Impact of a Pulse-Enriched Human Cuisine on Functional Attributes of the Gut Microbiome Using a Preclinical Model of Dietary-Induced Chronic Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Microbiome Analysis
2.3. Effect Size and Power
2.4. Statistical Analyses
3. Results
3.1. Bean Cuisine Menus Increase Diversity of Cecal Microbiota
3.2. Individual Bean Cuisine Menus Induce Distinct Microbial Signatures
3.3. Functional Predictions of the Bean-Culinary-Driven Microbiota
3.4. Similarities and Differences in Microbial Responses to Bean Cuisine Menus
3.5. Differential Patterns within Bean Cuisine Menus
4. Discussion
4.1. Bean Cuisine-Induced Microbial Signatures
4.2. Comparison with Pulse Effects in Purified Diet Formulations in Rodents and with a Human Intervention
4.3. Value of Preclinical Modeling in Pulse Research
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Noncommunicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 12 March 2024).
- WHO. World Health Statistics 2023: Monitoring Health for the SDGs, SUSTAINABLE Development Goals; World Health Organization: Geneva, Switzerland, 2023.
- Valicente, V.M.; Peng, C.-H.; Pacheco, K.N.; Lin, L.; Kielb, E.I.; Dawoodani, E.; Abdollahi, A.; Mattes, R.D. Ultra-processed foods and obesity risk: A critical review of reported mechanisms. Adv. Nutr. 2023, 14, 718–738. [Google Scholar] [CrossRef] [PubMed]
- Menichetti, G.; Ravandi, B.; Mozaffarian, D.; Barabási, A.-L. Machine learning prediction of the degree of food processing. Nat. Commun. 2023, 14, 2312. [Google Scholar] [CrossRef] [PubMed]
- WHO. Healthy Diet. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 12 March 2024).
- Bidell, M.R.; Hobbs, A.L.V.; Lodise, T.P. Gut microbiome health and dysbiosis: A clinical primer. Pharmacotherapy 2022, 42, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Henn, K.; Boye Olsen, S.; Goddyn, H.; Bredie, W.L.P. Willingness to replace animal-based products with pulses among consumers in different European countries. Food Res. Int. 2022, 157, 111403. [Google Scholar] [CrossRef]
- Kadyan, S.; Sharma, A.; Arjmandi, B.H.; Singh, P.; Nagpal, R. Prebiotic Potential of Dietary Beans and Pulses and Their Resistant Starch for Aging-Associated Gut and Metabolic Health. Nutrients 2022, 14, 1726. [Google Scholar] [CrossRef]
- Marinangeli, C.P.F.; Harding, S.V.; Zafron, M.; Rideout, T.C. A systematic review of the effect of dietary pulses on microbial populations inhabiting the human gut. Benef. Microbes 2020, 11, 457–468. [Google Scholar] [CrossRef]
- Lutsiv, T.; McGinley, J.N.; Neil-McDonald, E.S.; Weir, T.L.; Foster, M.T.; Thompson, H.J. Relandscaping the Gut Microbiota with a Whole Food: Dose-Response Effects to Common Bean. Foods 2022, 11, 1153. [Google Scholar] [CrossRef]
- Zhang, X.; Irajizad, E.; Hoffman, K.L.; Fahrmann, J.F.; Li, F.; Seo, Y.D.; Browman, G.J.; Dennison, J.B.; Vykoukal, J.; Luna, P.N.; et al. Modulating a prebiotic food source influences inflammation and immune-regulating gut microbes and metabolites: Insights from the BE GONE trial. eBioMedicine 2023, 98, 104873. [Google Scholar] [CrossRef]
- Zhang, C.; Monk, J.M.; Lu, J.T.; Zarepoor, L.; Wu, W.; Liu, R.; Pauls, K.P.; Wood, G.A.; Robinson, L.; Tsao, R.; et al. Cooked navy and black bean diets improve biomarkers of colon health and reduce inflammation during colitis. Br. J. Nutr. 2014, 111, 1549–1563. [Google Scholar] [CrossRef]
- Hartman, T.J.; Christie, J.; Wilson, A.; Ziegler, T.R.; Methe, B.; Flanders, W.D.; Rolls, B.J.; Loye Eberhart, B.; Li, J.V.; Huneault, H.; et al. Fibre-rich Foods to Treat Obesity and Prevent Colon Cancer trial study protocol: A randomised clinical trial of fibre-rich legumes targeting the gut microbiome, metabolome and gut transit time of overweight and obese patients with a history of noncancerous adenomatous polyps. BMJ Open 2024, 14, e081379. [Google Scholar] [CrossRef] [PubMed]
- Didinger, C.; Bunning, M.; Thompson, H.J. Bean Cuisine: The Potential of Citizen Science to Help Motivate Changes in Pulse Knowledge and Consumption. Foods 2023, 12, 2667. [Google Scholar] [CrossRef] [PubMed]
- Monk, J.M.; Wu, W.; Lepp, D.; Pauls, K.P.; Robinson, L.E.; Power, K.A. Navy Bean Supplementation in Established High-Fat Diet-Induced Obesity Attenuates the Severity of the Obese Inflammatory Phenotype. Nutrients 2021, 13, 757. [Google Scholar] [CrossRef] [PubMed]
- Monk, J.M.; Wu, W.; Lepp, D.; Wellings, H.R.; Hutchinson, A.L.; Liddle, D.M.; Graf, D.; Pauls, K.P.; Robinson, L.E.; Power, K.A. Navy bean supplemented high-fat diet improves intestinal health, epithelial barrier integrity and critical aspects of the obese inflammatory phenotype. J. Nutr. Biochem. 2019, 70, 91–104. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025; U.S. Department of Agriculture: Washington, DC, USA, 2020. Available online: https://www.DietaryGuidelines.gov/ (accessed on 10 July 2024).
