A Randomized Controlled Trial Comparing Loss versus Gain Incentives to Improve Adherence to an Obesity Treatment Intervention in Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Groups
2.2. Inclusion Criteria
- Age 13–18 years old;
- BMI ≥ 95th percentile for age and sex;
- The family must understand English or Spanish;
- The family must have access to a smartphone;
- The patient must not have participated in an obesity treatment program within the past 9 months
2.3. Exclusion Criteria
2.4. Data Management
- Did you eat breakfast yesterday? y/n(meal eaten before 10:30 a.m.)
- How many fruits or vegetables were eaten yesterday? 0 to >10 (defined in a separate handout)
- How many sugary drinks did you drink yesterday? 0 to >10 (defined in a separate handout)
- Did you eat after 7 p.m. yesterday? y/n
2.5. Statistical and Sensitivity Analysis
2.6. Sample Size Calculation
2.7. Institutional Approval and Consent
3. Results
3.1. Group Comparisons
3.2. Economic Analysis
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogden, C.L.; Carroll, M.D.; Kit, B.K.; Flegal, K.M. Prevalence of obesity and trends in body mass index among US children and adolescents, 1999–2010. JAMA 2012, 307, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Tsoi, M.-F.; Li, H.-L.; Feng, Q.; Cheung, C.-L.; Cheung, T.T.; Cheung, B.M. Prevalence of childhood obesity in the United States in 1999–2018: A 20-year analysis. Obes. Facts 2022, 15, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, S.A.; Hardy, S.T.; Jones, R.; Ng, C.; Kramer, M.R.; Narayan, K.V. Changes in the incidence of childhood obesity. Pediatrics 2022, 150, e2021053708. [Google Scholar] [CrossRef]
- Kumar, S.; King, E.C.; Christison, A.L.; Kelly, A.S.; Ariza, A.J.; Borzutzky, C.; Cuda, S.; Kirk, S.; Abraham-Pratt, I.; Ali, L.; et al. Health outcomes of youth in clinical pediatric weight management programs in POWER. J. Pediatr. 2019, 208, 57–65.e4. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, E.P.; O’Connor, E.A.; Williams, S.B.; Beil, T.L.; Lutz, K.W. Effectiveness of weight management interventions in children: A targeted systematic review for the USPSTF. Pediatrics 2010, 125, e396–e418. [Google Scholar] [CrossRef]
- Wrotniak, B.H.; Epstein, L.H.; Paluch, R.A.; Roemmich, J.N. The relationship between parent and child self-reported adherence and weight loss. Obes. Res. 2005, 13, 1089–1096. [Google Scholar] [CrossRef]
- Hampl, S.E.; Hassink, S.G.; Skinner, A.C.; Armstrong, S.C.; Barlow, S.E.; Bolling, C.F.; Avila Edwards, K.C.; Eneli, I.; Hamre, R.; Joseph, M.M. Clinical practice guideline for the evaluation and treatment of children and adolescents with obesity. Pediatrics 2023, 151, e2022060640. [Google Scholar] [CrossRef]
- Darling, K.E.; Sato, A.F.; van Dulmen, M.; Flessner, C.; Putt, G. Development of a measure to assess parent perceptions of barriers to child weight management. Child. Obes. 2018, 14, 89–98. [Google Scholar] [CrossRef]
- Kirk, S.; Woo, J.G.; Jones, M.N.; Siegel, R.M. Increased frequency of dietitian visits is associated with improved body mass index outcomes in obese youth participating in a comprehensive pediatric weight management program. Child. Obes. 2015, 11, 202–208. [Google Scholar] [CrossRef]
