. Cytotoxicity Assessment
2.7. Safety Evaluation of PH Extract by Using Artemia salina Toxicity Assay
2.8. Viability of Probiotic Bacteria with Psychobiotic Potential
2.9. Statistical Analysis
3. Results and Discussion
3.1. Attitudes Regarding the Traditional Herbs’ Usability, Zero-Waste Culture and Eating Behaviors of Serbian Consumers
3.2. Phenolic Profile of PH Extract
3.3. Bioactivity of the PH Extract
3.4. Safety Evaluation of the PH Extract
3.5. The Impact of Spent PH Material on Probiotic Bacteria Viability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dini, I. Bio Discarded from Waste to Resource. Foods 2021, 10, 2652. [Google Scholar] [CrossRef] [PubMed]
- Petrović, M.; Sonja, V.; Nikola, T.; Snežana, Z.; Tomislav, T.; Predrag, V.; Stanislava, G. Formulation of novel liqueurs from juice industry waste: Consumer acceptance, phenolic profile and preliminary monitoring of antioxidant activity and colour changes during storage. Food Technol. Biotech. 2021, 59, 282–294. [Google Scholar] [CrossRef] [PubMed]
- Vasiljevic, Z.; Vunduk, J.; Bartolic, D.; Miskovic, G.; Ognjanovic, M.; Tadic, B.N.; Nikolic, V.M. An Eco-friendly Approach to ZnO NP Synthesis Using Citrus reticulata Blanco Peel/Extract: Characterization and Antibacterial and Photocatalytic Activity. ACS Appl. Bio Mater. 2024, 7, 3014–3032. [Google Scholar] [CrossRef]
- Doroški, A.; Klaus, A.; Kozarski, M.; Cvetković, S.; Nikolić, B.; Jakovljević, D.; Tomasevic, I.; Vunduk, J.; Lazić, V.; Djekic, I. The influence of grape pomace substrate on quality characterization of Pleurotus ostreatus—Total quality index approach. J. Food Process. Preserv. 2021, 45, e15096. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Tarafdar, A.; Gaur, V.K.; Amulya, K.; Narisetty, V.; Yadav, D.K.; Sindhu, R.; Binod, P.; Negi, T.; Pandey, A.; et al. Emerging trends of microbial technology for the production of oligosaccharides from biowaste and their potential application as prebiotic. Int. J. Food Microbiol. 2022, 368, 109610. [Google Scholar] [CrossRef] [PubMed]
- Đorđević-Milošević, S.; Mastilović, J.; Stanišić, S.; Kilibarda, N. Food, Nutrition, and Health in Serbia. In Nutritional and Health Aspects of Food in the Balkans; Academic Press: Cambridge, MA, USA, 2021; pp. 187–205. [Google Scholar]
- Djuric, Z.; Nikolic, M.; Zekovic, M.; Plegue, M.; Glibetic, M. Association of meal timing with dietary quality in a Serbian population sample. BMC Nutr. 2020, 6, 45. [Google Scholar] [CrossRef]
- Bryant, C.J. Plant-based animal product alternatives are healthier and more environmentally sustainable than animal products. Future Food 2022, 6, 100174. [Google Scholar] [CrossRef]
- Clark, M.; Springmann, M.; Rayner, M.; Scarborough, P.; Hill, J.; Tilman, D.; Macdiarmid, J.I.; Fanzo, J.; Bandy, L.; Harrington, R.A. Estimating the environmental impacts of 57,000 food products. Proc. Natl. Acad. SCI 2022, 119, e2120584119. [Google Scholar] [CrossRef] [PubMed]