- Kim, N. Sex Difference of Gut Microbiota. In Sex/Gender-Specific Medicine in the Gastrointestinal Diseases; Kim, N., Ed.; Springer Nature: Singapore, 2022; pp. 363–377. [Google Scholar]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- McDonald, D.; Jiang, Y.; Balaban, M.; Cantrell, K.; Zhu, Q.; Gonzalez, A.; Morton, J.T.; Nicolaou, G.; Parks, D.H.; Karst, S.M.; et al. Greengenes2 unifies microbial data in a single reference tree. Nat. Biotechnol. 2023, 42, 715–718. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- Ferdous, T.; Jiang, L.; Dinu, I.; Groizeleau, J.; Kozyrskyj, A.L.; Greenwood, C.M.T.; Arrieta, M.-C. The rise to power of the microbiome: Power and sample size calculation for microbiome studies. Mucosal Immunol. 2022, 15, 1060–1070. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, 1–18. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, G.; Ewald, J.; Pang, Z.; Shiri, T.; Xia, J. MicrobiomeAnalyst 2.0: Comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Res. 2023, 51, W310–W318. [Google Scholar] [CrossRef]
- Lin, H.; Peddada, S.D. Analysis of compositions of microbiomes with bias correction. Nat. Commun. 2020, 11, 3514. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, F.; Moitinho-Silva, L.; Blasche, S.; Jahn, M.T.; Gossmann, T.I.; Huerta-Cepas, J.; Hercog, R.; Luetge, M.; Bahram, M.; Pryszlak, A.; et al. Antibiotics-induced monodominance of a novel gut bacterial order. Gut 2019, 68, 1781–1790. [Google Scholar] [CrossRef] [PubMed]
- Lanza, E.; Hartman, T.J.; Albert, P.S.; Shields, R.; Slattery, M.; Caan, B.; Paskett, E.; Iber, F.; Kikendall, J.W.; Lance, P.; et al. High dry bean intake and reduced risk of advanced colorectal adenoma recurrence among participants in the polyp prevention trial. J. Nutr. 2006, 136, 1896–1903. [Google Scholar] [CrossRef] [PubMed]
- Ramdath, D.D.; Renwick, S.; Hawke, A.; Ramdath, D.G.; Wolever, T.M.S. Minimal Effective Dose of Beans Required to Elicit a Significantly Lower Glycemic Response Than Commonly Consumed Starchy Foods: Predictions Based on In Vitro Digestion and Carbohydrate Analysis. Nutrients 2023, 15, 4495. [Google Scholar] [CrossRef] [PubMed]
- Mudryj, A.N.; Yu, N.; Hartman, T.J.; Mitchell, D.C.; Lawrence, F.R.; Aukema, H.M. Pulse consumption in Canadian adults influences nutrient intakes. Br. J. Nutr. 2012, 108 (Suppl. 1), S27–S36. [Google Scholar] [CrossRef]
- Cordova, R.; Viallon, V.; Fontvieille, E.; Peruchet-Noray, L.; Jansana, A.; Wagner, K.-H.; Kyrø, C.; Tjønneland, A.; Katzke, V.; Bajracharya, R.; et al. Consumption of ultra-processed foods and risk of multimorbidity of cancer and cardiometabolic diseases: A multinational cohort study. Lancet Reg. Health–Eur. 2023, 35, 100771. [Google Scholar] [CrossRef]
- Lane, M.M.; Gamage, E.; Du, S.; Ashtree, D.N.; McGuinness, A.J.; Gauci, S.; Baker, P.; Lawrence, M.; Rebholz, C.M.; Srour, B.; et al. Ultra-processed food exposure and adverse health outcomes: Umbrella review of epidemiological meta-analyses. BMJ 2024, 384, e077310. [Google Scholar] [CrossRef]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef]
- Crudele, L.; Gadaleta, R.M.; Cariello, M.; Moschetta, A. Gut microbiota in the pathogenesis and therapeutic approaches of diabetes. EBioMedicine 2023, 97, 104821. [Google Scholar] [CrossRef]
