Fueling the Heart: What Are the Optimal Dietary Strategies in Heart Failure?
Abstract
:1. Epidemiology and Metabolic Alteration in Heart Failure
2. Insights and Gaps in Dietary Approaches to Prevent and Treat Heart Failure
2.1. Dietary Approaches to Stop Hypertension (DASH) Diet
2.2. Mediterranean Diet
3. Weight Loss Strategies and Heart Failure
Intermittent Fasting and Caloric Restriction
4. Alternative Dietary Strategies for Heart Failure
High-Fat, Western, and Ketogenic Diets
5. Supplemental Strategies in Heart Failure
6. Conclusions and Future Perspectives
7. Limitations of the Study
Author Contributions
Funding
Conflicts of Interest
References
- Goyal, P.; Maurer, M.S.; Roh, J. Aging in Heart Failure. JACC Heart Fail. 2024, 12, 795–809. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.S.P.; Docherty, K.F.; Ho, J.E.; McMurray, J.J.V.; Myhre, P.L.; Omland, T. Recent Successes in Heart Failure Treatment. Nat. Med. 2023, 29, 2424–2437. [Google Scholar] [CrossRef] [PubMed]
- DeBerge, M.; Shah, S.J.; Wilsbacher, L.; Thorp, E.B. Macrophages in Heart Failure with Reduced versus Preserved Ejection Fraction. Trends Mol. Med. 2019, 25, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, R.; Stokes, M.; Elliott, A.; Munawar, D.A.; Khokhar, K.B.; Thiyagarajah, A.; Hendriks, J.; Linz, D.; Gallagher, C.; Kaye, D.; et al. Complex Interaction of Obesity, Intentional Weight Loss and Heart Failure: A Systematic Review and Meta-Analysis. Heart 2020, 106, 58–68. [Google Scholar] [CrossRef]
- Snipelisky, D.; Chaudhry, S.-P.; Stewart, G.C. The Many Faces of Heart Failure. Card. Electrophysiol. Clin. 2019, 11, 11–20. [Google Scholar] [CrossRef]
- Zhang, H.; Huetteman, A.T.; Reyes, E.A.; Appelbaum, J.S. Effects of Sacubitril–Valsartan in Patients with Various Types of Heart Failure: A Meta-Analysis. J. Cardiovasc. Pharmacol. 2023, 81, 434–444. [Google Scholar] [CrossRef]
- Zhao, L.; Zierath, R.; John, J.E.; Claggett, B.L.; Hall, M.E.; Clark, D.; Butler, K.R.; Correa, A.; Shah, A.M. Subclinical Risk Factors for Heart Failure with Preserved and Reduced Ejection Fraction among Black Adults. JAMA Netw. Open 2022, 5, e2231878. [Google Scholar] [CrossRef]
- Salavati, E.; Hajirezaee, H.; Niazkar, H.R.; Ramezani, M.S.; Sargazi, A. COVID-19 Patients May Present with Myocarditis: A Case Report Emphasizing the Cardiac Involvement of SARS-CoV-2. Med. J. Islam. Republ. Iran 2021, 35, 104. [Google Scholar] [CrossRef]
- Verma, A.K.; Olagoke, O.; Moreno, J.D.; Rezaee, N.; Ma, P.; Liu, J.; Javaheri, A.; Lavine, K.; Masood, M.F.; Lin, C.-Y. SARS-CoV-2–Associated Myocarditis: A Case of Direct Myocardial Injury. Circ. Heart Fail. 2022, 15, e008273. [Google Scholar] [CrossRef]
- Liberale, L.; Kraler, S.; Camici, G.G.; Lüscher, T.F. Ageing and Longevity Genes in Cardiovascular Diseases. Basic. Clin. Pharma Tox 2020, 127, 120–131. [Google Scholar] [CrossRef]
- Werbner, B.; Tavakoli-Rouzbehani, O.M.; Fatahian, A.N.; Boudina, S. The Dynamic Interplay between Cardiac Mitochondrial Health and Myocardial Structural Remodeling in Metabolic Heart Disease, Aging, and Heart Failure. J. Cardiovasc. Aging 2023, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Pietri, P.; Stefanadis, C. Cardiovascular Aging and Longevity. J. Am. Coll. Cardiol. 2021, 77, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Bahls, M.; Felix, S.B. Cachexia and Right Ventricular Dysfunction in Chronic Heart Failure: What Is the Chicken and What the Egg? Eur. Heart J. 2016, 37, 1692–1694. [Google Scholar] [CrossRef] [PubMed]
- Vest, A.R.; Chan, M.; Deswal, A.; Givertz, M.M.; Lekavich, C.; Lennie, T.; Litwin, S.E.; Parsly, L.; Rodgers, J.E.; Rich, M.W.; et al. Nutrition, Obesity, and Cachexia in Patients with Heart Failure: A Consensus Statement from the Heart Failure Society of America Scientific Statements Committee. J. Card. Fail. 2019, 25, 380–400. [Google Scholar] [CrossRef] [PubMed]
- Von Haehling, S. The Wasting Continuum in Heart Failure: From Sarcopenia to Cachexia. Proc. Nutr. Soc. 2015, 74, 367–377. [Google Scholar] [CrossRef]