- Genet, B.M.L.; Sedó Molina, G.E.; Wätjen, A.P.; Barone, G.; Albersten, K.; Ahrné, L.M.; Hansen, E.B.; Bang-Berthelsen, C.H. Hybrid Cheeses—Supplementation of Cheese with Plant-Based Ingredients for a Tasty, Nutritious and Sustainable Food Transition. Fermentation 2023, 9, 667. [Google Scholar] [CrossRef]
- Molnár, J.; Pal, M. Sustainable nutrition with flexitarian diet for human health. J. Food Technol. 2022, 6, 187–188. [Google Scholar]
- Dey, T.; Bhattacharjee, T.; Nag, P.; Ritika; Ghati, A.; Kuila, A. Valorization of agro-waste into value added products for sustainable development. Bioresour. Technol. Rep. 2021, 16, 100834. [Google Scholar] [CrossRef]
- Ayaz, M.; Ahmad, I.; Sadiq, A.; Ullah, F.; Ovais, M.; Khalil, A.T.; Devkota, H.P. Persicaria hydropiper Delarbre: A review on traditional uses, bioactive chemical constituents and pharmacological and toxicological activities. J. Ethnopharmacol. 2019, 251, 112516. [Google Scholar] [CrossRef] [PubMed]
- Maw, T.T. Morphological, phytochemical investigation and nutritional values on leaves of Polygonum hydropiper L. 3rd Myanmar Korea Conf. Res. J. 2020, 3, 1019–1026. [Google Scholar]
- Vračarić, B.; Bakić, J.; Čolić, D.; Lintner, V.; Micković, M.; Rajšić, R.; Stevanović, D.; Uvalin, M. Ishrana u prirodi; Vojnoizdavački zavod, Narodna knjiga: Belgrade, Serbia, 1977; pp. 37–38. [Google Scholar]
- Ibadullayeva, S.C.; Shiraliyeva, G.S.; Gurbanova, L.Z.; Askerova, A.A.; Huseynova, A.E.; Seyidova, L.M.; Qasimov, H.Z. Eth-nopharmacological use of wild vegetable plants belonging to the Polygonaceae Juss. family spread in the Azerbaijan flora. Biodivers. J. 2021, 12, 733–740. [Google Scholar]
- Meitei, L.R.; De, A.; Mao, A.A. An ethnobotanical study on the wild edible plants used by forest dwellers in Yangoupokpi Lokchao Wildlife Sanctuary, Manipur, India. Ethnobot. Res. Appl. 2022, 23, 1–22. [Google Scholar] [CrossRef]
- Bairagi, J.; Saikia, P.J.; Boro, F.; Hazarika, A. A review on the ethnopharmacology, phytochemistry and pharmacology of Polygonum hydropiper Linn. J. Pharm. Pharmacol. 2022, 74, 619–645. [Google Scholar] [CrossRef]
- Huq, A.M.; Jamia, A.J.; Johnson, S. Ethnobotanical, phytochemical, pharmacological, and toxico-logical aspects of Persicaria hydropiper (L.) Delarbre. J. Evid. Based Complement. Altern. Med. 2014, 1, 782830. [Google Scholar] [CrossRef] [PubMed]
- Seimandi, G.; Álvarez, N.; Stegmayer, M.I.; Fernández, L.; Ruiz, V.; Favaro, M.A.; Derita, M. An Update on Phytochemicals and Pharmacological Activities of the Genus Persicaria and Polygonum. Molecules 2021, 26, 5956. [Google Scholar] [CrossRef]
- Shahed-Al-Mahmud, M.; Lina, S.M.M. Evaluation of sedative and anxiolytic activities of methanol extract of leaves of Persicaria hydropiper in mice. Clin. Phytosci. 2017, 3, 20. [Google Scholar] [CrossRef]
- Babazadeh, A.; Vahed, F.M.; Liu, Q.; Siddiqui, S.A.; Kharazmi, M.S.; Jafari, S.M. Natural Bioactive Molecules as Neuromedicines for the Treatment/Prevention of Neurodegenerative Diseases. ACS Omega 2023, 8, 3667–3683. [Google Scholar] [CrossRef]