- Reese, A.T.; Dunn, R.R. Drivers of Microbiome Biodiversity: A Review of General Rules, Feces, and Ignorance. mBio 2018, 9, 10-1128. [Google Scholar] [CrossRef]
- Vacca, M.; Celano, G.; Calabrese, F.M.; Portincasa, P.; Gobbetti, M.; De Angelis, M. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms 2020, 8, 573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wu, X.; Yuan, H.; Huang, S.; Park, S. Mitigation of Memory Impairment with Fermented Fucoidan and λ-Carrageenan Supplementation through Modulating the Gut Microbiota and Their Metagenome Function in Hippocampal Amyloid-β Infused Rats. Cells 2022, 11, 2301. [Google Scholar] [CrossRef] [PubMed]
- Wylensek, D.; Hitch, T.C.A.; Riedel, T.; Afrizal, A.; Kumar, N.; Wortmann, E.; Liu, T.; Devendran, S.; Lesker, T.R.; Hernández, S.B.; et al. A collection of bacterial isolates from the pig intestine reveals functional and taxonomic diversity. Nat. Commun. 2020, 11, 6389. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Andreu-Sánchez, S.; Kuipers, F.; Fu, J. Gut microbiome and bile acids in obesity-related diseases. Best Pract. Res. Clin. Endocrinol. Metab. 2021, 35, 101493. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lordan, C.; Ross, R.P.; Cotter, P.D. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes 2020, 12, 1802866. [Google Scholar] [CrossRef]
- Duncan, S.H.; Belenguer, A.; Holtrop, G.; Johnstone, A.M.; Flint, H.J.; Lobley, G.E. Reduced Dietary Intake of Carbohydrates by Obese Subjects Results in Decreased Concentrations of Butyrate and Butyrate-Producing Bacteria in Feces. Appl. Environ. Microbiol. 2007, 73, 1073–1078. [Google Scholar] [CrossRef]
- Parker, B.J.; Wearsch, P.A.; Veloo, A.C.M.; Rodriguez-Palacios, A. The Genus Alistipes: Gut Bacteria with Emerging Implications to Inflammation, Cancer, and Mental Health. Front. Immunol. 2020, 11, 906. [Google Scholar] [CrossRef]
- Lutsiv, T.; Weir, T.L.; McGinley, J.N.; Neil, E.S.; Wei, Y.; Thompson, H.J. Compositional Changes of the High-Fat Diet-Induced Gut Microbiota upon Consumption of Common Pulses. Nutrients 2021, 13, 3992. [Google Scholar] [CrossRef]
- Didinger, C.; Thompson, H.J. The role of pulses in improving human health: A review. Legume Sci. 2022, 4, e147. [Google Scholar] [CrossRef]
- Huang, W.; Percie du Sert, N.; Vollert, J.; Rice, A.S.C. General Principles of Preclinical Study Design. Handb. Exp. Pharmacol. 2020, 257, 55–69. [Google Scholar] [CrossRef]
- Hugenholtz, F.; de Vos, W.M. Mouse models for human intestinal microbiota research: A critical evaluation. Cell. Mol. Life Sci. 2018, 75, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Toole, D.R.; Zhao, J.; Martens-Habbena, W.; Strauss, S.L. Bacterial functional prediction tools detect but underestimate metabolic diversity compared to shotgun metagenomics in southwest Florida soils. Appl. Soil Ecol. 2021, 168, 104129. [Google Scholar] [CrossRef]
Diet | % Dry Matter | % Crude Protein | % Crude Fiber | % Fat | % Ash | % Moisture | Nitrogen-Free Extract |
---|---|---|---|---|---|---|---|
CTRL | 96.64 | 25.1 | 5.4 | 18.9 | 4.74 | 3.36 | 45.8 |
D01 | 95.78 | 24.3 | 4.2 | 9.10 | 5.03 | 4.22 | 57.3 |
D02 | 96.07 | 23.3 | 5.8 | 10.4 | 4.24 | 3.93 | 56.2 |
D03 | 96.22 | 19.2 | 4.7 | 12.1 | 3.75 | 3.78 | 60.2 |
