A Systematic Review and Meta-Analysis of the Effect of Caloric Restriction on Skeletal Muscle Mass in Individuals with, and without, Type 2 Diabetes
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Study Eligibility Criteria
2.3. Study Selection
2.4. Data Extraction
2.5. Quality Assessment
2.6. Statistical Analysis
3. Results
3.1. Study Characteristics
3.2. T2DM Analysis
3.3. NDM Analysis
3.4. Sensitivity Analysis
3.5. Study Quality Assessment
3.6. Publication Bias
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Price, S.A.; Sumithran, P. Using a Very Low Energy Diet to Achieve Substantial Preconception Weight Loss in Women with Obesity: A Review of the Safety and Efficacy. Nutrients 2022, 14, 4423. [Google Scholar] [CrossRef] [PubMed]
- Andersen, E.; Juhl, C.R.; Kjøller, E.T.; Lundgren, J.R.; Janus, C.; Dehestani, Y.; Saupstad, M.; Ingerslev, L.R.; Duun, O.M.; Jensen, S.B.K.; et al. Sperm count is increased by diet-induced weight loss and maintained by exercise or GLP-1 analogue treatment: A randomized controlled trial. Hum. Reprod. 2022, 37, 1414–1422. [Google Scholar] [CrossRef]
- Klingberg, E.; Bilberg, A.; Björkman, S.; Hedberg, M.; Jacobsson, L.; Forsblad-D’elia, H.; Carlsten, H.; Eliasson, B.; Larsson, I. Weight loss improves disease activity in patients with psoriatic arthritis and obesity: An interventional study. Arthritis Res. Ther. 2019, 21, 17. [Google Scholar] [CrossRef] [PubMed]
- Ein, N.; Armstrong, B.; Vickers, K. The effect of a very low calorie diet on subjective depressive symptoms and anxiety: Meta-analysis and systematic review. Int. J. Obes. 2019, 43, 1444–1455. [Google Scholar] [CrossRef]
- Gudbergsen, H.; Overgaard, A.; Henriksen, M.; Wæhrens, E.E.; Bliddal, H.; Christensen, R.; Nielsen, S.M.; Boesen, M.; Knop, F.K.; Astrup, A.; et al. Liraglutide after diet-induced weight loss for pain and weight control in knee osteoarthritis: A randomized controlled trial. Am. J. Clin. Nutr. 2021, 113, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Bosy-Westphal, A.; Kossel, E.; Goele, K.; Blöcker, T.; Lagerpusch, M.; Later, W.; Heller, M.; Glüer, C.C.; Müller, M.J. Association of Pericardial Fat with Liver Fat and Insulin Sensitivity after Diet-Induced Weight Loss in Overweight Women. Obesity 2010, 18, 2111–2117. [Google Scholar] [CrossRef] [PubMed]
- Wolf, R.M.; Oshima, K.; Canner, J.K.; Steele, K.E. Impact of a preoperative low-calorie diet on liver histology in patients with fatty liver disease undergoing bariatric surgery. Surg. Obes. Relat. Dis. 2019, 15, 1766–1772. [Google Scholar] [CrossRef]
- Weinstock, R.S.; Dai, H.; Wadden, T.A. Diet and Exercise in the Treatment of Obesity: Effects of 3 Interventions on Insulin Resistance. Arch. Intern. Med. 1998, 158, 2477–2483. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Bonadonna, R.C.; Ferrannini, E. Pathogenesis of NIDDM: A Balanced Overview. Diabetes Care 1992, 15, 318–368. [Google Scholar] [CrossRef]
- Cerf, M.E. Beta cell dysfunction and insulin resistance. Front. Endocrinol. 2013, 4, 37. [Google Scholar] [CrossRef]
- Hughes, T.A.; Gwynne, J.T.; Switzer, B.R.; Herbst, C.; White, G. Effects of caloric restriction and weight loss on glycemic control, insulin release and resistance, and atherosclerotic risk in obese patients with type II diabetes mellitus. Am. J. Med. 1984, 77, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Henry, R.R.; Scheaffer, L.; Olefsky, J. Glycemic Effects of Intensive Caloric Restriction and Isocaloric Refeeding in Noninsulin-Dependent Diabetes Mellitus. J. Clin. Endocrinol. Metab. 1985, 61, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Henry, R.R.; Wallace, P.; Olefsky, J.M. Effects of weight loss on mechanisms of hyperglycemia in obese non-insulin-dependent diabetes mellitus. Diabetes 1986, 35, 990–998. [Google Scholar] [CrossRef]
- Lim, E.L.; Hollingsworth, K.G.; Aribisala, B.S.; Chen, M.J.; Mathers, J.C.; Taylor, R. Reversal of type 2 diabetes: Normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 2011, 54, 2506–2514. [Google Scholar] [CrossRef] [PubMed]
- Malandrucco, I.; Pasqualetti, P.; Giordani, I.; Manfellotto, D.; De Marco, F.; Alegiani, F.; Sidoti, A.M.; Picconi, F.; Di Flaviani, A.; Frajese, G.; et al. Very-low-calorie diet: A quick therapeutic tool to improve β cell function in morbidly obese patients with type 2 diabetes. Am. J. Clin. Nutr. 2012, 95, 609–613. [Google Scholar] [CrossRef]
- Jackness, C.; Karmally, W.; Febres, G.; Conwell, I.M.; Ahmed, L.; Bessler, M.; McMahon, D.J.; Korner, J. Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and β-cell Function in type 2 diabetic patients. Diabetes 2013, 62, 3027–3032. [Google Scholar] [CrossRef]
- Taylor, R.; Al-Mrabeh, A.; Zhyzhneuskaya, S.; Peters, C.; Barnes, A.C.; Aribisala, B.S.; Hollingsworth, K.G.; Mathers, J.C.; Sattar, N.; Lean, M.E. Remission of Human Type 2 Diabetes Requires Decrease in Liver and Pancreas Fat Content but Is Dependent upon Capacity for b Cell Recovery. Cell Metab. 2018, 28, 547–556. [Google Scholar] [CrossRef]
- Lean, M.E.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.; Hollingsworth, K.G.; et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): An open-label, cluster-randomised trial. Lancet 2018, 391, 541–551. [Google Scholar] [CrossRef]
- Lean, M.E.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Kelly, T.; Irvine, K.; Peters, C.; Zhyzhneuskaya, S.; et al. 5-year follow-up of the randomised Diabetes Remission Clinical Trial (DiRECT) of continued support for weight loss maintenance in the UK: An extension study. Lancet Diabetes Endocrinol. 2024, 12, 233–246. [Google Scholar] [CrossRef]
- Lean, M.E.J.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Kelly, T.; Irvine, K.; Peters, C.; Zhyzhneuskaya, S.; et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 2019, 7, 344–355. [Google Scholar] [CrossRef]
- Diabetes UK. NHS England Announce Type 2 Remission Pilot, and Plans to Double the Size of the NHS England Diabetes Prevention Programme; Diabetes UK: London, UK, 2018; Available online: https://www.diabetes.org.uk/about_us/news/nhs-type2-remission-pilot (accessed on 12 March 2021).