- Tong, X.; Li, X.; Ayaz, M.; Ullah, F.; Sadiq, A.; Ovais, M.; Shahid, M.; Khayrullin, M.; Hazrat, A. Neuroprotective Studies on Polygonum hydropiper L. Essential Oils Using Transgenic Animal Models. Front. Pharmacol. 2021, 11, 2020. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Wadood, A.; Sadiq, A.; Ullah, F.; Anichkina, O.; Ghufran, M. In-silico evaluations of the isolated phytosterols from polygonum hydropiper L. against BACE1 and MAO drug targets. J. Biomol. Struct. Dyn. 2021, 40, 10230–10238. [Google Scholar] [CrossRef]
- Zivanovic, N.; Simin, N.; Lesjak, M.; Orcic, D.; Mimica-Dukic, N.; Svircev, E. Comparative study between homemade and commercial hawthorn (Crataegus spp.) extracts regarding their phenolic profile and antioxidant activity. J. Serbian Chem. Soc. 2024, 89, 603–616. [Google Scholar] [CrossRef]
- Zielińska, D.; Karbowiak, M.; Brzezicka, A. The Role of Psychobiotics to Ensure Mental Health during the COVID-19 Pan-demic—A Current State of Knowledge. Int. J. Env. Res. Pub. Health 2022, 19, 11022. [Google Scholar] [CrossRef]
- Jovanović, M.; Vojvodić, P.; Tenji, D.; Tomić, N.; Nešić, J.; Mitić-Ćulafić, D.; Miočinović, J. Cheese Fermented with Hu-man-Derived Limosilactobacillus reuteri DSM 17938 and Mushroom Powders: A Novel Psychobiotic Food with Enhanced Bioactivity and Sensory Acceptability. Fermentation 2023, 9, 745. [Google Scholar] [CrossRef]
- Orčić, D.; Francišković, M.; Bekvalac, K.; Svirčev, E.; Beara, I.; Lesjak, M.; Mimica-Dukić, N. Quantitative Determination of Plant Phenolics in Urtica dioica Extracts by High-Performance Liquid Chromatography Coupled with Tandem Mass Spectrometric Detection. Food Chem. 2014, 143, 48. [Google Scholar] [CrossRef]
- Wikler, M.A. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Stand; M7–A7; CLSI (NCCLS): Berwyn, PA, USA, 2006; Volume 26. [Google Scholar]
- Braguini, W.L.; Alves, B.B.; Pires, N.V. Toxicity assessment of Lavandula officinalis extracts in Brine Shrimp (Artemia salina). Toxicol. Mech. Methods 2019, 29, 411–420. [Google Scholar] [CrossRef]
- Rajabi, S.; Ramazani, A.; Hamidi, M.; Naji, T. Artemia salina as a model organism in toxicity assessment of nanoparticles. Daru J. Pharm. Sci. 2015, 23, 20. [Google Scholar] [CrossRef]
- Sorgeloos, P.; Der Wielen, C.R.-V.; Persoone, G. The use of Artemia nauplii for toxicity tests—A critical analysis. Ecotoxicol. Environ. Saf. 1978, 2, 249–255. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve, 2nd ed.; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- Sproesser, G.; Ruby, M.B.; Arbit, N.; Akotia, C.S.; Alvarenga, M.d.S.; Bhangaokar, R.; Furumitsu, I.; Hu, X.; Imada, S.; Kaptan, G.; et al. Understanding traditional and modern eating: The TEP10 framework. BMC Public Health 2019, 19, 1606. [Google Scholar] [CrossRef] [PubMed]
- Zrnić, M.; Brdar, I.; Kilibarda, N. The Importance of Traditional Food Quality—The Viewpoint of the Tourism. Meat Technol. 2021, 62, 69–76. [Google Scholar] [CrossRef]