D04 | 95.93 | 23.4 | 4.9 | 15.9 | 4.11 | 4.07 | 51.6 |
D05 | 95.44 | 17.6 | 4.8 | 8.50 | 4.50 | 4.56 | 64.5 |
D06 | 97.42 | 20.5 | 6.4 | 15.1 | 4.47 | 2.58 | 53.5 |
D07 | 95.62 | 23.5 | 6.8 | 13.8 | 5.13 | 4.38 | 50.8 |
D08 | 97.16 | 23.7 | 6.2 | 10.1 | 5.40 | 2.84 | 54.6 |
D09 | 96.01 | 20.6 | 6.7 | 14.1 | 4.36 | 3.99 | 54.2 |
D10 | 96.93 | 22.3 | 9.7 | 12.9 | 5.08 | 3.07 | 50.0 |
D11 | 97.49 | 23.4 | 5.4 | 10.7 | 4.03 | 2.51 | 56.5 |
D12 | 97.22 | 19.6 | 5.9 | 8.70 | 4.31 | 2.78 | 61.5 |
D13 | 95.40 | 22.2 | 7.3 | 10.8 | 4.47 | 4.60 | 55.3 |
D14 | 96.98 | 19.3 | 7.0 | 8.60 | 3.74 | 3.02 | 61.4 |
Pathway | (Intercept) | D01 | D02 | D03 | D04 | D05 | D06 | D07 | D08 | D09 | D10 | D11 | D12 | D13 | D14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Biotin biosynthesis, BioI pathway, long-chain-acyl-ACP => pimeloyl-ACP => biotin | −0.07 | 0.35 | 0.16 | 0.27 | 0.17 | 0.21 | 0.27 | 0.15 | 0.27 | 0.16 | 0.17 | 0.27 | 0.44 | ||
Biotin biosynthesis, BioU pathway, pimeloyl-ACP/CoA => biotin | −0.07 | 0.35 | 0.16 | 0.27 | 0.17 | 0.21 | 0.27 | 0.15 | 0.27 | 0.16 | 0.17 | 0.27 | 0.44 | ||
Biotin biosynthesis, BioW pathway, pimelate => pimeloyl-CoA => biotin | 0.12 | 0.37 | 0.15 | 0.26 | 0.16 | 0.20 | 0.24 | 0.28 | 0.18 | 0.25 | 0.41 | ||||
Biotin biosynthesis, pimeloyl-ACP/CoA => biotin | 0.12 | 0.37 | 0.15 | 0.26 | 0.16 | 0.20 | 0.24 | 0.28 | 0.18 | 0.25 | 0.41 | ||||
C1-unit interconversion, eukaryotes | 0.21 | −0.07 | −0.15 | −0.15 | |||||||||||
C1-unit interconversion, prokaryotes | 1.35 | −0.13 | |||||||||||||
Cobalamin biosynthesis, aerobic, uroporphyrinogen III => precorrin 2 => cobyrinate a,c-diamide | 0.81 | 0.31 | 0.28 | 0.19 | 0.14 | 0.22 | 0.33 | ||||||||
Cobalamin biosynthesis, anaerobic, uroporphyrinogen III => sirohydrochlorin => cobyrinate a,c-diamide | 1.10 | 0.40 | 0.34 | 0.27 | 0.22 | 0.15 | 0.13 | 0.28 | 0.43 | ||||||
Cobalamin biosynthesis, cobyrinate a,c-diamide => cobalamin | 0.67 | 0.21 | 0.43 | 0.13 | 0.36 | 0.14 | 0.38 | 0.29 | 0.21 | 0.14 | 0.18 | 0.12 | 0.34 | 0.55 | |
Coenzyme A biosynthesis, archaea, 2-oxoisovalerate => 4-phosphopantoate => CoA | 0.89 | −0.09 | −0.15 | ||||||||||||
Coenzyme A biosynthesis, pantothenate => CoA | 1.66 | −0.11 | |||||||||||||
Heme biosynthesis, animals and fungi, glycine => heme | −0.25 | 0.24 | 0.50 | 0.24 | 0.44 | 0.21 | 0.50 | 0.37 | 0.33 | 0.19 | 0.29 | 0.24 | 0.47 | 0.58 | |
Heme biosynthesis, bacteria, glutamyl-tRNA => coproporphyrin III => heme | 0.65 | 0.23 | 0.20 | 0.21 | 0.14 | 0.11 | 0.22 | 0.29 | |||||||
Heme biosynthesis, plants and bacteria, glutamate => heme | 1.59 | 0.08 | 0.11 | 0.13 | 0.16 | ||||||||||
Lipoic acid biosynthesis, animals and bacteria, octanoyl-ACP => dihydrolipoyl-H => dihydrolipoyl-E2 | −2.10 | 0.51 | 0.47 | 0.44 | 0.38 | 0.33 | 0.49 | 0.43 | 0.26 | 0.40 | 0.57 | ||||
Lipoic acid biosynthesis, eukaryotes, octanoyl-ACP => dihydrolipoyl-H | −2.11 | 0.52 | 0.48 | 0.45 | 0.39 | 0.34 | 0.49 | 0.43 | 0.27 | 0.40 | 0.58 | ||||
Lipoic acid biosynthesis, octanoyl-CoA => dihydrolipoyl-E2 | −2.11 | 0.52 | 0.48 | 0.45 | 0.39 | 0.34 | 0.49 | 0.43 | 0.27 | 0.40 | 0.58 | ||||
Lipoic acid biosynthesis, plants and bacteria, octanoyl-ACP => dihydrolipoyl-E2/H | −1.41 | 0.52 | 0.48 | 0.44 | 0.39 | 0.34 | 0.49 | 0.43 | 0.27 | 0.40 | 0.58 | ||||