- Siegel, R.M.; Neidhard, M.S.; Kirk, S. A comparison of low glycemic index and staged portion-controlled diets in improving BMI of obese children in a pediatric weight management program. Clin. Pediatr. 2011, 50, 459–461. [Google Scholar] [CrossRef]
- Skelton, J.; Beech, B. Attrition in paediatric weight management: A review of the literature and new directions. Obes. Rev. 2011, 12, e273–e281. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Woo, S.; Ju, Y.-S.; Seo, Y.-G.; Lim, H.-J.; Kim, Y.-M.; Noh, H.-M.; Lee, H.-J.; Park, S.I.; Park, K.H. Factors associated with dropout in a lifestyle modification program for weight management in children and adolescents. Obes. Res. Clin. Pract. 2020, 14, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Carman, K.L.; Dardess, P.; Maurer, M.; Sofaer, S.; Adams, K.; Bechtel, C.; Sweeney, J. Patient and family engagement: A framework for understanding the elements and developing interventions and policies. Health Aff. 2013, 32, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Zeller, M.; Kirk, S.; Claytor, R.; Khoury, P.; Grieme, J.; Santangelo, M.; Daniels, S. Predictors of attrition from a pediatric weight management program. J. Pediatr. 2004, 144, 466–470. [Google Scholar] [CrossRef]
- Siegel, R.; Lockhart, M.K.; Barnes, A.S.; Hiller, E.; Kipp, R.; Robison, D.L.; Ellsworth, S.C.; Hudgens, M.E. Small prizes increased healthful school lunch selection in a Midwestern school district. Appl. Physiol. Nutr. Metab. 2016, 41, 370–374. [Google Scholar] [CrossRef]
- Tulsky, J.P.; Pilote, L.; Hahn, J.A.; Zolopa, A.J.; Burke, M.; Chesney, M.; Moss, A.R. Adherence to isoniazid prophylaxis in the homeless: A randomized controlled trial. Arch. Intern. Med. 2000, 160, 697–702. [Google Scholar] [CrossRef]
- Rapoff, M.A. Assessing adherence. In Adherence to Pediatric Medical Regimens; Springer: Berlin/Heidelberg, Germany, 1999; pp. 47–75. [Google Scholar]
- Berry, D.C.; Rhodes, E.T.; Hampl, S.; Young, C.B.; Cohen, G.; Eneli, I.; Fleischman, A.; Ip, E.; Sweeney, B.; Houle, T.T. Stay in treatment: Predicting dropout from pediatric weight management study protocol. Contemp. Clin. Trials Commun. 2021, 22, 100799. [Google Scholar] [CrossRef]
- Wright, D.R.; Saelens, B.E.; Fontes, A.; Lavelle, T.A. Assessment of parents’ preferences for incentives to promote engagement in family-based childhood obesity treatment. JAMA Netw. Open 2019, 2, e191490. [Google Scholar] [CrossRef]
- Denzer, C.; Reithofer, E.; Wabitsch, M.; Widhalm, K. The outcome of childhood obesity management depends highly upon patient compliance. Eur. J. Pediatr. 2004, 163, 99–104. [Google Scholar] [CrossRef]
- Jacob-Files, E.; Powell, J.; Wright, D.R. Exploring parent attitudes around using incentives to promote engagement in family-based weight management programs. Prev. Med. Rep. 2018, 10, 278–284. [Google Scholar] [CrossRef]
- Kenyon, C.C.; Flaherty, C.; Floyd, G.C.; Jenssen, B.P.; Miller, V.A. Promoting healthy childhood behaviors with financial incentives: A narrative review of key considerations and design features for future research. Acad. Pediatr. 2021, 22, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Paul-Ebhohimhen, V.; Avenell, A. Systematic review of the use of financial incentives in treatments for obesity and overweight. Obes. Rev. 2008, 9, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Volpp, K.G.; John, L.K.; Troxel, A.B.; Norton, L.; Fassbender, J.; Loewenstein, G. Financial incentive–based approaches for weight loss: A randomized trial. JAMA 2008, 300, 2631–2637. [Google Scholar] [CrossRef] [PubMed]