- Tekiner, I.H. Traditional Balkan foods: Future outlook. Nutritional and Health Aspects of Food in the Balkans; Academic Press: Cambridge, MA, USA, 2021; pp. 323–333. [Google Scholar]
- Bogusz, M.; Matysik-Pejas, R.; Krasnodębski, A.; Dziekański, P. The Concept of Zero Waste in the Context of Supporting En-vironmental Protection by Consumers. Energies 2021, 14, 5964. [Google Scholar] [CrossRef]
- Tuorila, H.; Hartmann, C. Consumer responses to novel and unfamiliar foods. Curr. Opin. Food Sci. 2019, 33, 1–8. [Google Scholar] [CrossRef]
- Egolf, A.; Siegrist, M.; Hartmann, C. How people’s food disgust sensitivity shapes their eating and food behaviour. Appetite 2018, 127, 28–36. [Google Scholar] [CrossRef]
- Lähteenmäki, L.; Arvola, A. Food Neophobia and Variety Seeking—Consumer Fear or Demand for New Food Products. In Food, People and Society; Frewer, L.J., Risvik, E., Schifferstein, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 161–175. [Google Scholar] [CrossRef]
- Vázquez-Ruiz, Z.; Toledo, E.; Vitelli-Storelli, F.; Goni, L.; de La, O.V.; Bes-Rastrollo, M.; Martínez-González, M. Effect of Dietary Phenolic Compounds on Incidence of Cardiovascular Disease in the SUN Project; 10 Years of Follow-Up. Antioxidants 2022, 11, 783. [Google Scholar] [CrossRef]
- Pacheco-Ordaz, R.; Wall-Medrano, A.; Goñi, M.; Ramos-Clamont-Montfort, G.; Ayala-Zavala, J.; González-Aguilar, G. Effect of phenolic compounds on the growth of selected probiotic and pathogenic bacteria. Lett. Appl. Microbiol. 2017, 66, 25–31. [Google Scholar] [CrossRef]
- Kiprovski, B.; Mikulic-Petkovsek, M.; Slatnar, A.; Veberic, R.; Stampar, F.; Malencic, D.; Latkovic, D. Comparison of phenolic profiles and antioxidant properties of European Fagopyrum esculentum cultivars. Food Chem. 2015, 185, 41–47. [Google Scholar] [CrossRef]
- Jovanović, M.; Tenji, D.; Nikolić, B.; Srdić-Rajić, T.; Svirčev, E.; Mitić-Ćulafić, D. In Vitro Study of Two Edible Polygonoideae Plants: Phenolic Profile, Cytotoxicity, and Modulation of Keap1-Nrf2 Gene Expression. Foods 2021, 10, 811. [Google Scholar] [CrossRef]
- Rodríguez Madrera, R.; Pando Bedriñana, R. The Phenolic Composition, Antioxidant Activity and Microflora of Wild Eldeberry in Asturias (Northern Spain): An Untapped Resource of Great Interest. Antioxidants 2023, 12, 1986. [Google Scholar] [CrossRef]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioac-tivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef] [PubMed]
- Aghababaei, F.; Hadidi, M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals 2023, 16, 1020. [Google Scholar] [CrossRef] [PubMed]
- Hollman, P.C.; Vries, D.H.J.; Leeuwen, V.D.S.; Mengelers, M.J.; Katan, M.B. Absorption of dietary quercetinglycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr. 1995, 62, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Mah, E.; Davis, C.G.; Jalili, T.; Ferruzzi, M.G.; Chun, O.K.; Bruno, R.S. Dietary fat increases quercetin bioavailability in overweight adults. Mol. Nutr. Food Res. 2013, 57, 896–905. [Google Scholar] [CrossRef]