L-threo-Tetrahydrobiopterin biosynthesis, GTP => L-threo-BH4 | −0.46 | 0.31 | 0.31 | 0.11 | 0.14 | 0.40 | 0.13 | 0.18 | 0.29 | 0.23 | 0.22 | 0.31 | 0.44 | ||
Menaquinone biosynthesis, chorismate (+ polyprenyl-PP) => menaquinol | 0.21 | 0.41 | 0.26 | 0.35 | 0.19 | 0.17 | 0.31 | 0.11 | 0.24 | 0.27 | 0.22 | 0.16 | 0.16 | 0.20 | 0.29 |
Menaquinone biosynthesis, futalosine pathway | −2.20 | 1.12 | 0.74 | 1.47 | 0.55 | 1.32 | 0.84 | 1.24 | 0.97 | 1.28 | 0.65 | 1.13 | 1.48 | ||
Menaquinone biosynthesis, modified futalosine pathway | −2.43 | 1.12 | 0.74 | 1.47 | 0.55 | 1.32 | 0.84 | 1.24 | 0.97 | 1.28 | 0.65 | 1.13 | 1.48 | ||
Molybdenum cofactor biosynthesis, GTP => molybdenum cofactor | −0.85 | 0.44 | −0.15 | 0.39 | 0.43 | 0.32 | 0.22 | 0.14 | 0.30 | 0.37 | |||||
NAD biosynthesis, aspartate => quinolinate => NAD | 1.59 | −0.14 | −0.09 | −0.14 | |||||||||||
NAD biosynthesis, tryptophan => quinolinate => NAD | 1.12 | 0.09 | 0.07 | 0.11 | −0.07 | 0.06 | 0.07 | ||||||||
Nicotinate degradation, nicotinate => fumarate | −5.39 | 1.20 | −0.80 | −1.37 | |||||||||||
Pantothenate biosynthesis, 2-oxoisovalerate/spermine => pantothenate | 0.80 | −0.18 | −0.11 | −0.10 | −0.16 | ||||||||||
Pantothenate biosynthesis, valine/L-aspartate => pantothenate | 1.04 | 0.06 | −0.15 | 0.05 | −0.07 | −0.09 | 0.08 | 0.06 | 0.07 | ||||||
Phylloquinone biosynthesis, chorismate (+ phytyl-PP) => phylloquinol | −0.80 | 0.38 | 0.18 | 0.16 | 0.36 | 0.22 | 0.20 | ||||||||
Pimeloyl-ACP biosynthesis, BioC-BioH pathway, malonyl-ACP => pimeloyl-ACP | 1.41 | 0.08 | 0.06 | 0.12 | 0.05 | 0.10 | 0.18 | ||||||||
Pyridoxal-P biosynthesis, erythrose-4P => pyridoxal-P | 0.60 | 0.18 | −0.11 | 0.13 | 0.12 | 0.09 | 0.16 | 0.09 | 0.12 | 0.17 | |||||
Pyridoxal-P biosynthesis, R5P + glyceraldehyde-3P + glutamine => pyridoxal-P | −1.64 | 0.73 | 0.80 | 0.65 | 0.57 | 0.62 | 0.90 | 0.74 | 0.87 | 0.49 | 0.82 | 0.71 | |||
Riboflavin biosynthesis, fungi, GTP => riboflavin/FMN/FAD | −0.42 | 0.36 | 0.32 | 0.24 | 0.30 | 0.29 | 0.33 | 0.21 | 0.25 | 0.23 | 0.23 | 0.36 | 0.53 | ||
Riboflavin biosynthesis, plants and bacteria, GTP => riboflavin/FMN/FAD | 0.94 | 0.22 | 0.18 | 0.15 | 0.16 | 0.17 | 0.20 | 0.15 | 0.12 | 0.13 | 0.07 | 0.20 | 0.31 | ||
Siroheme biosynthesis, glutamyl-tRNA => siroheme | 0.68 | 0.21 | 0.18 | 0.18 | 0.11 | 0.11 | 0.17 | 0.27 | |||||||
Tetrahydrobiopterin biosynthesis, GTP => BH4 | −0.46 | 0.31 | 0.31 | 0.11 | 0.14 | 0.40 | 0.13 | 0.18 | 0.29 | 0.23 | 0.22 | 0.31 | 0.44 | ||
Tetrahydrofolate biosynthesis, GTP => THF | 1.49 | 0.16 | 0.07 | 0.18 | 0.07 | 0.08 | 0.18 | 0.13 | 0.13 | 0.13 | 0.09 | 0.05 | 0.16 | 0.23 | |
Tetrahydrofolate biosynthesis, mediated by PTPS, GTP => THF | 0.63 | 0.08 | 0.07 | 0.11 | 0.07 | 0.17 | 0.10 | 0.08 | 0.13 | 0.19 | |||||
Tetrahydrofolate biosynthesis, mediated by ribA and trpF, GTP => THF | 0.57 | 0.15 | 0.06 | 0.12 | 0.07 | 0.09 | 0.13 | 0.10 | 0.08 | 0.08 | 0.11 | 0.16 | |||
Thiamine biosynthesis, archaea, AIR (+ NAD+) => TMP/TPP | 1.01 | 0.08 | 0.05 | 0.08 | −0.09 | 0.11 | |||||||||
Thiamine biosynthesis, plants, AIR (+ NAD+) => TMP/thiamine/TPP | 0.43 | 0.12 | 0.10 | 0.07 | 0.09 | 0.13 | 0.09 | 0.10 | 0.11 | 0.11 | |||||
Thiamine biosynthesis, prokaryotes, AIR (+ DXP/glycine) => TMP/TPP | 1.43 | −0.12 | 0.06 | ||||||||||||