- Gross, A.C.; Freese, R.L.; Bensignor, M.O.; Bomberg, E.M.; Dengel, D.R.; Fox, C.K.; Rudser, K.D.; Ryder, J.R.; Bramante, C.T.; Raatz, S. Financial Incentives and Treatment Outcomes in Adolescents With Severe Obesity: A Randomized Clinical Trial. JAMA Pediatr. 2024, 178, 753–762. [Google Scholar] [CrossRef]
- Halpern, S.D.; French, B.; Small, D.S.; Saulsgiver, K.; Harhay, M.O.; Audrain-McGovern, J.; Loewenstein, G.; Brennan, T.A.; Asch, D.A.; Volpp, K.G. Randomized trial of four financial-incentive programs for smoking cessation. N. Engl. J. Med. 2015, 372, 2108–2117. [Google Scholar] [CrossRef]
- Halpern, S.D.; Harhay, M.O.; Saulsgiver, K.; Brophy, C.; Troxel, A.B.; Volpp, K.G. A pragmatic trial of e-cigarettes, incentives, and drugs for smoking cessation. N. Engl. J. Med. 2018, 378, 2302–2310. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Loss aversion in riskless choice: A reference-dependent model. Q. J. Econ. 1991, 106, 1039–1061. [Google Scholar] [CrossRef]
- de Buisonjé, D.R.; Reijnders, T.; Rodrigues, T.R.C.; Prabhakaran, S.; Kowatsch, T.; Lipman, S.A.; Bijmolt, T.H.; Breeman, L.D.; Janssen, V.R.; Kraaijenhagen, R.A. Investigating rewards and deposit contract financial incentives for physical activity behavior change using a smartphone app: Randomized controlled trial. J. Med. Internet Res. 2022, 24, e38339. [Google Scholar] [CrossRef]
- Nobel, N. Interplay between benefit appeal and valence framing in reducing smoking behavior: Evidence from a field experience. J. Behav. Decis. Mak. 2023, 36, e2301. [Google Scholar] [CrossRef]
- Siegel, R.; McGrady, M.E.; Dynan, L.; Kharofa, R.; Stackpole, K.; Casson, P.; Siegel, F.; Kasparian, N.A. Effects of Loss and Gain Incentives on Adherence in Pediatric Weight Management: Preliminary Studies and Economic Evaluation of a Theoretical Trial. Int. J. Environ. Res. Public Health 2022, 20, 584. [Google Scholar] [CrossRef]
- Concato, J.; Shah, N.; Horwitz, R.I. Randomized, controlled trials, observational studies, and the hierarchy of research designs. N. Engl. J. Med. 2000, 342, 1887–1892. [Google Scholar] [CrossRef] [PubMed]
- Spieth, P.M.; Kubasch, A.S.; Penzlin, A.I.; Illigens, B.M.-W.; Barlinn, K.; Siepmann, T. Randomized controlled trials–a matter of design. Neuropsychiatr. Dis. Treat. 2016, 12, 1341–1349. [Google Scholar] [PubMed]
- Bakırcı-Taylor, A.L.; Reed, D.B.; McCool, B.; Dawson, J.A. mHealth improved fruit and vegetable accessibility and intake in young children. J. Nutr. Educ. Behav. 2019, 51, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Ermakov, I.V.; Whigham, L.D.; Redelfs, A.H.; Jahns, L.; Stookey, J.; Bernstein, P.S.; Gellermann, W. Skin carotenoids as biomarker for vegetable and fruit intake: Validation of the reflection-spectroscopy based “Veggie Meter”. FASEB J. 2016, 30, 409.3. [Google Scholar] [CrossRef]
- Hales, C.M.; Freedman, D.S.; Akinbami, L.; Wei, R.; Ogden, C.L. Evaluation of alternative body mass index (BMI) metrics to monitor weight status in children and adolescents with extremely high BMI using CDC BMI-for-age growth charts. Vital Health Stat. 2022, 2, 197. [Google Scholar]
- Clear Health Costs. 2024. Available online: https://clearhealthcosts.com/ (accessed on 17 August 2024).