- Valabhji, J.; Gorton, T.; Barron, E.; Safazadeh, S.; Earnshaw, F.; Helm, C.; Virr, M.; Kernan, J.; Crowe, S.; Aveyard, P.; et al. Early findings from the NHS Type 2 Diabetes Path to Remission Programme: A prospective evaluation of real-world implementation. Lancet Diabetes Endocrinol. 2024, 12, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Cava, E.; Yeat, N.C.; Mittendorfer, B. Preserving Healthy Muscle during Weight Loss. Adv. Nutr. 2017, 8, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Park, S.W.; Goodpaster, B.H.; Lee, J.S.; Kuller, L.H.; Boudreau, R.; de Rekeneire, N.; Harris, T.B.; Kritchevsky, S.; Tylavsky, F.A.; Nevitt, M.; et al. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care 2009, 32, 1993–1997. [Google Scholar] [CrossRef] [PubMed]
- Kalyani, R.R.; Saudek, C.D.; Brancati, F.L.; Selvin, E. Association of diabetes, comorbidities, and A1C with functional disability in older adults: Results from the National Health and Nutrition Examination Survey (NHANES), 1999–2006. Diabetes Care 2010, 33, 1055–1060. [Google Scholar] [CrossRef]
- Defronzo, R.A.; Gunnarsson, R.; Björkman, O.; Olsson, M.; Wahren, J. Effects of Insulin on Peripheral and Splanchnic Glucose Metabolism in Noninsulin-dependent (Type II) Diabetes Mellitus. J. Clin. Investig. 1985, 76, 149–155. [Google Scholar] [CrossRef]
- Ferrannini, E.; Bjorkman, O.; Reichard, G.A., Jr.; Pilo, A.; Olsson, M.; Wahren, J.; DeFronzo, R.A. The Disposal of an Oral Glucose Load in Healthy Subjects a Quantitative Study. Diabetes 1985, 34, 580–588. [Google Scholar] [CrossRef]
- Bower, J.K.; Meadows, R.J.; Foster, M.C.; Foraker, R.E.; Shoben, A.B. The association of percent body fat and lean mass with HbA1c in US adults. J. Endocr. Soc. 2017, 1, 600–608. [Google Scholar] [CrossRef]
- Chaston, T.B.; Dixon, J.B.; O’Brien, P.E. Changes in fat-free mass during significant weight loss: A systematic review. Int. J. Obes. 2007, 31, 743–750. [Google Scholar] [CrossRef]
- Ardavani, A.; Aziz, H.; Smith, K.; Atherton, P.J.; Phillips, B.E.; Idris, I. The Effects of Very Low Energy Diets and Low Energy Diets with Exercise Training on Skeletal Muscle Mass: A Narrative Review. Adv. Ther. 2021, 38, 149–163. [Google Scholar] [CrossRef]
- Leslie, W.S.; Taylor, R.; Harris, L.; Lean, M.E.J. Weight losses with low-energy formula diets in obese patients with and without type 2 diabetes: Systematic review and meta-analysis. Int. J. Obes. 2017, 41, 96–101. [Google Scholar] [CrossRef]
- Li, T.; Higgins, J.P.T.; Deeks, J.J. Chapter 5: Collecting data. In Cochrane Handbook for Systematic Reviews of Interventions; Version 6.4.; Cochrane: London, UK, 2023. [Google Scholar]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Savović, J.; Page, M.J.; Elbers, R.G.; Sterne, J.A.C. Chapter 8: Assessing risk of bias in a randomized trial. In Cochrane Handbook for Systematic Reviews of Interventions; Version 6.4.; Higgins, J., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M., Welch, V., Eds.; Cochrane: London, UK, 2023. [Google Scholar]
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses; Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2021; Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 12 April 2024).