- Krysztofiak, H.; Wleklik, M.; Migaj, J.; Dudek, M.; Uchmanowicz, I.; Lisiak, M.; Kubielas, G.; Straburzyńska-Migaj, E.; Lesiak, M.; Kałużna-Oleksy, M. Cardiac Cachexia: A Well-Known but Challenging Complication of Heart Failure. CIA 2020, 15, 2041–2051. [Google Scholar] [CrossRef]
- Lopaschuk, G.D.; Karwi, Q.G.; Tian, R.; Wende, A.R.; Abel, E.D. Cardiac Energy Metabolism in Heart Failure. Circ. Res. 2021, 128, 1487–1513. [Google Scholar] [CrossRef]
- Finck, B.N.; Lehman, J.J.; Leone, T.C.; Welch, M.J.; Bennett, M.J.; Kovacs, A.; Han, X.; Gross, R.W.; Kozak, R.; Lopaschuk, G.D.; et al. The Cardiac Phenotype Induced by PPARα Overexpression Mimics that Caused by Diabetes Mellitus. J. Clin. Investig. 2002, 109, 121–130. [Google Scholar] [CrossRef]
- Doenst, T.; Nguyen, T.D.; Abel, E.D. Cardiac Metabolism in Heart Failure: Implications Beyond ATP Production. Circ. Res. 2013, 113, 709–724. [Google Scholar] [CrossRef]
- Capone, F.; Sotomayor-Flores, C.; Bode, D.; Wang, R.; Rodolico, D.; Strocchi, S.; Schiattarella, G.G. Cardiac Metabolism in HFpEF: From Fuel to Signalling. Cardiovasc. Res. 2023, 118, 3556–3575. [Google Scholar] [CrossRef]
- Karwi, Q.G.; Uddin, G.M.; Ho, K.L.; Lopaschuk, G.D. Loss of Metabolic Flexibility in the Failing Heart. Front. Cardiovasc. Med. 2018, 5, 68. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.S.P.; Donal, E.; Kraigher-Krainer, E.; Vasan, R.S. Epidemiology and Clinical Course of Heart Failure with Preserved Ejection Fraction. Eur. J. Heart Fail. 2011, 13, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; McMurray, J.J.V.; Anand, I.S.; Ge, J.; Lam, C.S.P.; Maggioni, A.P.; Martinez, F.; Packer, M.; Pfeffer, M.A.; Pieske, B.; et al. Angiotensin–Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2019, 381, 1609–1620. [Google Scholar] [CrossRef] [PubMed]
- Nie, D.; Xiong, B.; Qian, J.; Rong, S.; Yao, Y.; Huang, J. The Effect of Sacubitril-Valsartan in Heart Failure Patients with Mid-Range and Preserved Ejection Fraction: A Meta-Analysis. Heart Lung Circ. 2021, 30, 683–691. [Google Scholar] [CrossRef]
- Golla, M.S.G.; Hajouli, S.; Ludhwani, D. Heart Failure and Ejection Fraction. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Patel, R.; Peesay, T.; Krishnan, V.; Wilcox, J.; Wilsbacher, L.; Khan, S.S. Prioritizing the Primary Prevention of Heart Failure: Measuring, Modifying and Monitoring Risk. Progress. Cardiovasc. Dis. 2024, 82, 2–14. [Google Scholar] [CrossRef]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A Clinical Trial of the Effects of Dietary Patterns on Blood Pressure. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef]
- Conlin, P.R. The Dietary Approaches to Stop Hypertension (DASH) Clinical Trial Implications for Lifestyle Modifications in the Treatment of Hypertensive Patients. Cardiol. Rev. 1999, 7, 284–288. [Google Scholar] [CrossRef]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R.; Simons-Morton, D.G.; et al. Effects on Blood Pressure of Reduced Dietary Sodium and the Dietary Approaches to Stop Hypertension (DASH) Diet. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef]
- Hinderliter, A.L.; Babyak, M.A.; Sherwood, A.; Blumenthal, J.A. The DASH Diet and Insulin Sensitivity. Curr. Hypertens. Rep. 2011, 13, 67–73. [Google Scholar] [CrossRef]
- Morales-Alvarez, M.C.; Nissaisorakarn, V.; Appel, L.J.; Miller, E.R.; Christenson, R.H.; Rebuck, H.; Rosas, S.E.; William, J.H.; Juraschek, S.P. Effects of Reduced Dietary Sodium and the DASH Diet on GFR: The DASH-Sodium Trial. Kidney360 2024, 5, 569–576. [Google Scholar] [CrossRef]
- Wallace, T.C.; Cowan, A.E.; Bailey, R.L. Current Sodium Intakes in the United States and the Modelling of Glutamate’s Incorporation into Select Savory Products. Nutrients 2019, 11, 2691. [Google Scholar] [CrossRef] [PubMed]
- National Heart, Lung, and Blood Institute. Available online: https://www.nhlbi.nih.gov/education/dash-eating-plan (accessed on 27 June 2024).