- Ralapanawa, U.; Sivakanesan, R. Epidemiology and the Magnitude of Coronary Artery Disease and Acute Coronary Syndrome: A Narrative Review. J. Epidemiol. Glob. Health 2021, 11, 169–177. [Google Scholar] [CrossRef]
- Kilibarda, B.; Vasic, M.; Rakic, J.G.; Atanasijevic, D. Smoking-attributable life and working years lost in Serbia. Tob. Prev. Cessat. 2023, 9, A167. [Google Scholar] [CrossRef]
- Krstić, F. Depopulation and demographic aging of population: Case study municipality of Crna Trava. Zb. Rad. Geogr. Fak. Univ. Beogr. 2017, 65, 343–353. [Google Scholar] [CrossRef]
- Alizadeh, S.R.; Ebrahimzadeh, M.A. O-Glycoside quercetin derivatives: Biological activities, mechanisms of action, and structure–activity relationship for drug design, a review. Phytother. Res. 2022, 36, 778–807. [Google Scholar] [CrossRef]
- Keyvani-Ghamsari, S.; Rahimi, M.; Khorsandi, K. An update on the potential mechanism of gallic acid as an antibacterial and anticancer agent. Food Sci. Nutr. 2023, 11, 5856–5872. [Google Scholar] [CrossRef]
- Periferakis, A.; Periferakis, K.; Badarau, I.A.; Petran, E.M.; Popa, D.C.; Caruntu, A.; Costache, R.S.; Scheau, C.; Caruntu, C.; Costache, D.O. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int. J. Mol. Sci. 2022, 23, 15054. [Google Scholar] [CrossRef]
- Nasir, A.; Khan, M.; Rehman, Z.; Khalil, A.A.K.; Farman, S.; Begum, N.; Irfan, M.; Sajjad, W.; Parveen, Z. Evaluation of Al-pha-Amylase Inhibitory, Antioxidant, and Antimicrobial Potential and Phytochemical Contents of Polygonum hydropiper L. Plants 2020, 9, 852. [Google Scholar] [CrossRef] [PubMed]
- Kafoud, A.; Salahuddin, Z.; Ibrahim, R.S.; Al-Janahi, R.; Mazurakova, A.; Kubatka, P.; Büsselberg, D. Potential Treatment Options for Neuroblastoma with Polyphenols through Anti-Proliferative and Apoptotic Mechanisms. Biomolecules 2023, 13, 563. [Google Scholar] [CrossRef] [PubMed]
- Khaleel, R.I. Bio-toxicity study of some selected plant by Artemia salina (Leach) test. Plant Arch. 2019, 19, 2847–2850. [Google Scholar]
- Sasidharan, S.; Mordi, M.N.; Ismail, S.; Mansor, S.M.; Sahgal, G.; Ramanathan, S. Brine shrimp lethality and acute oral toxicity studies on Swietenia mahagoni (Linn.) Jacq. seed methanolic extract. Pharmacogn. Res. 2010, 2, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.D.; Qi, Y.; Cui, N.; Zhang, Z.H.; Wei, N.; Wang, C.F.; Zeng, Y.N.; Sun, Y.P.; Kuang, H.X.; Wang, Q.H. The traditional herb Polygonum hydropiper from China: A comprehensive review on phytochemistry, pharmacological activities and applica-tions. Pharm. Biol. 2023, 61, 799–814. [Google Scholar] [CrossRef]
- Kuroiwa, K.; Shibutani, M.; Inoue, K.; Lee, K.-Y.; Woo, G.-H.; Hirose, M. Subchronic toxicity study of water pepper extract in F344 rats. Food Chem. Toxicol. 2006, 44, 1236–1244. [Google Scholar] [CrossRef] [PubMed]
- Raihan, M.O.; Khalequeuzzaman, M.; Brishti, A.; Tareq, S.M.; Hossain, A.; Rana, S. Anthelmintic and Antiproliferative activity of aerial parts of Persicaria hydropiper. Der Pharmasia Sin. 2012, 3, 104–110. [Google Scholar]