- Fox, C.R.; Poldrack, R.A. Prospect theory and the brain. In Neuroeconomics; Elsevier: Amsterdam, The Netherlands, 2009; pp. 145–173. [Google Scholar]
- Malik, F.; Chen, T.; Manzueta, M.; Yi-Frazier, J.; Pihoker, C.; Leblanc, J.L.; Shah, S.K.; Wright, D. 49-LB: Use of Financial Incentives to Promote Adolescent Type 1 Diabetes Self-Management—A Pilot Randomized Controlled Trial. Diabetes 2022, 71 (Suppl. S1), 49-LB. [Google Scholar] [CrossRef]
- Weiss, D.; Sczesny, S.; Freund, A.M. Wanting to get more or protecting one’s assets: Age-differential effects of gain versus loss perceptions on the willingness to engage in collective action. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2016, 71, 254–264. [Google Scholar] [CrossRef]
- Dumontheil, I. Development of abstract thinking during childhood and adolescence: The role of rostrolateral prefrontal cortex. Dev. Cogn. Neurosci. 2014, 10, 57–76. [Google Scholar] [CrossRef]
- Ho, M.; Garnett, S.P.; Baur, L.A.; Burrows, T.; Stewart, L.; Neve, M.; Collins, C. Impact of dietary and exercise interventions on weight change and metabolic outcomes in obese children and adolescents: A systematic review and meta-analysis of randomized trials. JAMA Pediatr. 2013, 167, 759–768. [Google Scholar] [CrossRef]
- Jones, A.M.; Keihner, A.; Mills, M.; MkNelly, B.; Khaira, K.K.; Pressman, J.; Scherr, R.E. Measuring skin carotenoids using reflection spectroscopy in a low-income school setting. Nutrients 2021, 13, 3796. [Google Scholar] [CrossRef]
- Pitts, S.B.J.; Jahns, L.; Wu, Q.; Moran, N.E.; Bell, R.A.; Truesdale, K.P.; Laska, M.N. A non-invasive assessment of skin carotenoid status through reflection spectroscopy is a feasible, reliable and potentially valid measure of fruit and vegetable consumption in a diverse community sample. Public Health Nutr. 2018, 21, 1664–1670. [Google Scholar] [CrossRef] [PubMed]
- Alkhatib, A.; Obita, G. Childhood Obesity and Its Comorbidities in High-Risk Minority Populations: Prevalence, Prevention and Lifestyle Intervention Guidelines. Nutrients 2024, 16, 1730. [Google Scholar] [CrossRef] [PubMed]
- Obita, G.; Burns, M.; Nnyanzi, L.A.; Kuo, C.-H.; Barengo, N.C.; Alkhatib, A. Childhood obesity and comorbidities-related perspective and experience of parents from Black and Asian minority ethnicities in England: A qualitative study. Front. Public Health 2024, 12, 1399276. [Google Scholar] [CrossRef] [PubMed]
- Obita, G.; Alkhatib, A. Effectiveness of lifestyle nutrition and physical activity interventions for childhood obesity and associated comorbidities among children from minority ethnic groups: A systematic review and meta-analysis. Nutrients 2023, 15, 2524. [Google Scholar] [CrossRef]