- Del Gobbo, L.C.; Kalantarian, S.; Imamura, F.; Lemaitre, R.; Siscovick, D.S.; Psaty, B.M.; Mozaffarian, D. Contribution of Major Lifestyle Risk Factors for Incident Heart Failure in Older Adults. JACC Heart Fail. 2015, 3, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Billingsley, H.E.; Hummel, S.L.; Carbone, S. The Role of Diet and Nutrition in Heart Failure: A State-of-the-Art Narrative Review. Progress. Cardiovasc. Dis. 2020, 63, 538–551. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Jones, D.W.; Butler, J. Salt, No Salt, or Less Salt for Patients with Heart Failure? Am. J. Med. 2020, 133, 32–38. [Google Scholar] [CrossRef]
- Shao, W.; Seth, D.M.; Prieto, M.C.; Kobori, H.; Navar, L.G. Activation of the Renin-Angiotensin System by a Low-Salt Diet Does Not Augment Intratubular Angiotensinogen and Angiotensin II in Rats. Am. J. Physiol. Ren. Physiol. 2013, 304, F505–F514. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Laing, E.M.; Anderson, A.K.; Zhang, D.; Kindler, J.M.; Trivedi-Kapoor, R.; Sattler, E.L.P. Adherence to the Dietary Approaches to Stop Hypertension (DASH) Diet Is Associated with Low Levels of Insulin Resistance among Heart Failure Patients. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1841–1850. [Google Scholar] [CrossRef]
- Goyal, P.; Balkan, L.; Ringel, J.B.; Hummel, S.L.; Sterling, M.R.; Kim, S.; Arora, P.; Jackson, E.A.; Brown, T.M.; Shikany, J.M.; et al. The Dietary Approaches to Stop Hypertension (DASH) Diet Pattern and Incident Heart Failure. J. Card. Fail. 2021, 27, 512–521. [Google Scholar] [CrossRef]
- Ibsen, D.B.; Levitan, E.B.; Åkesson, A.; Gigante, B.; Wolk, A. The DASH Diet Is Associated with a Lower Risk of Heart Failure: A Cohort Study. Eur. J. Prev. Cardiol. 2022, 29, 1114–1123. [Google Scholar] [CrossRef]
- Levitan, E.B.; Lewis, C.E.; Tinker, L.F.; Eaton, C.B.; Ahmed, A.; Manson, J.E.; Snetselaar, L.G.; Martin, L.W.; Trevisan, M.; Howard, B.V.; et al. Mediterranean and DASH Diet Scores and Mortality in Women with Heart Failure: The Women’s Health Initiative. Circ: Heart Fail. 2013, 6, 1116–1123. [Google Scholar] [CrossRef]
- Choi, Y.; Larson, N.; Steffen, L.M.; Schreiner, P.J.; Gallaher, D.D.; Duprez, D.A.; Shikany, J.M.; Rana, J.S.; Jacobs, D.R. Plant-Centered Diet and Risk of Incident Cardiovascular Disease during Young to Middle Adulthood. JAHA 2021, 10, e020718. [Google Scholar] [CrossRef]
- Glenn, A.J.; Guasch-Ferré, M.; Malik, V.S.; Kendall, C.W.C.; Manson, J.E.; Rimm, E.B.; Willett, W.C.; Sun, Q.; Jenkins, D.J.A.; Hu, F.B.; et al. Portfolio Diet Score and Risk of Cardiovascular Disease: Findings From 3 Prospective Cohort Studies. Circulation 2023, 148, 1750–1763. [Google Scholar] [CrossRef] [PubMed]
- Laffond, A.; Rivera-Picón, C.; Rodríguez-Muñoz, P.M.; Juárez-Vela, R.; Ruiz De Viñaspre-Hernández, R.; Navas-Echazarreta, N.; Sánchez-González, J.L. Mediterranean Diet for Primary and Secondary Prevention of Cardiovascular Disease and Mortality: An Updated Systematic Review. Nutrients 2023, 15, 3356. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean Diet and Cardiovascular Health: A Critical Review. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef] [PubMed]
- Widmer, R.J.; Flammer, A.J.; Lerman, L.O.; Lerman, A. The Mediterranean Diet, Its Components, and Cardiovascular Disease. Am. J. Med. 2015, 128, 229–238. [Google Scholar] [CrossRef]
- Martínez-González, M.Á.; Hernández Hernández, A. Effect of the Mediterranean Diet in Cardiovascular Prevention. Rev. Española Cardiol. 2024, 77, 574–582. [Google Scholar] [CrossRef]