- Ayaz, M.; Junaid, M.; Ullah, F.; Sadiq, A.; Subhan, F.; Khan, M.A.; Ahmad, W.; Ali, G.; Imran, M.; Ahmad, S. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity. Front. Pharmacol. 2016, 7, 74. [Google Scholar] [CrossRef]
- Hurtado-Romero, A.; Garcia-Amezquita, L.E.; Carrillo-Nieves, D.; Montilla, A.; Villamiel, M.; Requena, T.; García-Cayuela, T. Characterization of berry by-products as fermentable substrates: Proximate and phenolic composition, antimicrobial activity, and probiotic growth dynamics. LWT 2024, 204, 116468. [Google Scholar] [CrossRef]
- Atambayeva, Z.; Nurgazezova, A.; Amirkhanov, K.; Assirzhanova, Z.; Khaimuldinova, A.; Charchoghlyan, H.; Kaygusuz, M. Unlocking the Potential of Buckwheat Hulls, Sprouts, and Extracts: Innovative Food Product Development, Bioactive Compounds, and Health Benefits—A Review. Pol. J. Food Nutr. Sci. 2024, 74, 293–312. [Google Scholar] [CrossRef]
- Kasahara, K.; Kerby, R.L.; Cross, T.W.L.; Everhart, J.; Kay, C.; Bolling, B.W.; Bäckhed, F.; Rey, F.E. Gut microbiota and diet matrix modulate the effects of the flavonoid quercetin on atherosclerosis. Res. Sq. 2023, 3, rs-2431147. [Google Scholar]
- Majid, I.; Majid, D.A.; Makroo, H.; Dar, B. Enhancing the bioavailability and gut health benefits of quercetin from sprouted onions: A comprehensive review in the context of food-derived bioactives. Food Chem. Adv. 2024, 4, 100725. [Google Scholar] [CrossRef]
- Bian, Y.; Lei, J.; Zhong, J.; Wang, B.; Wan, Y.; Li, J.; Liao, C.; He, Y.; Liu, Z.; Ito, K.; et al. Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat diet mice. J. Nutr. Biochem. 2022, 99, 108840. [Google Scholar] [CrossRef] [PubMed]
[%] Female | [%] Male | [%] All Respondents in Specified Subgrop (Both Gender) | |||
---|---|---|---|---|---|
Subgroup | Relation to All Respondents (n = 168) | Relation to All Female Respondents (n = 88) | Relation to All Respondents (n = 168) | Relation to all male respondents (n = 79) | Relation to All Respondents (n = 168) |
Familiarity with zero-waste culture (yes) a | 25.60 | 48.86 | 15.48 | 32.91 | 41.07 |
Familiarity with zero-waste culture (no) a | 27.98 | 53.41 | 29.76 | 63.29 | 57.74 |
Skepticism towards new types of food * | 18.45 | 35.23 | 16.67 | 35.44 | 35.12 |
Reaching out for unexplored food * | 33.93 | 64.77 | 30.36 | 64.56 | 64.29 |
Tasting food with unknown ingredients in a familiar restaurant (yes) * | 25.00 | 47.73 | 22.62 | 48.10 | 47.62 |
Tasting food with unknown ingredients in a familiar restaurant (no) * | 27.38 | 52.27 | 24.40 | 51.90 | 51.78 |
Fobia and pickiness of unfamiliar food * | 14.29 | 27.27 | 13.69 | 29.11 | 27.98 |
Aspiration towards the food of different cultures * | 38.10 | 72.73 | 33.33 | 70.89 | 71.43 |
Class of Secondary Metabolites | Compounds | Content [μg/g DW] * |
---|---|---|
Cyclohexanecarboxylic acid | Quinic acid | 3680 ± 368.0 |
Hydroxybenzoic acids | Gallic acid | 1155 ± 104.0 |
Protocatechuic acid | 198 ± 16.0 | |
2,5-dihydroxybenzoic acid | 16.7 ± 1.3 | |