- Higgins, J.; Li, T.; Deeks, J.J. Chapter 6: Choosing effect measures and computing estimates of effect. In Cochrane Handbook for Systematic Reviews of Interventions; Version 6.4.; Higgins, J., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M., Welch, V., Eds.; Cochrane: London, UK, 2023. [Google Scholar]
- Krotkiewski, M.; Grimby, G.; Holm, G.; Szczepanik, J. Increased muscle dynamic endurance associated with weight reduction on a very-low-calorie diet. Am. J. Clin. Nutr. 1990, 51, 321–330. [Google Scholar] [CrossRef]
- Van Dale, D.; Beckers, E.; Schoffelen, P.F.; ten Hoor, F.; Saris, W.H. Changes in sleeping metabolic rate and glucose induced thermogenesis during a diet or a diet/exercise treatment. Nutr. Res. 1990, 10, 615–626. [Google Scholar] [CrossRef]
- van Dale, D.; Schrijver, J.; Saris, W.H. Changes in vitamin status in plasma during dieting and exercise. Internat. J. Vit. Nutr. Res. 1990, 60, 67–74. [Google Scholar]
- Hoie, L.H.; Bruusgaard, D.; Thom, E. Reduction of body mass and change in body composition on a very low calorie diet. Int. J. Obes. 1993, 17, 17–20. [Google Scholar]
- Carella, M.J.; Anderson, D.; Gossain, V.V.; Carella, M.J. Serial measurements of body composition in obese subjects during a very-low-energy diet (VLED) comparing bioelectrical impedance with hydrodensitometry. Obes. Res. 1997, 5, 250–256. [Google Scholar] [PubMed]
- Borg, P.; Kukkonen-Harjula, K.; Fogelholm, M.; Pasanen, M. Effects of walking or resistance training on weight loss maintenance in obese, middle-aged men: A randomized trial. Int. J. Obes. 2002, 26, 676–683. [Google Scholar] [CrossRef]
- Tomlinson, J.W.; Moore, J.S.; Clark, P.M.S.; Holder, G.; Shakespeare, L.; Stewart, P.M. Weight loss increases 11β-hydroxysteroid dehydrogenase type 1 expression in human adipose tissue. J. Clin. Endocrinol. Metab. 2004, 89, 2711–2716. [Google Scholar] [CrossRef]
- Westerterp-Plantenga, M.S.; Lejeune, M.P.G.M.; Nijs, I.; van Ooijen, M.; Kovacs, E.M.R. High protein intake sustains weight maintenance after body weight loss in humans. Int. J. Obes. 2004, 28, 57–64. [Google Scholar] [CrossRef]
- Christensen, R.; Astrup, A.; Bliddal, H. Weight loss: The treatment of choice for knee osteoarthritis? A randomized trial. Osteoarthr. Cartil. 2005, 13, 20–27. [Google Scholar] [CrossRef]
- Packianathan, I.; Sheikh, M.; Boniface, D.; Finer, N. Predictors of programme adherence and weight loss in women in an obesity programme using meal replacements. Diabetes Obes. Metab. 2005, 7, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Vogels, N.; Westerterp-Plantenga, M.S. Categorical strategies based on subject characteristics of dietary restraint and physical activity, for weight maintenance. Int. J. Obes. 2005, 29, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Adam, T.C.M.; Lejeune, M.P.G.M.; Westerterp-Plantenga, M.S. Nutrient-stimulated glucagon-like peptide 1 release after body-weight loss and weight maintenance in human subjects. Br. J. Nutr. 2006, 95, 160–167. [Google Scholar] [CrossRef]
- Luscombe, N.D.; Tsopelas, C.; Bellon, M.; Clifton, P.M.; Kirkwood, I.; Wittert, G.A. Use of [14C]-sodium bicarbonate/urea to measure total energy expenditure in overweight men and women before and after low calorie diet induced weight loss. Asia Pac. J. Clin. Nutr. 2006, 15, 307–316. [Google Scholar] [PubMed]
- Diepvens, K.; Soenen, S.; Steijns, J.; Arnold, M.; Westerterp-Plantenga, M. Long-term effects of consumption of a novel fat emulsion in relation to body-weight management. Int. J. Obes. 2007, 31, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Vogels, N.; Westerterp-Plantenga, M.S. Successful long-term weight maintenance: A 2-year follow-up. Obesity 2007, 15, 1258–1266. [Google Scholar] [CrossRef]
- Belza, A.; Toubro, S.; Stender, S.; Astrup, A. Effect of diet-induced energy deficit and body fat reduction on high-sensitive CRP and other inflammatory markers in obese subjects. Int. J. Obes. 2009, 33, 456–464. [Google Scholar] [CrossRef]
- Claessens, M.; Van Baak, M.A.; Monsheimer, S.; Saris, W.H.M. The effect of a low-fat, high-protein or high-carbohydrate ad libitum diet on weight loss maintenance and metabolic risk factors. Int. J. Obes. 2009, 33, 296–304. [Google Scholar] [CrossRef]
- Hursel, R.; Westerterp-Plantenga, M.S. Green tea catechin plus caffeine supplementation to a high-protein diet has no additional effect on body weight maintenance after weight loss. Am. J. Clin. Nutr. 2009, 89, 822–830. [Google Scholar] [CrossRef]