Type of Activity | When Available | Value Representing Adherence | Adherence Index Points | Maximum Points per Month | Maximum Incentive per Month | |
---|---|---|---|---|---|---|
Study Participation | Monthly | Yes | 10 points per month | 10 points | USD 10 | |
Exercise Adherence | Daily steps by tracker | Daily | 0 to 3000 daily steps | 0 points per day | 30 points | USD 30 |
3001 to 5000 daily steps | 0.5 points per day | |||||
5001 or more daily steps | 1 point per day | |||||
Dietary Adherence | Completing goal log answering questions: 1. Did you eat breakfast yesterday? y/n (meal eaten before 10:30 a.m.) 2. How many fruits or vegetables eaten yesterday? 0 to >10 3. How many sugary drinks did you drink yesterday? 0 to >10 4. Did you eat after 7 p.m. yesterday? y/n | Daily | Daily survey completed | 1 per day | 30 points | USD 30 |
Clinical Adherence | In clinic (0, 3, 6 mos.) or telehealth (1, 2, 4, 5 mos.) | Monthly | Monthly visit attended | 30 points per month | 30 points | USD 30 |
Maximum Total | 100 points | USD 100 |
Characteristic | Overall, N = 60 1 | Control, N = 19 1 | Loss, N = 21 1 | Gain, N = 20 1 | p-Value 2 |
---|---|---|---|---|---|
Age | 15.2 (1.4) | 15.2 (1.3) | 15.4 (1.4) | 15.2 (1.4) | 0.857 |
Sex | 0.901 | ||||
Male | 23 (38%) | 8 (42%) | 8 (38%) | 7 (35%) | |
Female | 37 (62%) | 11 (58%) | 13 (62%) | 13 (65%) | |
Race | 0.908 | ||||
African American | 15 (25%) | 5 (26%) | 6 (29%) | 4 (20%) | |
Caucasian | 40 (67%) | 12 (63%) | 13 (62%) | 15 (75%) | |
Multi-racial | 5 (8.3%) | 2 (11%) | 2 (9.5%) | 1 (5.0%) | |
Ethnicity | 0.861 | ||||
Hispanic | 5 (8.3%) | 2 (11%) | 2 (9.5%) | 1 (5.0%) | |
Non-Hispanic | 55 (92%) | 17 (89%) | 19 (90%) | 19 (95%) | |
Income | 0.445 | ||||
Less than USD 24,999 | 2 (3.9%) | 0 (0%) | 2 (11%) | 0 (0%) | |
USD 25,000–USD 49,999 | 16 (31%) | 5 (33%) | 7 (39%) | 4 (22%) | |
USD 50,000–USD 74,999 | 8 (16%) | 2 (13%) | 1 (5.6%) | 5 (28%) | |
USD 75,000–USD 99,999 | 8 (16%) | 1 (6.7%) | 3 (17%) | 4 (22%) | |
USD 100,000–USD 149,999 | 10 (20%) | 4 (27%) | 2 (11%) | 4 (22%) | |
>USD 150,000 | 7 (14%) | 3 (20%) | 3 (17%) | 1 (5.6%) | |
Insurance type | 0.708 | ||||
Public (Medicaid) | 25 (46%) | 7 (41%) | 8 (42%) | 10 (56%) | |
Private | 28 (52%) | 10 (59%) | 10 (53%) | 8 (44%) | |
Military | 1 (1.9%) | 0 (0%) | 1 (5.3%) | 0 (0%) | |
%BMIp95 | 140.2 (23.5) | 137.7 (18.7) | 142.0 (25.6) | 140.7 (26.2) | 0.971 |
HgA1C% | 5.5 (0.3) | 5.5 (0.3) | 5.5 (0.3) | 5.5 (0.4) | 0.853 |