p-Hydroxybenzoic acid | 56.0 ± 3.4 | |
Syringic acid | 37.9 ± 7.6 | |
Vanillic acid | 58.6 ± 17.6 | |
Hydroxycinnamic acids | p-Coumaric acid | 126 ± 11.0 |
Ferulic acid | 54.9 ± 5.5 | |
Caffeic acid | 57.8 ± 4.0 | |
Cinnamic acid | 28.0 ± 5.6 | |
Sinapic acid | 11.9 ± 1.2 | |
Chlorogenic acids | 5-O-caffeoylquinic acid | 280 ± 14.0 |
Flavan-3-ol-derivates | Epigallocatechin gallate | 135 ± 13.0 |
Flavan-3-ols | Catechin | 115 ± 12.0 |
Epicatechin | 158 ± 16.0 | |
Flavonol-glycosides | Quercetin-3-O-glucoside | 3814 ± 114.0 |
Quercetin-3-O-L-rhamnoside | 358 ± 21.0 | |
Quercetin-3-O-galactoside | 2067 ± 124.0 | |
Kaempferol-3-O-glucoside | 4182 ± 167.0 | |
Quercetin-3-O-rutinoside | 389 ± 12.0 | |
Flavone glycosides | Luteolin-7-O-glucoside | 30.9 ± 0.9 |
Vitexin | 0.73 ± 0.0 | |
Apigenin-7-O-glucoside | 11.4 ± 0.6 | |
Flavonols | Myricetin | 47.6 ± 4.8 |
Quercetin | 2341 ± 702.0 | |
Kaempferol | 1009 ± 71.0 | |
Isorhamnetin | 44.6 ± 2.7 | |
Flavanones | Naringenin | 46.9 ± 3.3 |
Flavones | Luteolin | 292 ± 15.0 |
Apigenin | 23.4 ± 1.6 | |
Chrysoeriol | 10.2 ± 0.3 | |
Coumarins | Esculetin | 4.53 ± 0.3 |
Scopoletin | 20.0 ± 1.6 |
Psychobiotic Strain | Viability (log CFU/mL) | |||
---|---|---|---|---|
C | Spent PH Material | |||
0 h | 4 h | 0 h | 4 h | |
Lactiplantibacillus plantarum 299V | 7.93 ± 0.32 | 9.02 ± 0.54 | 8.17 ± 0.34 | 9.26 ± 0.54 |
Limosilactobacillus reuteri DSM 17938 | 7.80 ± 0.38 | 8.45 ± 0.07 | 8.38 ± 0.05 | 8.88 ± 0.97 |
Heyndrickxia coagulans (formerly known as Bacillus coagulans) | 8.22 ± 0.30 | 8.74 ± 0.31 | 8.36 ± 0.26 | 8.99 ± 0.82 |
Escherichia coli Nissle 1917 | 6.00 ± 0.61 | 8.18 ± 0.67 | 6.32 ± 0.06 | 8.21 ± 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovanović, M.; Vunduk, J.; Mitić-Ćulafić, D.; Svirčev, E.; Vojvodić, P.; Tomić, N.; Ismi, L.N.; Tenji, D. New Perspectives on the Old Uses of Traditional Medicinal and Edible Herbs: Extract and Spent Material of Persicaria hydropiper (L.) Delarbre. Nutrients 2024, 16, 3368. https://doi.org/10.3390/nu16193368
Jovanović M, Vunduk J, Mitić-Ćulafić D, Svirčev E, Vojvodić P, Tomić N, Ismi LN, Tenji D. New Perspectives on the Old Uses of Traditional Medicinal and Edible Herbs: Extract and Spent Material of Persicaria hydropiper (L.) Delarbre. Nutrients. 2024; 16(19):3368. https://doi.org/10.3390/nu16193368
Chicago/Turabian StyleJovanović, Marina, Jovana Vunduk, Dragana Mitić-Ćulafić, Emilija Svirčev, Petar Vojvodić, Nina Tomić, Laksmi Nurul Ismi, and Dina Tenji. 2024. "New Perspectives on the Old Uses of Traditional Medicinal and Edible Herbs: Extract and Spent Material of Persicaria hydropiper (L.) Delarbre" Nutrients 16, no. 19: 3368. https://doi.org/10.3390/nu16193368
APA StyleJovanović, M., Vunduk, J., Mitić-Ćulafić, D., Svirčev, E., Vojvodić, P., Tomić, N., Ismi, L. N., & Tenji, D. (2024). New Perspectives on the Old Uses of Traditional Medicinal and Edible Herbs: Extract and Spent Material of Persicaria hydropiper (L.) Delarbre. Nutrients, 16(19), 3368. https://doi.org/10.3390/nu16193368