- Uusi-Rasi, K.; Rauhio, A.; Kannus, P.; Pasanen, M.; Kukkonen-Harjula, K.; Fogelholm, M.; Sievänen, H. Three-month weight reduction does not compromise bone strength in obese premenopausal women. Bone 2010, 46, 1286–1293. [Google Scholar] [CrossRef]
- Munro, I.A.; Garg, M.L. Weight loss and metabolic profiles in obese individuals using two different approaches. Food Funct. 2011, 2, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Rolland, C.; Hession, M.; Broom, I. Effect of weight loss on adipokine levels in obese patients. Diabetes Metab. Syndr. Obes. 2011, 4, 315–323. [Google Scholar] [CrossRef]
- Schulte, D.M.; Müller, N.; Neumann, K.; Oberhäuser, F.; Faust, M.; Güdelhöfer, H.; Brandt, B.; Krone, W.; Laudes, M. Pro-inflammatory wnt5a and anti-inflammatory sfrp5 are differentially regulated by nutritional factors in obese human subjects. PLoS ONE 2012, 7, e32437. [Google Scholar] [CrossRef] [PubMed]
- Munro, I.A.; Garg, M.L. Prior supplementation with long chain omega-3 polyunsaturated fatty acids promotes weight loss in obese adults: A double-blinded randomised controlled trial. Food Funct. 2013, 4, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Nordstrand, N.; Gjevestad, E.; Hertel, J.; Johnson, L.; Saltvedt, E.; Røislien, J.; Hjelmesæth, J. Arterial stiffness, lifestyle intervention and a low-calorie diet in morbidly obese patients—A nonrandomized clinical trial. Obesity 2013, 21, 690–697. [Google Scholar] [CrossRef]
- Soenen, S.; Martens, E.A.P.; Hochstenbach-Waelen, A.; Lemmens, S.G.; Westerterp-Plantenga, M.S. Normal protein intake is required for body weight loss and weight maintenance, and elevated protein intake for additional preservation of resting energy expenditure and fat free mass. J. Nutr. 2013, 143, 591–596. [Google Scholar] [CrossRef]
- Iepsen, E.W.; Lundgren, J.R.; Holst, J.J.; Madsbad, S.; Torekov, S.S. Successful weight loss maintenance includes long-term increased meal responses of GLP-1 and PYY3-36. Eur. J. Endocrinol. 2016, 174, 775–784. [Google Scholar] [CrossRef]
- Fui, M.N.T.; Prendergast, L.A.; Dupuis, P.; Raval, M.; Strauss, B.J.; Zajac, J.D.; Grossmann, M. Effects of testosterone treatment on body fat and lean mass in obese men on a hypocaloric diet: A randomised controlled trial. BMC Med. 2016, 14, 153. [Google Scholar]
- Tam, C.S.; Redman, L.M.; Greenway, F.; LeBlanc, K.A.; Haussmann, M.G.; Ravussin, E. Energy Metabolic Adaptation and Cardiometabolic Improvements One Year After Gastric Bypass, Sleeve Gastrectomy, and Gastric Band. J. Clin. Endocrinol. Metab. 2016, 101, 3755–3764. [Google Scholar] [CrossRef]
- Vink, R.G.; Roumans, N.J.T.; Arkenbosch, L.A.J.; Mariman, E.C.M.; van Baak, M. The effect of rate of weight loss on long-term weight regain in adults with overweight and obesity. Obesity 2016, 24, 321–327. [Google Scholar] [CrossRef]
- Bucci, M.; Karmi, A.C.; Iozzo, P.; Fielding, B.A.; Viljanen, A.; Badeau, R.M.; Borra, R.; Saunavaara, V.; Pham, T.; Hannukainen, J.C.; et al. Enhanced fatty acid uptake in visceral adipose tissue is not reversed by weight loss in obese individuals with the metabolic syndrome. Diabetologia 2015, 58, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Vink, R.G.; Roumans, N.J.; Mariman, E.C.; van Baak, M.A. Dietary weight loss-induced changes in RBP4, FFA, and ACE predict weight regain in people with overweight and obesity. Physiol. Rep. 2017, 5, e13450. [Google Scholar] [CrossRef] [PubMed]
- Christensen, P.; Larsen, T.M.; Westerterp-Plantenga, M.; Macdonald, I.; Martinez, J.A.; Handjiev, S.; Poppitt, S.; Hansen, S.; Ritz, C.; Astrup, A.; et al. Men and women respond differently to rapid weight loss: Metabolic outcomes of a multi-centre intervention study after a low-energy diet in 2500 overweight, individuals with pre-diabetes (PREVIEW). Diabetes Obes. Metab. 2018, 20, 2840–2851. [Google Scholar] [CrossRef] [PubMed]
- Nymo, S.; Coutinho, S.R.; Torgersen, L.-C.H.; Bomo, O.J.; Haugvaldstad, I.; Truby, H.; Kulseng, B.; Martins, C. Timeline of changes in adaptive physiological responses, at the level of energy expenditure, with progressive weight loss. Br. J. Nutr. 2018, 120, 141–149. [Google Scholar] [CrossRef]
- Liljensøe, A.; Laursen, J.O.; Bliddal, H.; Søballe, K.; Mechlenburg, I. Weight Loss Intervention Before Total Knee Replacement: A 12-Month Randomized Controlled Trial. Scand. J. Surg. 2021, 110, 3–12. [Google Scholar] [CrossRef]