- Tektonidis, T.G.; Åkesson, A.; Gigante, B.; Wolk, A.; Larsson, S.C. A Mediterranean Diet and Risk of Myocardial Infarction, Heart Failure and Stroke: A Population-Based Cohort Study. Atherosclerosis 2015, 243, 93–98. [Google Scholar] [CrossRef]
- Oppedisano, F.; Mollace, R.; Tavernese, A.; Gliozzi, M.; Musolino, V.; Macrì, R.; Carresi, C.; Maiuolo, J.; Serra, M.; Cardamone, A.; et al. PUFA Supplementation and Heart Failure: Effects on Fibrosis and Cardiac Remodeling. Nutrients 2021, 13, 2965. [Google Scholar] [CrossRef]
- Xia, M.; Zhong, Y.; Peng, Y.; Qian, C. Olive Oil Consumption and Risk of Cardiovascular Disease and All-Cause Mortality: A Meta-Analysis of Prospective Cohort Studies. Front. Nutr. 2022, 9, 1041203. [Google Scholar] [CrossRef]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary Fats and Cardiovascular Disease: A Presidential Advisory from the American Heart Association. Circulation 2017, 136. [Google Scholar] [CrossRef]
- Li, Y.; Hruby, A.; Bernstein, A.M.; Ley, S.H.; Wang, D.D.; Chiuve, S.E.; Sampson, L.; Rexrode, K.M.; Rimm, E.B.; Willett, W.C.; et al. Saturated Fats Compared with Unsaturated Fats and Sources of Carbohydrates in Relation to Risk of Coronary Heart Disease. J. Am. Coll. Cardiol. 2015, 66, 1538–1548. [Google Scholar] [CrossRef]
- Carcel, C.; Bushnell, C. Can Dietary Patterns that Support Planetary Health Benefit Population Health? Stroke 2022, 53, 164–166. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Marken, I.; Stubbendorff, A.; Ericson, U.; Qi, L.; Sonestedt, E.; Borné, Y. The EAT-Lancet Diet Index, Plasma Proteins, and Risk of Heart Failure in a Population-Based Cohort. JACC Heart Fail. 2024, 12, 1197–1208. [Google Scholar] [CrossRef] [PubMed]
- Ebong, I.A.; Goff, D.C.; Rodriguez, C.J.; Chen, H.; Bertoni, A.G. Mechanisms of Heart Failure in Obesity. Obes. Res. Clin. Pract. 2014, 8, e540–e548. [Google Scholar] [CrossRef] [PubMed]
- Kenchaiah, S.; Evans, J.C.; Levy, D.; Wilson, P.W.F.; Benjamin, E.J.; Larson, M.G.; Kannel, W.B.; Vasan, R.S. Obesity and the Risk of Heart Failure. N. Engl. J. Med. 2002, 347, 305–313. [Google Scholar] [CrossRef]
- Kristensen, S.L.; Rørth, R.; Jhund, P.S.; Docherty, K.F.; Sattar, N.; Preiss, D.; Køber, L.; Petrie, M.C.; McMurray, J.J.V. Cardiovascular, Mortality, and Kidney Outcomes with GLP-1 Receptor Agonists in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cardiovascular Outcome Trials. Lancet Diabetes Endocrinol. 2019, 7, 776–785. [Google Scholar] [CrossRef]
- Van Veldhuisen, S.L.; Gorter, T.M.; Van Woerden, G.; De Boer, R.A.; Rienstra, M.; Hazebroek, E.J.; Van Veldhuisen, D.J. Bariatric Surgery and Cardiovascular Disease: A Systematic Review and Meta-Analysis. Eur. Heart J. 2022, 43, 1955–1969. [Google Scholar] [CrossRef]
- Carbone, S.; Canada, J.M.; Billingsley, H.E.; Siddiqui, M.S.; Elagizi, A.; Lavie, C.J. Obesity Paradox in Cardiovascular Disease: Where Do We Stand? Vasc. Health Risk Manag. 2019, 15, 89–100. [Google Scholar] [CrossRef]
- Carbone, S.; Lavie, C.J.; Elagizi, A.; Arena, R.; Ventura, H.O. The Impact of Obesity in Heart Failure. Heart Fail. Clin. 2020, 16, 71–80. [Google Scholar] [CrossRef]
- Lavie, C.J.; McAuley, P.A.; Church, T.S.; Milani, R.V.; Blair, S.N. Obesity and Cardiovascular Diseases. J. Am. Coll. Cardiol. 2014, 63, 1345–1354. [Google Scholar] [CrossRef]