Thiamine biosynthesis, prokaryotes, AIR (+ DXP/tyrosine) => TMP/TPP | 1.54 | 0.08 | 0.05 | 0.07 | −0.08 | 0.08 | 0.11 | ||||||||
Thiamine biosynthesis, pyridoxal-5P => TMP/thiamine/TPP | 0.16 | −0.16 | −0.10 | ||||||||||||
Thiamine salvage pathway, HMP/HET => TMP | 0.97 | 0.07 | −0.08 | ||||||||||||
Tocopherol/tocotorienol biosynthesis, homogentisate + phytyl/geranylgeranyl-PP => tocopherol/tocotorienol | −9.34 | 0.15 | |||||||||||||
Ubiquinone biosynthesis, prokaryotes, chorismate (+ polyprenyl-PP) => ubiquinol | −0.67 | 0.52 | 0.51 | 0.57 | 0.31 | 0.31 | 0.61 | 0.38 | 0.43 | 0.30 | 0.44 | 0.29 | 0.40 | 0.62 |
Pathway | Name | KEGG | D01 | D02 | D03 | D04 | D05 | D06 | D07 | D08 | D09 | D10 | D11 | D12 | D13 | D14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sulfur metabolism | Assimilatory sulfate reduction, sulfate => H2S | cysNC; bifunctional enzyme CysN/CysC [EC:2.7.7.4 2.7.1.25] | K00955 | 1.21 | 3.16 | 1.42 | 1.00 | 1.79 | 0.90 | 1.69 | |||||||
cysC; adenylylsulfate kinase [EC:2.7.1.25] | K00860 | −0.95 | −0.64 | 0.33 | 0.37 | ||||||||||||
cysD; sulfate adenylyltransferase subunit 2 [EC:2.7.7.4] | K00957 | −0.57 | −0.70 | 0.29 | 0.40 | 0.42 | |||||||||||
cysH; phosphoadenosine phosphosulfate reductase [EC:1.8.4.8 1.8.4.10] | K00390 | 0.47 | 0.55 | 0.42 | |||||||||||||
cysI; sulfite reductase (NADPH) hemoprotein beta-component [EC:1.8.1.2] | K00381 | 0.56 | 1.28 | ||||||||||||||
cysJ; sulfite reductase (NADPH) flavoprotein alpha-component [EC:1.8.1.2] | K00380 | 0.56 | 1.28 | ||||||||||||||
cysN; sulfate adenylyltransferase subunit 1 [EC:2.7.7.4] | K00956 | −1.06 | −0.76 | −0.37 | 0.32 | −0.40 | |||||||||||
sat, met3; sulfate adenylyltransferase [EC:2.7.7.4] | K00958 | −0.27 | |||||||||||||||
sir; sulfite reductase (ferredoxin) [EC:1.8.7.1] | K00392 | −0.27 | |||||||||||||||
Dissimilatory sulfate reduction, sulfate => H2S | aprA; adenylylsulfate reductase, subunit A [EC:1.8.99.2] | K00394 | 1.21 | 1.43 | 1.05 | 1.12 | 1.54 | ||||||||||
aprB; adenylylsulfate reductase, subunit B [EC:1.8.99.2] | K00395 | 1.21 | 1.43 | 1.05 | 1.12 | 1.54 | |||||||||||
sat, met3; sulfate adenylyltransferase [EC:2.7.7.4] | K00958 | −0.27 | |||||||||||||||
Metabolic capacity | Sulfate-sulfur assimilation | cysA; sulfate transport system ATP-binding protein [EC:3.6.3.25] | K02045 | 0.63 | −0.33 | 0.61 | 0.92 | 0.44 | 0.77 | ||||||||
cysP, sbp; sulfate transport system substrate-binding protein | K02048 | 1.32 | 1.58 | 1.56 | 1.22 | 1.07 | 1.12 | 1.59 | |||||||||
cysU; sulfate transport system permease protein | K02046 | 1.32 | 1.58 | 1.56 | 1.22 | 1.07 | 1.12 | 1.59 | |||||||||
cysW; sulfate transport system permease protein | K02047 | 1.32 | 1.58 | 1.56 | 1.22 | 1.07 | 1.12 | 1.59 |
Pathway | D01 | D02 | D03 | D04 | D05 | D06 | D07 | D08 | D09 | D10 | D11 | D12 | D13 | D14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Arginine and proline metabolism | Proline degradation, proline => glutamate | 0.36 | 0.45 | ||||||||||||
Creatine pathway | −0.69 | −0.04 | 0.24 | 0.03 | |||||||||||
Arginine succinyltransferase pathway, arginine => glutamate | −0.10 | ||||||||||||||
Proline biosynthesis, glutamate => proline | −0.22 | 0.00 | −0.07 | ||||||||||||
Arginine biosynthesis, glutamate => acetylcitrulline => arginine | −0.18 | 0.00 | −0.05 | ||||||||||||