- Lundgren, J.R.; Janus, C.; Jensen, S.B.; Juhl, C.R.; Olsen, L.M.; Christensen, R.M.; Svane, M.S.; Bandholm, T.; Bojsen-Møller, K.N.; Blond, M.B.; et al. Healthy Weight Loss Maintenance with Exercise, Liraglutide, or Both Combined. N. Engl. J. Med. 2021, 384, 1719–1730. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.; Dornhorst, A.; McGowan, B.; Omar, O.; Leeds, A.R.; Taheri, S.; Frost, G.S. Low-energy total diet replacement intervention in patients with type 2 diabetes mellitus and obesity treated with insulin: A randomized trial. BMJ Open Diabetes Res. Care 2020, 8, e001012. [Google Scholar] [CrossRef]
- Scragg, J.; Avery, L.; Cassidy, S.; Taylor, G.; Haigh, L.; Boyle, M.; Trenell, M.I.; Anstee, Q.M.; McPherson, S.; Hallsworth, K. Feasibility of a Very Low Calorie Diet to Achieve a Sustainable 10% Weight Loss in Patients With Nonalcoholic Fatty Liver Disease. Clin. Transl. Gastroenterol. 2020, 11, e00231. [Google Scholar] [CrossRef]
- Behary, P.; Tharakan, G.; Alexiadou, K.; Johnson, N.; Albrechtsen, N.J.W.; Kenkre, J.; Cuenco, J.; Hope, D.; Anyiam, O.; Choudhury, S.; et al. Combined GLP-1, Oxyntomodulin, and Peptide YY Improves Body Weight and Glycemia in Obesity and Prediabetes/Type 2 Diabetes: A Randomized Single-Blinded Placebo Controlled Study. Diabetes Care 2019, 42, 1446–1453. [Google Scholar] [CrossRef]
- Camps, S.G.J.A.; Verhoef, S.P.; Bouwman, F.G.; Mariman, E.C.; Westerterp, K.R. Association of FTO and ADRB2 gene variation with energy restriction induced adaptations in resting energy expenditure and physical activity. Gene X 2019, 721, 100019. [Google Scholar] [CrossRef]
- Näätänen, M.; Kolehmainen, M.; Laaksonen, D.E.; Herzig, K.-H.; Poutanen, K.; Karhunen, L. Post-weight loss changes in fasting appetite- and energy balance-related hormone concentrations and the effect of the macronutrient content of a weight maintenance diet: A randomised controlled trial. Eur. J. Nutr. 2021, 60, 2603–2616. [Google Scholar] [CrossRef] [PubMed]
- Ivan, C.R.; Messina, A.; Cibelli, G.; Messina, G.; Polito, R.; Losavio, F.; La Torre, E.; Monda, V.; Monda, M.; Quiete, S.; et al. Italian Ketogenic Mediterranean Diet in Overweight and Obese Patients with Prediabetes or Type 2 Diabetes. Nutrients 2022, 14, 4361. [Google Scholar] [CrossRef] [PubMed]
- Jian, C.; Silvestre, M.P.; Middleton, D.; Korpela, K.; Jalo, E.; Broderick, D.; de Vos, W.M.; Fogelholm, M.; Taylor, M.W.; Raben, A.; et al. Gut microbiota predicts body fat change following a low-energy diet: A PREVIEW intervention study. Genome Med. 2022, 14, 54. [Google Scholar] [CrossRef]
- Marples, O.; Resca, L.; Plavska, J.; Hassan, S.; Mistry, V.; Mallik, R.; Brown, A. Real-World Data of a Group-Based Formula Low Energy Diet Programme in Achieving Type 2 Diabetes Remission and Weight Loss in an Ethnically Diverse Population in the UK: A Service Evaluation. Nutrients 2022, 14, 3146. [Google Scholar] [CrossRef]
- Sayda, M.H.; Aziz, M.H.A.; Gharahdaghi, N.; Wilkinson, D.J.; Greenhaff, P.L.; Phillips, B.E.; Smith, K.; Idris, I.; Atherton, P.J. Caloric restriction improves glycaemic control without reducing plasma branched-chain amino acids or keto-acids in obese men. Sci. Rep. 2022, 12, 19273. [Google Scholar] [CrossRef] [PubMed]
- Athithan, L.; Gulsin, G.S.; Henson, J.; Althagafi, L.; Redman, E.; Argyridou, S.; Parke, K.S.; Yeo, J.; Yates, T.; Khunti, K.; et al. Response to a low-energy meal replacement plan on glycometabolic profile and reverse cardiac remodelling in type 2 diabetes: A comparison between South Asians and White Europeans. Ther. Adv. Endocrinol. Metab. 2023, 14, 1–14. [Google Scholar] [CrossRef]
- Aukan, M.I.; Skårvold, S.; Brandsæter, I.; Rehfeld, J.F.; Holst, J.J.; Nymo, S.; Coutinho, S.; Martins, C. Gastrointestinal hormones and appetite ratings after weight loss induced by diet or bariatric surgery. Obesity 2023, 31, 399–411. [Google Scholar] [CrossRef]
- Martins, C.; Nymo, S.; Coutinho, S.R.; Rehfeld, J.F.; Hunter, G.R.; Gower, B.A. Association between Fat-Free Mass Loss, Changes in Appetite, and Weight Regain in Individuals with Obesity. J. Nutr. 2023, 153, 1330–1337. [Google Scholar] [CrossRef]
- Näätänen, M.; Kårlund, A.; Mikkonen, S.; Klåvus, A.; Savolainen, O.; Lehtonen, M.; Karhunen, L.; Hanhineva, K.; Kolehmainen, M. Metabolic profiles reflect weight loss maintenance and the composition of diet after very-low-energy diet. Clin. Nutr. 2023, 42, 1126–1141. [Google Scholar] [CrossRef]
- NHS England. Low Calorie Diets to Treat Obesity and Type 2 Diabetes. 2020. Available online: https://www.england.nhs.uk/diabetes/treatment-care/low-calorie-diets/ (accessed on 27 August 2022).
- NICE. Type 2 Diabetes in Adults: Management (NICE Guidance 28—2022 Update). 2022. Available online: www.nice.org.uk/guidance/ng28 (accessed on 27 August 2022).