- Mohsin, S.; Khan, M.; Toko, H.; Bailey, B.; Cottage, C.T.; Wallach, K.; Nag, D.; Lee, A.; Siddiqi, S.; Lan, F.; et al. Human Cardiac Progenitor Cells Engineered with Pim-I Kinase Enhance Myocardial Repair. J. Am. Coll. Cardiol. 2012, 60, 1278–1287. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Sharma, A.; Butler, J.; Packer, M.; Zannad, F.; Vasques-Nóvoa, F.; Leite-Moreira, A.; Neves, J.S. Glucagon-Like Peptide-1 Receptor Agonists Across the Spectrum of Heart Failure. J. Clin. Endocrinol. Metab. 2023, 109, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Kosiborod, M.N.; Abildstrøm, S.Z.; Borlaug, B.A.; Butler, J.; Rasmussen, S.; Davies, M.; Hovingh, G.K.; Kitzman, D.W.; Lindegaard, M.L.; Møller, D.V.; et al. Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction and Obesity. N. Engl. J. Med. 2023, 389, 1069–1084. [Google Scholar] [CrossRef] [PubMed]
- Mentias, A.; Desai, M.Y.; Aminian, A.; Patel, K.V.; Keshvani, N.; Verma, S.; Cho, L.; Jacob, M.; Alvarez, P.; Lincoff, A.M.; et al. Trends and Outcomes Associated with Bariatric Surgery and Pharmacotherapies with Weight Loss Effects Among Patients with Heart Failure and Obesity. Circ Heart Fail. 2024, 17, e010453. [Google Scholar] [CrossRef] [PubMed]
- Nye, K.; Cherrin, C.; Meires, J. Intermittent Fasting: Exploring Approaches, Benefits, and Implications for Health and Weight Management. J. Nurse Pract. 2024, 20, 104893. [Google Scholar] [CrossRef]
- Ozcan, M.; Abdellatif, M.; Javaheri, A.; Sedej, S. Risks and Benefits of Intermittent Fasting for the Aging Cardiovascular System. Can. J. Cardiol. 2024, 40, 1445–1457. [Google Scholar] [CrossRef]
- Duregon, E.; Pomatto-Watson, L.C.D.D.; Bernier, M.; Price, N.L.; De Cabo, R. Intermittent Fasting: From Calories to Time Restriction. GeroScience 2021, 43, 1083–1092. [Google Scholar] [CrossRef]
- Dutzmann, J.; Kefalianakis, Z.; Kahles, F.; Daniel, J.-M.; Gufler, H.; Wohlgemuth, W.A.; Knöpp, K.; Sedding, D.G. Intermittent Fasting after ST-Segment–Elevation Myocardial Infarction Improves Left Ventricular Function: The Randomized Controlled INTERFAST-MI Trial. Circ Heart Fail. 2024, 17, e010936. [Google Scholar] [CrossRef]
- Ozcan, M.; Guo, Z.; Valenzuela Ripoll, C.; Diab, A.; Picataggi, A.; Rawnsley, D.; Lotfinaghsh, A.; Bergom, C.; Szymanski, J.; Hwang, D.; et al. Sustained Alternate-Day Fasting Potentiates Doxorubicin Cardiotoxicity. Cell Metab. 2023, 35, 928–942.e4. [Google Scholar] [CrossRef]
- Liu, H.; Javaheri, A.; Godar, R.J.; Murphy, J.; Ma, X.; Rohatgi, N.; Mahadevan, J.; Hyrc, K.; Saftig, P.; Marshall, C.; et al. Intermittent Fasting Preserves Beta-Cell Mass in Obesity-Induced Diabetes via the Autophagy-Lysosome Pathway. Autophagy 2017, 13, 1952–1968. [Google Scholar] [CrossRef]
- Ma, X.; Mani, K.; Liu, H.; Kovacs, A.; Murphy, J.T.; Foroughi, L.; French, B.A.; Weinheimer, C.J.; Kraja, A.; Benjamin, I.J.; et al. Transcription Factor EB Activation Rescues Advanced αB-Crystallin Mutation-Induced Cardiomyopathy by Normalizing Desmin Localization. JAHA 2019, 8, e010866. [Google Scholar] [CrossRef]
- Ahmet, I.; Wan, R.; Mattson, M.P.; Lakatta, E.G.; Talan, M. Cardioprotection by Intermittent Fasting in Rats. Circulation 2005, 112, 3115–3121. [Google Scholar] [CrossRef] [PubMed]
- Antoni, R.; Johnston, K.L.; Collins, A.L.; Robertson, M.D. Intermittent v. Continuous Energy Restriction: Differential Effects on Postprandial Glucose and Lipid Metabolism Following Matched Weight Loss in Overweight/Obese Participants. Br. J. Nutr. 2018, 119, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, F.; Chen, H.; Liu, L.; Zhang, S.; Luo, W.; Wang, G.; Hu, X. Comparison of the Effects of Intermittent Energy Restriction and Continuous Energy Restriction among Adults with Overweight or Obesity: An Overview of Systematic Reviews and Meta-Analyses. Nutrients 2022, 14, 2315. [Google Scholar] [CrossRef] [PubMed]
- Templeman, I.; Smith, H.A.; Chowdhury, E.; Chen, Y.-C.; Carroll, H.; Johnson-Bonson, D.; Hengist, A.; Smith, R.; Creighton, J.; Clayton, D.; et al. A Randomized Controlled Trial to Isolate the Effects of Fasting and Energy Restriction on Weight Loss and Metabolic Health in Lean Adults. Sci. Transl. Med. 2021, 13, eabd8034. [Google Scholar] [CrossRef] [PubMed]