Ornithine biosynthesis, glutamate => ornithine | −0.19 | 0.02 | −0.03 | ||||||||||||
Proline metabolism | −0.19 | 0.02 | −0.02 | ||||||||||||
Arginine biosynthesis, ornithine => arginine | 0.01 | −0.05 | |||||||||||||
Urea cycle | 0.01 | −0.04 | |||||||||||||
Aromatic amino acid metabolism | Tryptophan biosynthesis, chorismate => tryptophan | 0.34 | 0.27 | 0.31 | 0.28 | 0.18 | 0.33 | 0.23 | 0.28 | 0.29 | 0.23 | 0.18 | 0.17 | 0.35 | |
Tryptophan metabolism, tryptophan => kynurenine => 2-aminomuconate | 0.11 | 0.38 | −0.45 | ||||||||||||
Homoprotocatechuate degradation, homoprotocatechuate => 2-oxohept-3-enedioate | −0.10 | ||||||||||||||
Tyrosine degradation, tyrosine => homogentisate | −0.68 | −0.96 | −0.55 | −0.22 | −0.95 | −0.75 | −0.57 | −0.45 | −0.21 | −0.24 | −1.24 | ||||
Phenylalanine biosynthesis, chorismate => phenylpyruvate => phenylalanine | −0.30 | −0.16 | −0.02 | −0.20 | −0.06 | −0.16 | |||||||||
Tyrosine biosynthesis, chorismate => arogenate => tyrosine | −0.27 | −0.42 | −0.21 | −0.06 | −0.06 | −0.34 | |||||||||
Tyrosine biosynthesis, chorismate => HPP => tyrosine | −0.29 | −0.15 | −0.03 | −0.05 | −0.17 | ||||||||||
Shikimate pathway, phosphoenolpyruvate + erythrose-4P => chorismate | 0.01 | 0.01 | |||||||||||||
Branched-chain amino acid metabolism | Leucine degradation, leucine => acetoacetate + acetyl-CoA | 0.15 | −0.13 | 0.10 | −0.05 | 0.08 | 0.01 | 0.09 | 0.17 | 0.08 | 0.03 | ||||
Isoleucine biosynthesis, pyruvate => 2-oxobutanoate | −0.18 | 0.03 | 0.00 | ||||||||||||
Leucine biosynthesis, 2-oxoisovalerate => 2-oxoisocaproate | −0.19 | 0.02 | −0.03 | ||||||||||||
Isoleucine biosynthesis, threonine => 2-oxobutanoate => isoleucine | 0.01 | 0.03 | |||||||||||||
Valine/isoleucine biosynthesis, pyruvate => valine / 2-oxobutanoate => isoleucine | 0.01 | 0.05 | |||||||||||||
Cysteine and methionine metabolism | Cysteine biosynthesis, homocysteine + serine => cysteine | 0.80 | 0.26 | 0.49 | 0.58 | 0.77 | 0.92 | 0.87 | 0.90 | 0.54 | 0.72 | 0.74 | |||
Methionine degradation | 0.10 | 0.14 | 0.12 | 0.02 | 0.20 | 0.06 | 0.11 | 0.11 | 0.07 | 0.07 | 0.14 | ||||
Cysteine biosynthesis, serine => cysteine | −0.14 | −0.31 | −0.17 | −0.03 | −0.18 | −0.15 | −0.12 | −0.04 | −0.11 | −0.13 | |||||
Methionine salvage pathway | −0.03 | −0.01 | −0.09 | ||||||||||||
Methionine biosynthesis, aspartate => homoserine => methionine | 0.02 | −0.01 | |||||||||||||
Cysteine biosynthesis, methionine => cysteine | −0.03 | −0.07 | |||||||||||||
Ethylene biosynthesis, methionine => ethylene | −0.01 | 0.00 | |||||||||||||
Histidine metabolism | Histidine degradation, histidine => N-formiminoglutamate => glutamate | 0.58 | 0.37 | −0.03 | 0.32 | 0.04 | 0.33 | −0.06 | 0.27 | ||||||
Histidine biosynthesis, PRPP => histidine | −0.13 | −0.31 | −0.17 | −0.05 | −0.18 | −0.14 | −0.08 | −0.18 | |||||||
Lysine metabolism | Lysine degradation, bacteria, L-lysine => succinate | 0.21 | 0.55 | 0.39 | 0.14 | 0.52 | 0.27 | 0.56 | 0.46 | 0.07 | 0.37 | 0.27 | |||
Lysine biosynthesis, AAA pathway, 2-oxoglutarate => 2-aminoadipate => lysine | 0.31 | 0.14 | 0.31 | 0.28 | 0.20 | 0.02 | 0.10 | 0.29 | |||||||
Lysine biosynthesis, DAP dehydrogenase pathway, aspartate => lysine | |||||||||||||||
Lysine degradation, bacteria, L-lysine => glutarate => succinate/acetyl-CoA | −0.23 | −0.15 | −0.26 | −0.15 | −0.19 | −0.20 | −0.39 | −0.21 | −0.15 | −0.07 | −0.41 | ||||