- National Task Force on the Prevention and Treatment of Obesity. Very low-calorie diets. J. Am. Med. Assoc. 1993, 270, 967–974. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Jakicic, J.; Gunderson, S. Diet and Body Composition Effect of Very Low Calorie Diets and Exercise. Sports Med. 1991, 12, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Kreitzman, S.N. Lean body mass, exercise and VLCD. Int. J. Obes. 1989, 13 (Suppl. S2), 17–25. [Google Scholar] [PubMed]
- Alhamdan, B.A.; Garcia-Alvarez, A.; Alzahrnai, A.H.; Karanxha, J.; Stretchberry, D.R.; Contrera, K.J.; Utria, A.F.; Cheskin, L.J. Alternate-day versus daily energy restriction diets: Which is more effective for weight loss? A systematic review and meta-analysis. Obes. Sci. Pract. 2016, 2, 293–302. [Google Scholar] [CrossRef]
- Janssen, T.A.H.; Van Every, D.W.; Phillips, S.M. The impact and utility of very low-calorie diets: The role of exercise and protein in preserving skeletal muscle mass. Curr. Opin. Clin. Nutr. Metab. Care 2023, 26, 521–527. [Google Scholar] [CrossRef]
- Park, S.W.; Goodpaster, B.H.; Strotmeyer, E.S.; de Rekeneire, N.; Harris, T.B.; Schwartz, A.V.; Tylavsky, F.A.; Newman, A.B. Decreased muscle strength and quality in older adults with type 2 diabetes: The health, aging, and body composition study. Diabetes 2006, 55, 1813–1818. [Google Scholar] [CrossRef]
- Sellahewa, L.; Khan, C.; Lakkunarajah, S.; Idris, I. A Systematic Review of Evidence on the Use of Very Low Calorie Diets in People with Diabetes. Curr. Diabetes Rev. 2017, 13, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, D.; Hewlings, S.; Kalman, D. Body composition changes in weight loss: Strategies and supplementation for maintaining lean body mass, a brief review. Nutrients 2018, 10, 1876. [Google Scholar] [CrossRef] [PubMed]
- Nuijten, M.A.H.; Eijsvogels, T.M.; Monpellier, V.M.; Janssen, I.M.; Hazebroek, E.J.; Hopman, M.T. The magnitude and progress of lean body mass, fat-free mass, and skeletal muscle mass loss following bariatric surgery: A systematic review and meta-analysis. Obes. Rev. 2022, 23, e13370. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, X.; Yuan, Y.; Xie, B.; Sun, Z.; Wu, T. Is imaging-based muscle quantity associated with risk of diabetes? A meta-analysis of cohort studies. Diabetes Res. Clin. Pract. 2022, 189, 109939. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, X.; Liang, Y.; Chen, W.; Wang, D.; Sun, Z.; Xie, B.; Wu, T. Cumulative muscle strength and risk of diabetes: A prospective cohort study with mediation analysis. Diabetes Res. Clin. Pract. 2023, 197, 110562. [Google Scholar] [CrossRef]
- Zibellini, J.; Seimon, R.V.; Lee, C.M.Y.; Gibson, A.A.; Hsu, M.S.H.; Sainsbury, A. Effect of diet-induced weight loss on muscle strength in adults with overweight or obesity—A systematic review and meta-analysis of clinical trials. Obes. Rev. 2016, 17, 647–663. [Google Scholar] [CrossRef] [PubMed]
- Nishitani, M.; Shimada, K.; Sunayama, S.; Masaki, Y.; Kume, A.; Fukao, K.; Sai, E.; Yamashita, H.; Ohmura, H.; Onishi, T.; et al. Impact of diabetes on muscle mass, muscle strength, and exercise tolerance in patients after coronary artery bypass grafting. J. Cardiol. 2011, 58, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Saris, W.H.M. Very-Low-Calorie Diets and Sustained Weight Loss. Obes. Res. 2001, 9 (Suppl. S4), 295S–301S. [Google Scholar] [CrossRef] [PubMed]
- Franz, M.J.; VanWormer, J.J.; Crain, A.L.; Boucher, J.L.; Histon, T.; Caplan, W.; Bowman, J.D.; Pronk, N.P. Weight-Loss Outcomes: A Systematic Review and Meta-Analysis of Weight-Loss Clinical Trials with a Minimum 1-Year Follow-Up. J. Am. Diet. Assoc. 2007, 107, 1755–1767. [Google Scholar] [CrossRef]
- Keeping the weight off. Nat. Med. 2023, 29, 2377–2378. [CrossRef]
- Sattar, N.; Gill, J.M.R. Type 2 diabetes as a disease of ectopic fat? BMC Med. 2014, 12, 123. [Google Scholar] [CrossRef]
Study | Study Design | Daily Caloric Restriction | Intervention Duration | Sample Size (Number of Females) | Diabetes Status | Age Mean (SD) | Baseline BMI Mean (SD) | Method of Body Composition Assessment | Outcomes of Interest Reported |
---|---|---|---|---|---|---|---|---|---|
Krotkiewski et al., 1990 [37] | SGCS | 544 kcal | 4 weeks | 25 (all female) | NDM | 40.1 (2.92) * | 36.9 (1.2) * | Potassium estimation | LBM, FM, weight |
van Dale, Beckers et al., 1990a [38] | MGCS | 3.0 MJ | 4 weeks | 6 (all female) | NDM | 41 (2.4) * | 33.2 (1.0) * | Body density calculation | FFM, FM, weight |