Total cholesterol mg/dL | 156.0 (22.2) | 159.2 (23.6) | 152.1 (23.4) | 156.8 (20.9) | 0.694 |
HDL mg/dL | 41.0 (6.8) | 41.5 (5.4) | 40.7 (9.1) | 40.9 (6.0) | 0.552 |
LDL mg/dL | 95.4 (22.3) | 96.7 (22.7) | 90.9 (18.6) | 98.2 (25.2) | 0.685 |
Triglycerides mg/dL | 106.3 (59.5) | 105.9 (41.3) | 103.4 (36.8) | 108.9 (84.5) | 0.596 |
AST U/L | 24.4 (9.6) | 23.5 (7.1) | 23.7 (10.5) | 25.6 (10.9) | 0.755 |
ALT U/L | 30.3 (23.7) | 25.2 (12.7) | 28.7 (18.5) | 35.6 (32.6) | 0.953 |
Systolic BP mm | 117.1 (9.0) | 116.3 (8.5) | 116.5 (9.5) | 118.6 (9.2) | 0.774 |
Diastolic BP mm | 67.7 (8.8) | 66.7 (6.0) | 67.6 (9.5) | 68.9 (10.6) | 0.840 |
Veggie Meter | 179.8 (64.6) | 146.5 (60.1) | 205.5 (72.1) | 182.7 (47.5) | 0.021 |
Characteristic (Points Per Month) | Overall N = 60 1 | Control N = 19 1 | Loss N = 21 1 | Gain N = 20 1 | p-Value 2 |
---|---|---|---|---|---|
Exercise (step goal) | 9.6 (9.9) | 3.9 (6.5) | 10.0 (9.8) | 14.6 (10.2) | 0.003 |
Dietary | 13.4 (10.7) | 8.1 (8.9) | 13.9 (11.5) | 17.9 (9.6) | 0.016 |
Clinic visits | 20.7 (9.3) | 18.7 (10.7) | 19.9 (9.6) | 23.5 (6.9) | 0.386 |
Total points | 54.1 (25.7) | 40.6 (21.3) | 54.9 (25.9) | 66.0 (24.1) | 0.011 |
Characteristic | Overall N = 60 1 | Control N = 19 1 | Loss N = 21 1 | Gain N = 20 1 | p-Value 2 |
---|---|---|---|---|---|
Fitbit-days worn | 88.5 (72.9) | 45.4 (63.4) | 94.1 (69.3) | 118.4 (70.2) | 0.010 |
Mean steps per day | 6500.7 (3166.7) | 5369.5 (3562.3) | 6762.0 (3097.4) | 7155.7 (2815.5) | 0.332 |
(1) | |||
Pre vs. Post in Control | |||
Characteristic | Pre, N = 19 1 | Post, N = 19 1 | p-Value 2 |
%BMIp95 | 138 (19) | 135 (9) | >0.999 |
Systolic bp mm | 116 (9) | 116 (12) | 0.623 |
Diastolic bp mm | 67 (6) | 69 (9) | 0.858 |
Veggie meter score | 146 (60) | 151 (25) | 0.447 |
HgA1C % | 5.46 (0.28) | 5.46 (0.24) | 0.832 |
HDL mg/dL | 42 (5) | 43 (8) | 0.469 |
LDL mg/dL | 97 (23) | 101 (25) | >0.999 |
Cholesterol mg/dL | 159 (24) | 166 (29) | 0.578 |
Triglycerides mg/dL | 106 (41) | 106 (30) | 0.309 |
AST U/L | 24 (7) | 20 (9) | 0.233 |
ALT U/L | 25 (13) | 21 (13) | 0.787 |
(2) | |||
Pre vs. Post in Loss | |||
Characteristic | Pre, N = 21 1 | Post, N = 21 1 | p-Value 2 |
%BMIp95 | 142 (26) | 132 (13) | >0.999 |
Systolic bp mm | 117 (9) | 115 (8) | 0.437 |
Diastolic bp mm | 68 (10) | 69 (5) | 0.394 |
Veggie meter score | 206 (72) | 190 (53) | 0.933 |
HgA1C % | 5.52 (0.26) | 5.45 (0.29) | >0.999 |
HDL mg/dL | 41 (9) | 42 (6) | >0.999 |
LDL mg/dL | 91 (19) | 90 (37) | 0.423 |
Cholesterol mg/dL | 152 (23) | 157 (46) | 0.423 |
Triglycerides mg/dL | 103 (37) | 127 (44) | 0.181 |