Lysine biosynthesis, succinyl-DAP pathway, aspartate => lysine | −0.21 | 0.00 | −0.08 | ||||||||||||
Lysine biosynthesis, acetyl-DAP pathway, aspartate => lysine | −0.18 | 0.00 | −0.05 | ||||||||||||
Lysine biosynthesis, DAP aminotransferase pathway, aspartate => lysine | −0.17 | 0.02 | 0.00 | ||||||||||||
Other amino acid metabolism | GABA (gamma-Aminobutyrate) shunt | 0.42 | 0.49 | 0.39 | 0.31 | 0.16 | 0.48 | 0.34 | 0.27 | 0.10 | 0.22 | 0.21 | |||
Glutathione biosynthesis, glutamate => glutathione | 0.86 | 0.97 | 0.57 | 0.50 | 0.56 | 1.01 | 0.98 | 0.44 | 0.62 | 0.76 | |||||
Hydroxyproline degradation, trans-4-hydroxy-L-proline => 2-oxoglutarate | −0.10 | ||||||||||||||
Polyamine biosynthesis | Polyamine biosynthesis, arginine => agmatine => putrescine => spermidine | 0.45 | 0.40 | 0.36 | 0.33 | 0.41 | 0.43 | 0.36 | 0.42 | 0.06 | 0.15 | 0.52 | |||
Polyamine biosynthesis, arginine => ornithine => putrescine | 0.73 | 0.47 | 0.51 | 0.13 | 0.27 | ||||||||||
GABA biosynthesis, eukaryotes, putrescine => GABA | −0.14 | 0.05 | |||||||||||||
GABA biosynthesis, prokaryotes, putrescine => GABA | −0.10 | ||||||||||||||
Serine and threonine metabolism | Glycine cleavage system | 0.41 | 0.13 | 0.32 | 0.12 | 0.24 | 0.40 | 0.28 | 0.24 | 0.38 | 0.25 | 0.23 | 0.18 | 0.35 | |
Betaine biosynthesis, choline => betaine | 0.54 | 1.72 | 1.65 | 0.24 | 1.68 | 0.34 | 3.04 | ||||||||
Serine biosynthesis, glycerate-3P => serine | 0.01 | −0.22 | 0.00 | −0.07 | |||||||||||
Ectoine biosynthesis, aspartate => ectoine | −0.28 | −0.15 | 0.02 | −0.05 | −0.09 | ||||||||||
Threonine biosynthesis, aspartate => homoserine => threonine | −0.28 | −0.14 | 0.00 | −0.05 | −0.11 | ||||||||||
Betaine degradation, bacteria, betaine => pyruvate | −0.01 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lutsiv, T.; Neil, E.S.; McGinley, J.N.; Didinger, C.; Fitzgerald, V.K.; Weir, T.L.; Hussan, H.; Hartman, T.J.; Thompson, H.J. Impact of a Pulse-Enriched Human Cuisine on Functional Attributes of the Gut Microbiome Using a Preclinical Model of Dietary-Induced Chronic Diseases. Nutrients 2024, 16, 3178. https://doi.org/10.3390/nu16183178
Lutsiv T, Neil ES, McGinley JN, Didinger C, Fitzgerald VK, Weir TL, Hussan H, Hartman TJ, Thompson HJ. Impact of a Pulse-Enriched Human Cuisine on Functional Attributes of the Gut Microbiome Using a Preclinical Model of Dietary-Induced Chronic Diseases. Nutrients. 2024; 16(18):3178. https://doi.org/10.3390/nu16183178
Chicago/Turabian StyleLutsiv, Tymofiy, Elizabeth S. Neil, John N. McGinley, Chelsea Didinger, Vanessa K. Fitzgerald, Tiffany L. Weir, Hisham Hussan, Terryl J. Hartman, and Henry J. Thompson. 2024. "Impact of a Pulse-Enriched Human Cuisine on Functional Attributes of the Gut Microbiome Using a Preclinical Model of Dietary-Induced Chronic Diseases" Nutrients 16, no. 18: 3178. https://doi.org/10.3390/nu16183178
APA StyleLutsiv, T., Neil, E. S., McGinley, J. N., Didinger, C., Fitzgerald, V. K., Weir, T. L., Hussan, H., Hartman, T. J., & Thompson, H. J. (2024). Impact of a Pulse-Enriched Human Cuisine on Functional Attributes of the Gut Microbiome Using a Preclinical Model of Dietary-Induced Chronic Diseases. Nutrients, 16(18), 3178. https://doi.org/10.3390/nu16183178