van Dale, Beckers et al., 1990b [38] | MGCS | 3.0 MJ | 4 weeks | 6 (all female) | NDM | 41 (1.9) * | 33.5 (0.8) * | Body density calculation | FFM, FM, weight |
van Dale, Schrijver & Saris 1990 [39] | MGCS | 3.0 MJ | 5 weeks | 6 (all male) | NDM | 41.0 (4.0) * | 32.0 (2.0) * | Hydrostatic weighing | FFM, FM, weight |
Hoie et al., 1993 [40] | SGCS | 430 kcal | 8 weeks | 127 (82) | NDM | 41.2 (range 18–72) | 33.2 (range 25–51) | Infra-red technology | LBM, FM, weight |
Carella et al., 1997 [41] | SGCS | 800 kcal | 12 weeks | 37 (24) | NDM | 42 (8.2) | Female—37 (6) Male—43 (4) | BIA | FFM, FM, weight |
Borg et al., 2002 [42] | SGCS | 500 kcal | 2 months | 82 (all male) | NDM | 42.6 (4.6) | 32.9 (2.6) | Hydrostatic weighing | FFM, FM, weight |
Tomlinson et al., 2004 [43] | SGCS | 559 kcal (male)/425 kcal (female) | 10 weeks | 12 (6) | NDM | 49 (range 23–58) | 35.9 (0.9) * | DXA | LBM, FM, weight |
Westerterp-Plantenga et al., 2004a [44] | SGCS | 2.1 MJ | 4 weeks | 75 (gender undisclosed) | NDM | 43.8 (10.1) | 29.3 (2.5) | Deuterium dilution | FFM, FM, weight |
Westerterp-Plantenga et al., 2004b [44] | SGCS | 2.1 MJ | 4 weeks | 73 (gender undisclosed) | NDM | 44.5 (10.5) | 29.7 (2.6) | Deuterium dilution | FFM, FM, weight |
Christensen et al., 2005 [45] | RCT | 3.4 MJ | 8 weeks | 40 (35) | NDM | 60.5 (11.6) | 36.3 (5.6) | BIA | LBM, FM, FFM |
Packianathan et al., 2005 [46] | SGCS | 900 kcal | 16 weeks | 114 (all female) | NDM | 48.5 (8.25) | 36.1 (5.62) | ADP | LBM, FM, weight |
Vogels & Westerterp-Plantenga, 2005 [47] | SGCS | 2.1 MJ | 6 weeks | 133 (gender undisclosed) | NDM | 48.1 (9.5) | 31.1 (3.7) | Deuterium dilution | FFM, FM, weight |
Adam et al., 2006 [48] | SGCS | 2540 kJ | 6 weeks | 32 (23) | NDM | 44 (9) | 30.1 (2.6) | Deuterium dilution | FFM, weight |
Luscombe et al., 2006 [49] | SGCS | 3300 kJ | 8 weeks | 11 (5) | NDM | 50 (3) * | 34.0 (1.7) * | DXA | LBM, FM, weight |
Diepvens et al., 2007a [50] | SGCS | 2.1 MJ | 6 weeks | 22 (all female) | NDM | 40.3 (9.7) | 28.9 (1.7) | Deuterium dilution | FFM, FM, weight |
Diepvens et al., 2007b [50] | SGCS | 2.1 MJ | 6 weeks | 28 (all female) | NDM | 41.2 (9.3) | 28.5 (2.2) | Deuterium dilution | FFM, FM, weight |
Vogels et al., 2007a [51] | SGCS | 500 kcal | 6 weeks | 13 (gender undisclosed) | NDM | 48.1 (9.5) $ | 33.7 (4.7) | Deuterium dilution | FFM, FM, weight |
Vogels et al., 2007b [51] | SGCS | 500 kcal | 6 weeks | 90 (gender undisclosed) | NDM | 48.1 (9.5) $ | 30.5 (3.5) | Deuterium dilution | FFM, FM, weight |
Belza et al., 2009 [52] | SGCS | 3.4 MJ | 8 weeks | 33 (17) | NDM | 43.0 (10.5) | 34.0 (3.1) | BIA | FFM, FM, weight |
Claessens et al., 2009 [53] | SGCS | 500 kcal | 5–6 weeks | 48 (31) | NDM | 46.0 (2.2)/45.4 (2.2)/44.9 (2.0) * | 32.4 (1.2)/32.9 (1.6)/33.4 (1.0) * | Hydrostatic weighing | FFM, FM, weight |
Hursel & Westerterp-Plantenga, 2009a [54] | SGCS | 2.1 MJ | 4 weeks | 20 (11) | NDM | 44 (2) $ | 29.6 (2.1) | Deuterium dilution | FFM, FM, weight |
Hursel & Westerterp-Plantenga, 2009b [54] | SGCS | 2.1 MJ | 4 weeks | 20 (11) | NDM | 44 (2) $ | 29.5 (2.0) | Deuterium dilution | FFM, FM, weight |
Hursel & Westerterp-Plantenga, 2009c [54] | SGCS | 2.1 MJ | 4 weeks | 20 (11) | NDM | 44 (2) $ | 29.6 (2.1) | Deuterium dilution | FFM, FM, weight |
Hursel & Westerterp-Plantenga, 2009d [54] | SGCS | 2.1 MJ | 4 weeks | 20 (11) | NDM | 44 (2) $ | 29.5 (1.9) | Deuterium dilution | FFM, FM, weight |
Uusi-Rasi et al., 2010 [55] | SGCS | 778 kcal | 3 months | 20 (gender undisclosed) | NDM | 42.1 (3.7) | 33.3 (3.3) | DXA | FFM, FM, weight |
Lim et al., 2011 [14] | SGCS | 600 kcal | 8 weeks | 11 (2) | T2DM | 49.7 (2.5) * | 33.6 (1.2) * | ADP | FFM, FM, weight |
Munro & Garg, 2011 [56] | SGCS | 3000 kJ | 4 weeks | 14 (3) | NDM | 42 (2.0) | 33.04 (3.17) | BIA | FFM, FM, weight |
Rolland et al., 2011 [57] | RCT | 550 kcal | 3 months | 14 (9) | NDM | 41.9 (6.5) | 46.7 (9.0) | BIA | FFM, FM, weight |
Schulte et al., 2012 [58] | SGCS | 800 kcal | 12 weeks | 23 (15) | NDM | 42.8 (2.6) * | 44.1 (1.1) * | BIA | LBM, FM, weight |
Munro & Garg, 2013 [59] | RCT | 3000 kJ | 4 weeks | 19 (15) | NDM | 47.11 (2.05) * | 33.70 (0.83) * | BIA | FFM, FM, weight |
Nordstrand et al., 2013 [60] | MGCS | 900 kcal | 7 weeks | 91 (57) | NDM | 42.3 (9.6) | 45.7 (5.5) | BIA | SMM, FM, weight |
Soenen et al., 2013 [61] | RCT | 33% CR | 6 weeks | 36 (24) | NDM | 44 (4) | 32 (0.5) | ADP | FFM, FM, weight |
Iepsen et al., 2016 [62] | SGCS | 810 kcal | 8 weeks | 20 (gender undisclosed) | NDM | 43 (9.6) | 33.5 (2.2) * | DXA | LBM, FM, weight |