AST U/L | 24 (10) | 22 (8) | 0.423 |
ALT U/L | 29 (18) | 29 (17) | 0.789 |
(3) | |||
Pre vs. Post in Gain | |||
Characteristic | Pre, N = 20 1 | Post, N = 20 1 | p-Value 2 |
%BMIp95 | 142 (26) | 132 (13) | >0.999 |
Systolic bp mm | 119 (9) | 120 (11) | 0.637 |
Diastolic bp mm | 69 (11) | 70 (8) | 0.972 |
Veggie meter score | 183 (47) | 198 (51) | 0.675 |
HgA1C % | 5.49 (0.42) | 5.41 (0.45) | 0.855 |
HDL mg/dL | 40.9 (6.0) | 38.9 (7.8) | 0.684 |
LDL mg/dL | 98 (25) | 105 (17) | 0.402 |
Cholesterol mg/dL | 157 (21) | 164 (19) | 0.498 |
Triglycerides mg/dL | 109 (84) | 134 (121) | >0.999 |
AST U/L | 26 (11) | 22 (10) | 0.075 |
ALT U/L | 36 (33) | 31 (29) | 0.271 |
Characteristic | Total | Visit | Diet | Exercise | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Beta | 95% CI 1 | p-Value | Beta | 95% CI 1 | p-Value | Beta | 95% CI 1 | p-Value | Beta | 95% CI 1 | p-Value | |
Study Group | ||||||||||||
Control | — | — | — | — | — | — | — | — | ||||
Loss | 13 | −1.3, 27 | 0.074 | 0.59 | −5.0, 6.2 | 0.833 | 4.7 | −1.1, 10 | 0.111 | 6.5 | 0.43, 13 | 0.036 |
Gain | 28 | 13, 42 | <0.001 | 5.3 | −0.40, 11 | 0.067 | 10 | 4.6, 16 | <0.001 | 12 | 5.9, 18 | <0.001 |
Age | 1.6 | −3.0, 6.2 | 0.483 | 1.1 | −0.65, 2.9 | 0.204 | 0.00 | −1.9, 1.9 | 0.999 | 0.93 | −1.0, 2.9 | 0.341 |
Sex | ||||||||||||
Male | — | — | — | — | — | — | — | — | ||||
Female | −2.8 | −15, 9.6 | 0.650 | −1.7 | −6.5, 3.2 | 0.492 | 1.6 | −3.4, 6.6 | 0.518 | −1.6 | −6.8, 3.7 | 0.545 |
Insurance type | ||||||||||||
Public (Medicaid) | — | — | — | — | — | — | — | — | ||||
Private | 19 | 6.1, 32 | 0.005 | 5.5 | 0.50, 10 | 0.032 | 8.3 | 3.2, 13 | 0.002 | 6.3 | 0.93, 12 | 0.022 |
Military | 38 | −7.9, 83 | 0.103 | 11 | −6.4, 29 | 0.204 | 23 | 4.7, 41 | 0.015 | 3.7 | −15, 23 | 0.693 |
Race | ||||||||||||
African American | — | — | — | — | — | — | — | — | ||||
Caucasian | 13 | −2.4, 28 | 0.096 | 8.1 | 2.2, 14 | 0.009 | 2.9 | −3.2, 9.0 | 0.345 | 1.3 | −5.1, 7.7 | 0.679 |
Multi-racial | 26 | 2.7, 50 | 0.030 | 6.5 | −2.7, 16 | 0.159 | 9.7 | 0.35, 19 | 0.042 | 9.1 | −0.70, 19 | 0.068 |
Ethnicity | ||||||||||||
Hispanic | — | — | — | — | — | — | — | — | ||||
Non-Hispanic | −11 | −32, 10 | 0.303 | −0.96 | −9.1, 7.2 | 0.813 | −3.7 | −13, 5.5 | 0.420 | −1.0 | −11, 8.6 | 0.831 |
p95%tile-BMI 2 | 0.22 | −0.04, 0.47 | 0.094 | 0.02 | −0.08, 0.12 | 0.638 | 0.11 | 0.01, 0.21 | 0.034 | 0.07 | −0.04, 0.18 | 0.188 |
Medication or Class | Control, N = 19 | Loss, N = 21 | Gain, N = 20 | p 2 |
---|---|---|---|---|
Metformin | 3 (16%) | 2 (10%) | 3 (15%) | 0.802 |