- Justice, J.N.; Pajewski, N.M.; Espeland, M.A.; Brubaker, P.; Houston, D.K.; Marcovina, S.; Nicklas, B.J.; Kritchevsky, S.B.; Kitzman, D.W. Evaluation of a Blood-Based Geroscience Biomarker Index in a Randomized Trial of Caloric Restriction and Exercise in Older Adults with Heart Failure with Preserved Ejection Fraction. GeroScience 2022, 44, 983–995. [Google Scholar] [CrossRef]
- Kitzman, D.W.; Brubaker, P.; Morgan, T.; Haykowsky, M.; Hundley, G.; Kraus, W.E.; Eggebeen, J.; Nicklas, B.J. Effect of Caloric Restriction or Aerobic Exercise Training on Peak Oxygen Consumption and Quality of Life in Obese Older Patients with Heart Failure with Preserved Ejection Fraction: A Randomized Clinical Trial. JAMA 2016, 315, 36. [Google Scholar] [CrossRef]
- Bilgen, F.; Chen, P.; Poggi, A.; Wells, J.; Trumble, E.; Helmke, S.; Teruya, S.; Catalan, T.; Rosenblum, H.R.; Cornellier, M.L.; et al. Insufficient Calorie Intake Worsens Post-Discharge Quality of Life and Increases Readmission Burden in Heart Failure. JACC Heart Fail. 2020, 8, 756–764. [Google Scholar] [CrossRef]
- Pocock, S.J.; McMurray, J.J.V.; Dobson, J.; Yusuf, S.; Granger, C.B.; Michelson, E.L.; Ostergren, J.; Pfeffer, M.A.; Solomon, S.D.; Anker, S.D.; et al. Weight Loss and Mortality Risk in Patients with Chronic Heart Failure in the Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM) Programme. Eur. Heart J. 2008, 29, 2641–2650. [Google Scholar] [CrossRef]
- Brubaker, P.H.; Nicklas, B.J.; Houston, D.K.; Hundley, W.G.; Chen, H.; Molina, A.J.A.; Lyles, W.M.; Nelson, B.; Upadhya, B.; Newland, R.; et al. A Randomized, Controlled Trial of Resistance Training Added to Caloric Restriction Plus Aerobic Exercise Training in Obese Heart Failure with Preserved Ejection Fraction. Circ Heart Fail. 2023, 16, e010161. [Google Scholar] [CrossRef]
- Maurya, S.K.; Carley, A.N.; Maurya, C.K.; Lewandowski, E.D. Western Diet Causes Heart Failure with Reduced Ejection Fraction and Metabolic Shifts after Diastolic Dysfunction and Novel Cardiac Lipid Derangements. JACC Basic. Transl. Sci. 2023, 8, 422–435. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef] [PubMed]
- Kopp, W. How Western Diet and Lifestyle Drive the Pandemic of Obesity and Civilization Diseases. DMSO 2019, 12, 2221–2236. [Google Scholar] [CrossRef] [PubMed]
- Wali, J.A.; Jarzebska, N.; Raubenheimer, D.; Simpson, S.J.; Rodionov, R.N.; O’Sullivan, J.F. Cardio-Metabolic Effects of High-Fat Diets and Their Underlying Mechanisms—A Narrative Review. Nutrients 2020, 12, 1505. [Google Scholar] [CrossRef] [PubMed]
- Stanley, W.C.; Dabkowski, E.R.; Ribeiro, R.F.; O’Connell, K.A. Dietary Fat and Heart Failure: Moving from Lipotoxicity to Lipoprotection. Circ. Res. 2012, 110, 764–776. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Vaka, V.R.; He, X.; Booz, G.W.; Chen, J. High-fat Diet Induces Cardiac Remodelling and Dysfunction: Assessment of the Role Played by SIRT 3 Loss. J. Cell. Mol. Medi 2015, 19, 1847–1856. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef]
- McCommis, K.S.; Kovacs, A.; Weinheimer, C.J.; Shew, T.M.; Koves, T.R.; Ilkayeva, O.R.; Kamm, D.R.; Pyles, K.D.; King, M.T.; Veech, R.L.; et al. Nutritional Modulation of Heart Failure in Mitochondrial Pyruvate Carrier–Deficient Mice. Nat. Metab. 2020, 2, 1232–1247. [Google Scholar] [CrossRef]
- Javaheri, A.; Mittendorfer, B. Ketones with a Twist: Tipping the Heart’s Hat to Fat. Obesity 2024, 32, 452–453. [Google Scholar] [CrossRef]