Ng Tang Fui et al., 2016 [63] | RCT | 640 kcal | 10 weeks | 51 (gender undisclosed) | NDM | 52.8 (IQR 47.6–60.1) | 37.3 (IQR 34.7–41.6) | DXA | LBM, FM, weight |
Tam et al., 2016 [64] | MGCS | 800 kcal | 8 weeks | 9 (8) | Mixed (majority NDM) | 45 (5) * | 48.8 (3.2) * | DXA | FFM, FM, weight |
Vink et al., 2016 [65] | RCT | 500 kcal | 5 weeks | 28 (15) | NDM | 50.7 (1.5) * | 31.0 (0.4) * | ADP | FFM, FM, weight |
Bucci et al., 2015 [66] | SGCS | 2.3 MJ | 6 weeks | 17 (12) | NDM | 42 (6) | 34.0 (3.9) | BIA | Muscle mass, FM, weight |
Vink et al., 2017 [67] | RCT | 500 kcal | 5 weeks | 28 (15) | NDM | 50.8 (1.5) * | 30.8 (0.4) * | ADP | FFM, FM, weight |
Christensen et al., 2018 [68] | SGCS | 3.4 MJ | 8 weeks | 2020 (1504) | Prediabetes | 51.6 (11.6) | 35.4 (6.6) | DXA | FFM, FM, weight |
Nymo et al., 2018 [69] | SGCS | 2.8 MJ (male)/ 2.3 MJ (female) | 8 weeks | 31 (13) | NDM | 43 (10) * | 36.7 (4.5) * | ADP | FFM, FM, weight |
Liljensøe et al., [70] | RCT | 810 kcal | 8 weeks | 38 (27) | Mixed (majority NDM) | 65 (range 46–81) | 31.6 (range 30.6–32.6) | DXA | LBM, FM, weight |
Lundgren et al., 2021 [71] | SGCS | 800 kcal | 8 weeks | 195 (124) | NDM | 42 (12) | 37.0 (2.9) | DXA | LBM, FM, weight |
Brown et al., 2020 [72] | RCT | 800–820 kcal | 12 weeks | 45 (25) | T2DM | 58.5 (IQR 50.1–64.2) | 36.6 (5.1) | BIA | LBM, FM, weight |
Scragg et al., 2020 [73] | SGCS | 800 kcal/day | 8 weeks | 27 (12) | Mixed (majority T2DM) | 56 (12) | 42 (8) | BIA | SMM, FM, weight |
Behary et al., 2019 [74] | RCT | 800 kcal | 4 weeks | 22 (12) | T2DM | 47.0 (10.2) | 39.1 (4.3) | BIA | Muscle mass, FM, weight |
Camps et al., 2019 [75] | SGCS | 2.1 MJ | 8 weeks | 148 (109) | NDM | 41 (9) | 31.9 (3.0) | ADP | FFM, FM, weight |
Näätänen et al., 2021a [76] | SGCS | 600 kcal | 7 weeks | 42 (30) | NDM | 49.6 (9.5) | 34.0 (2.3) | BIA | FFM, FM, weight |
Näätänen et al., 2021b [76] | SGCS | 600 kcal | 7 weeks | 40 (31) | NDM | 49.1 (9.1) | 34.3 (2.7) | BIA | FFM, FM, weight |
Ivan et al., 2022 [77] | MGCS | 800 kcal | 30 days | 40 (20) | T2DM | 51.83 (1.8) | 32.64 (0.98) | BIA | FFM, FM, weight |
Jian et al., 2022 [78] | SGCS | 810 kcal | 8 weeks | 221 (156) | T2DM | 54 (95% CI 53–55) | 34.1 (95% CI 33.3–34.9) | BIA | FFM, FM, weight |
Marples et al., 2022 [79] | SGCS | 825–853 kcal | 12 weeks | 35 (15) | T2DM | 50.4 (10.5) | 34.4 (4.5) | BIA | FFM, FM, weight |
Sayda et al., 2022 [80] | SGCS | 600–800 kcal | 6 weeks | 10 (all male) | NDM | 45.9 (8.3) | 32.2 (4) | DXA | LBM, FM, weight |
Athithan et al., 2023a [81] | MGCS | 810 kcal | 12 weeks | 15 (4) | T2DM | 52.5 (5.1) | 37.2 (6.8) | DXA | LBM, FM, weight |
Athithan et al., 2023b [81] | MGCS | 810 kcal | 12 weeks | 8 (4) | T2DM | 46.6 (7.0) | 36.0 (4.9) | DXA | LBM, FM, weight |
Aukan et al., 2023 [82] | MGCS | 750 kcal | 10 weeks | 15 (10) | Mixed (majority NDM) | 45.5 (2.6) * | 39.7 (0.9) * | ADP | FFM, FM, weight |
Martins et al., 2023 [83] | SGCS | 550–660 kcal | 8 weeks | 70 (41) | NDM | 44 (9) | 36.3 (4.0) | ADP | FFM, FM, weight |
Näätänen et al., 2023a [84] | SGCS | 600 kcal | 7 weeks | 51 (36) | NDM | 50.5 (9.2) | 34.0 (2.4) | BIA | FFM, FM, weight |
Näätänen et al., 2023b [84] | SGCS | 600 kcal | 7 weeks | 28 (22) | NDM | 48.3 (8.6) | 34.6 (2.8) | BIA | FFM, FM, weight |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anyiam, O.; Abdul Rashid, R.S.; Bhatti, A.; Khan-Madni, S.; Ogunyemi, O.; Ardavani, A.; Idris, I. A Systematic Review and Meta-Analysis of the Effect of Caloric Restriction on Skeletal Muscle Mass in Individuals with, and without, Type 2 Diabetes. Nutrients 2024, 16, 3328. https://doi.org/10.3390/nu16193328
Anyiam O, Abdul Rashid RS, Bhatti A, Khan-Madni S, Ogunyemi O, Ardavani A, Idris I. A Systematic Review and Meta-Analysis of the Effect of Caloric Restriction on Skeletal Muscle Mass in Individuals with, and without, Type 2 Diabetes. Nutrients. 2024; 16(19):3328. https://doi.org/10.3390/nu16193328
Chicago/Turabian StyleAnyiam, Oluwaseun, Rushdina Sofia Abdul Rashid, Aniqah Bhatti, Saif Khan-Madni, Olakunmi Ogunyemi, Arash Ardavani, and Iskandar Idris. 2024. "A Systematic Review and Meta-Analysis of the Effect of Caloric Restriction on Skeletal Muscle Mass in Individuals with, and without, Type 2 Diabetes" Nutrients 16, no. 19: 3328. https://doi.org/10.3390/nu16193328
APA StyleAnyiam, O., Abdul Rashid, R. S., Bhatti, A., Khan-Madni, S., Ogunyemi, O., Ardavani, A., & Idris, I. (2024). A Systematic Review and Meta-Analysis of the Effect of Caloric Restriction on Skeletal Muscle Mass in Individuals with, and without, Type 2 Diabetes. Nutrients, 16(19), 3328. https://doi.org/10.3390/nu16193328