GLP1-RA 1 | 1 (5%) | 1 (5%) | 1 (5%) | 1.000 |
Stimulant | 0 (0%) | 3 (14%) | 0 (0%) | 0.100 |
Bupropion | 0 (0%) | 1 (5%) | 0 (0%) | 1.00 |
Topiramate | 0 (0%) | 1(5%) | 0 (0%) | 1.00 |
Duloxetine | 0 (0%) | 1 (5%) | 0 (0%) | 1.00 |
Total Patients receiving medications | 4 (21%) | 7 (33%) | 4 (20%) | 0.407 |
Item | Cost | Comments |
---|---|---|
Equipment | ||
Fitbit | USD 66 | |
Scale | USD 40 | |
Provider Visits * | In the decision tree analysis, visits 2, 4, and 5 were bundled together for a total cost of USD 366 as the probability of keeping the visits are equal | |
Initial visit MD | USD 153 | |
Initial visit dietitian | USD 37 | |
Initial visit exercise physiologist | USD 34 | |
Total cost of visit 1 | USD 224 | |
Follow-up MD visit | USD 51 | |
Follow-up dietitian visit | USD 37 | |
Follow-up exercise physiologist | USD 34 | |
Total follow-up visit | USD 122 | |
Cost of visits 2, 4, and 5 | USD 366 | |
Maximum incentive study incentive Study participation incentive (Control group Only) | USD 600 USD 60 | The actual incentive can vary depending on the level of adherence, as outlined in Table 1. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siegel, R.M.; Kist, C.; Kirk, S.; Kharofa, R.; Stackpole, K.; Sammons, A.; Dynan, L.; McGrady, M.E.; Seo, J.; Urbina, E.; et al. A Randomized Controlled Trial Comparing Loss versus Gain Incentives to Improve Adherence to an Obesity Treatment Intervention in Adolescents. Nutrients 2024, 16, 3363. https://doi.org/10.3390/nu16193363
Siegel RM, Kist C, Kirk S, Kharofa R, Stackpole K, Sammons A, Dynan L, McGrady ME, Seo J, Urbina E, et al. A Randomized Controlled Trial Comparing Loss versus Gain Incentives to Improve Adherence to an Obesity Treatment Intervention in Adolescents. Nutrients. 2024; 16(19):3363. https://doi.org/10.3390/nu16193363
Chicago/Turabian StyleSiegel, Robert M., Christopher Kist, Shelley Kirk, Roohi Kharofa, Kristin Stackpole, Amanda Sammons, Linda Dynan, Meghan E. McGrady, JangDong Seo, Elaine Urbina, and et al. 2024. "A Randomized Controlled Trial Comparing Loss versus Gain Incentives to Improve Adherence to an Obesity Treatment Intervention in Adolescents" Nutrients 16, no. 19: 3363. https://doi.org/10.3390/nu16193363
APA StyleSiegel, R. M., Kist, C., Kirk, S., Kharofa, R., Stackpole, K., Sammons, A., Dynan, L., McGrady, M. E., Seo, J., Urbina, E., & Kasparian, N. A. (2024). A Randomized Controlled Trial Comparing Loss versus Gain Incentives to Improve Adherence to an Obesity Treatment Intervention in Adolescents. Nutrients, 16(19), 3363. https://doi.org/10.3390/nu16193363