- Bedi, K.C.; Snyder, N.W.; Brandimarto, J.; Aziz, M.; Mesaros, C.; Worth, A.J.; Wang, L.L.; Javaheri, A.; Blair, I.A.; Margulies, K.B.; et al. Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in Advanced Human Heart Failure. Circulation 2016, 133, 706–716. [Google Scholar] [CrossRef]
- Nielsen, R.; Møller, N.; Gormsen, L.C.; Tolbod, L.P.; Hansson, N.H.; Sorensen, J.; Harms, H.J.; Frøkiær, J.; Eiskjaer, H.; Jespersen, N.R.; et al. Cardiovascular Effects of Treatment with the Ketone Body 3-Hydroxybutyrate in Chronic Heart Failure Patients. Circulation 2019, 139, 2129–2141. [Google Scholar] [CrossRef]
- Puchalska, P.; Crawford, P.A. Multi-Dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 2017, 25, 262–284. [Google Scholar] [CrossRef] [PubMed]
- Yurista, S.R.; Eder, R.A.; Welsh, A.; Jiang, W.; Chen, S.; Foster, A.N.; Mauskapf, A.; Tang, W.H.W.; Hucker, W.J.; Coll-Font, J.; et al. Ketone Ester Supplementation Suppresses Cardiac Inflammation and Improves Cardiac Energetics in a Swine Model of Acute Myocardial Infarction. Metabolism 2023, 145, 155608. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.J.; Kirk, T.; Ashmore, T.; Willerton, K.; Evans, R.; Smith, A.; Murray, A.J.; Stubbs, B.; West, J.; McLure, S.W.; et al. Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes. Cell Metab. 2016, 24, 256–268. [Google Scholar] [CrossRef]
- Yurista, S.; Welsh, A.; Jiang, W.; Eder, R.; Chen, S.; Bonner, B.; Foster, A.; Coll-Font, J.; Rosenzweig, A.; Nguyen, C. Ketone ester treatment increases cardiac ketone utilization and reduces cardiac inflammation in a porcine model of acute myocardial infarction. J. Am. Coll. Cardiol. 2022, 79, 1039. [Google Scholar] [CrossRef]
- Neudorf, H.; Little, J.P. Impact of Fasting & Ketogenic Interventions on the NLRP3 Inflammasome: A Narrative Review. Biomed. J. 2024, 47, 100677. [Google Scholar] [CrossRef]
- Kodur, N.; Yurista, S.; Province, V.; Rueth, E.; Nguyen, C.; Tang, W.H.W. Ketogenic Diet in Heart Failure. JACC Heart Fail. 2023, 11, 838–844. [Google Scholar] [CrossRef]
- Wei, S.-J.; Schell, J.R.; Chocron, E.S.; Varmazyad, M.; Xu, G.; Chen, W.H.; Martinez, G.M.; Dong, F.F.; Sreenivas, P.; Trevino, R.; et al. Ketogenic Diet Induces P53-Dependent Cellular Senescence in Multiple Organs. Sci. Adv. 2024, 10, eado1463. [Google Scholar] [CrossRef]
- Seidelmann, S.B.; Claggett, B.; Cheng, S.; Henglin, M.; Shah, A.; Steffen, L.M.; Folsom, A.R.; Rimm, E.B.; Willett, W.C.; Solomon, S.D. Dietary Carbohydrate Intake and Mortality: A Prospective Cohort Study and Meta-Analysis. Lancet Public. Health 2018, 3, e419–e428. [Google Scholar] [CrossRef]
- Magkos, F.; Ataran, A.; Javaheri, A.; Mittendorfer, B. Effect of Dietary Carbohydrate Restriction on Cardiometabolic Function in Type 2 Diabetes: Weight Loss and Beyond. Curr. Opin. Clin. Nutr. Metab. Care 2023, 26, 330–333. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, X.; Li, T.; Zhao, J.; Yang, Y.; Yao, Y.; Wang, L.; Yang, B.; Ren, G.; Tan, Y.; et al. Alternate-Day Ketogenic Diet Feeding Protects against Heart Failure through Preservation of Ketogenesis in the Liver. Oxidative Med. Cell. Longev. 2022, 2022, 4253651. [Google Scholar] [CrossRef]
- National Heart, Lung, and Blood Institute. Available online: https://clinicaltrials.gov/study/nct04442555 (accessed on 28 June 2024).
- National Heart, Lung, and Blood Institute. Available online: https://clinicaltrials.gov/study/nct04370600 (accessed on 28 June 2024).
- National Heart, Lung, and Blood Institute. Available online: https://clinicaltrials.gov/study/nct04443426 (accessed on 28 June 2024).
- National Heart, Lung, and Blood Institute. Available online: https://clinicaltrials.gov/study/nct04633460 (accessed on 28 June 2024).
- Salloum, F.N.; Sturz, G.R.; Yin, C.; Rehman, S.; Hoke, N.N.; Kukreja, R.C.; Xi, L. Beetroot Juice Reduces Infarct Size and Improves Cardiac Function Following Ischemia–Reperfusion Injury: Possible Involvement of Endogenous H2S. Exp. Biol. Med. 2015, 240, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Eggebeen, J.; Kim-Shapiro, D.B.; Haykowsky, M.; Morgan, T.M.; Basu, S.; Brubaker, P.; Rejeski, J.; Kitzman, D.W. One Week of Daily Dosing with Beetroot Juice Improves Submaximal Endurance and Blood Pressure in Older Patients with Heart Failure and Preserved Ejection Fraction. JACC Heart Fail. 2016, 4, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Borlaug, B.A.; Anstrom, K.J.; Lewis, G.D.; Shah, S.J.; Levine, J.A.; Koepp, G.A.; Givertz, M.M.; Felker, G.M.; LeWinter, M.M.; Mann, D.L.; et al. Effect of Inorganic Nitrite vs Placebo on Exercise Capacity Among Patients with Heart Failure with Preserved Ejection Fraction: The INDIE-HFpEF Randomized Clinical Trial. JAMA 2018, 320, 1764. [Google Scholar] [CrossRef] [PubMed]
- National Heart, Lung, and Blood Institute. Available online: https://clinicaltrials.gov/study/nct03511248 (accessed on 28 June 2024).
- Morimoto, J.; Satogami, K.; Naraoka, T.; Taruya, A.; Tanaka, A. Long-Term Maintenance of Normal Serum Vitamin B1 Levels Is Associated with Better Outcomes in Patients with Heart Failure. Int. Heart J. 2024, 65, 458–465. [Google Scholar] [CrossRef]
- Shimon, H.; Almog, S.; Vered, Z.; Seligmann, H.; Shefi, M.; Peleg, E.; Rosenthal, T.; Motro, M.; Halkin, H.; Ezra, D. Improved Left Ventricular Function after Thiamine Supplementation in Patients with Congestive Heart Failure Receiving Long-Term Furosemide Therapy. Am. J. Med. 1995, 98, 485–490. [Google Scholar] [CrossRef]
- Schoenenberger, A.W.; Schoenenberger-Berzins, R.; Der Maur, C.A.; Suter, P.M.; Vergopoulos, A.; Erne, P. Thiamine Supplementation in Symptomatic Chronic Heart Failure: A Randomized, Double-Blind, Placebo-Controlled, Cross-over Pilot Study. Clin. Res. Cardiol. 2012, 101, 159–164. [Google Scholar] [CrossRef]
- Dragan, S.; Buleu, F.; Christodorescu, R.; Cobzariu, F.; Iurciuc, S.; Velimirovici, D.; Xiao, J.; Luca, C.T. Benefits of Multiple Micronutrient Supplementation in Heart Failure: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 965–981. [Google Scholar] [CrossRef]
Parameter/Study | Justice et al. [77] | Kitzman et al. [78] |
---|---|---|
Target group | Obese HFpEF | Obese HFpEF |
Intervention | CR * vs. CR and/or EX ** | CR vs. CR and/or EX |
Intervention duration | 20 weeks | 20 weeks |
Number of participants | 88 | 100 |
Age (years), mean ± SD | 66.6 ± 5.3 | 67 ± 5 |
Sex | 81% female | 81% female |
BMI in kg/m2, mean ± SD | 39.3 ± 6.3 | 39.3 ± 5.6 |
Biomarker index improvement with CR | −0.82 ± 0.58 points, p = 0.05 | Not applicable |
Biomarker index improvement with EX | −0.28 ± 0.59 points, p = 0.50 | Not applicable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ataran, A.; Pompian, A.; Hajirezaei, H.; Lodhi, R.; Javaheri, A. Fueling the Heart: What Are the Optimal Dietary Strategies in Heart Failure? Nutrients 2024, 16, 3157. https://doi.org/10.3390/nu16183157
Ataran A, Pompian A, Hajirezaei H, Lodhi R, Javaheri A. Fueling the Heart: What Are the Optimal Dietary Strategies in Heart Failure? Nutrients. 2024; 16(18):3157. https://doi.org/10.3390/nu16183157
Chicago/Turabian StyleAtaran, Anahita, Alexander Pompian, Hamidreza Hajirezaei, Rehman Lodhi, and Ali Javaheri. 2024. "Fueling the Heart: What Are the Optimal Dietary Strategies in Heart Failure?" Nutrients 16, no. 18: 3157. https://doi.org/10.3390/nu16183157
APA StyleAtaran, A., Pompian, A., Hajirezaei, H., Lodhi, R., & Javaheri, A. (2024). Fueling the Heart: What Are the Optimal Dietary Strategies in Heart Failure? Nutrients, 16(18), 3157. https://doi.org/10.3390/nu16183157