Energy Deficit and Factors Associated with Energy Balance during a Combat Deployment in U.S. Army Special Operation Forces Soldiers
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.3.1. Demographic Data
2.3.2. Energy Expenditure
2.3.3. Dietary Information
2.3.4. Combat Feeding Ration Questionnaire
2.3.5. Gastrointestinal Stress
2.3.6. Profile of Mood States
2.3.7. Connor–Davidson Resilience Scale
2.3.8. Statistical Analysis
3. Results
3.1. Psychological Variables
3.2. Energy Balance
3.3. Associations between Demographic, Physiological, and Psychological Characteristics and Energy Balance
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EE | energy expenditure |
EI | energy intake |
SOF | Special Operations Forces |
POMS | Profile of Mood States |
References
- Farina, E.K.; Taylor, J.C.; Means, G.E.; Williams, K.W.; Murphy, N.E.; Margolis, L.M.; Pasiakos, S.M.; Lieberman, H.R.; McClung, J.P. Effects of combat deployment on anthropometrics and physiological status of U.S. Army Special Operations Forces soldiers. Mil. Med. 2017, 182, e1659–e1668. [Google Scholar] [CrossRef] [PubMed]
- Barringer, N.D.; Pasiakos, S.M.; McClung, H.L.; Crombie, A.P.; Margolis, L.M. Prediction equation for estimating total daily energy requirements of special operations personnel. J. Int. Soc. Sports Nutr. 2018, 15, 15. [Google Scholar] [CrossRef] [PubMed]
- Tassone, E.C.; Baker, B.A. Body weight and body composition changes during military training and deployment involving the use of combat rations: A systematic literature review. Br. J. Nutr. 2017, 117, 897–910. [Google Scholar] [CrossRef] [PubMed]
- Tharion, W.J.; Lieberman, H.R.; Montain, S.J.; Young, A.J.; Baker-Fulco, C.J.; DeLany, J.P.; Hoyt, R.W. Energy requirements of military personnel. Appetite 2005, 44, 47–65. [Google Scholar] [CrossRef] [PubMed]
- Alemany, J.A.; Nindl, B.C.; Kellogg, M.D.; Tharion, W.J.; Young, A.J.; Montain, S.J. Effects of dietary protein content on IGF-I, testosterone, and body composition during 8 days of severe energy deficit and arduous physical activity. J. Appl. Physiol. 2008, 105, 58–64. [Google Scholar] [CrossRef]
- Tanskanen, M.M.; Westerterp, K.R.; Uusitalo, A.L.; Atalay, M.; Häkkinen, K.; Kinnunen, H.O.; Kyröläinen, H. Effects of easy-to-use protein-rich energy bar on energy balance, physical activity and performance during 8 days of sustained physical exertion. PLoS ONE 2012, 7, e47771. [Google Scholar] [CrossRef]
- Margolis, L.M.; Rood, J.; Champagne, C.; Young, A.J.; Castellani, J.W. Energy balance and body composition during US Army Special Forces training. Appl. Physiol. Nutr. Metab. 2013, 38, 396–400. [Google Scholar] [CrossRef]
- Fallowfield, J.L.; Delves, S.K.; Hill, N.E.; Cobley, R.; Brown, P.; Lanham-New, S.A.; Frost, G.; Brett, S.J.; Murphy, K.G.; Montain, S.J.; et al. Energy expenditure, nutritional status, body composition and physical fitness of Royal Marines during a 6-month operational deployment in Afghanistan. Br. J. Nutr. 2014, 112, 821–829. [Google Scholar] [CrossRef]
- O’Leary, T.J.; Wardle, S.L.; Greeves, J.P. Energy deficiency in soldiers: The risk of the athlete triad and relative energy deficiency in sport syndromes in the military. Front. Nutr. 2020, 7, 142. [Google Scholar] [CrossRef]
- Varanoske, A.N.; McClung, H.L.; Sepowitz, J.J.; Halagarda, C.J.; Farina, E.K.; Berryman, C.E.; Lieberman, H.R.; McClung, J.P.; Pasiakos, S.M.; Karl, J.P. Stress and the gut-brain axis: Cognitive performance, mood state, and biomarkers of blood-brain barrier and intestinal permeability following severe physical and psychological stress. Brain Behav. Immun. 2022, 101, 383–393. [Google Scholar] [CrossRef]
- Li, X.; Kan, E.M.; Lu, J.; Cao, Y.; Wong, R.K.; Keshavarzian, A. Combat-training increases intestinal permeability, immune activation and gastrointestinal symptoms in soldiers. Aliment. Pharmacol. Ther. 2013, 37, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, H.R.; Farina, E.K.; Caldwell, J.; Williams, K.W.; Thompson, L.A.; Niro, P.J.; Grohmann, K.A.; McClung, J.P. Cognitive function, stress hormones, heart rate and nutritional status during simulated captivity in military survival training. Physiol. Behav. 2016, 165, 86–97. [Google Scholar] [CrossRef]
- Carlsen, M.H.; Lillegaard, I.T.L.; Karlsen, A.; Blomhoff, R.; Drevon, C.A.; Andersen, L.F. Evaluation of energy and dietary intake estimates from a food frequency questionnaire using independent energy expenditure measurement and weighed food records. Nutr. J. 2010, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Collins, R.A.; Baker, B.; Coyle, D.H.; Rollo, M.E.; Burrows, T.L. Dietary assessment methods in military and veteran populations: A scoping review. Nutrients 2020, 12, 769. [Google Scholar] [CrossRef]
- Lutz, L.J.; Nakayama, A.T.; Karl, J.P.; McClung, J.P.; Gaffney-Stomberg, E. Serum and erythrocyte biomarkers of nutrient status correlate with short-term α-carotene, β-carotene, folate, and vegetable intakes estimated by food frequency questionnaire in military recruits. J. Am. Coll. Nutr. 2019, 38, 171–178. [Google Scholar] [CrossRef]
- Farina, E.K.; Thompson, L.A.; Knapik, J.J.; Pasiakos, S.M.; McClung, J.P.; Lieberman, H.R. Physical performance, demographic, psychological, and physiological predictors of success in the U.S. Army Special Forces Assessment and Selection course. Physiol. Behav. 2019, 210, 112647. [Google Scholar] [CrossRef] [PubMed]
- Margolis, L.M.; Crombie, A.P.; McClung, H.L.; McGraw, S.M.; Rood, J.C.; Montain, S.J.; Young, A.J. Energy requirements of US Army Special Operations Forces during military training. Nutrients 2014, 6, 1945–1955. [Google Scholar] [CrossRef]
- Block, G.; Hartman, A.M.; Naughton, D. A reduced dietary questionnaire: Development and validation. Epidemiology 1990, 1, 58–64. [Google Scholar] [CrossRef]
- Farina, E.K.; Taylor, J.C.; Means, G.E.; Murphy, N.E.; Pasiakos, S.M.; Lieberman, H.R.; McClung, J.P. Effects of deployment on diet quality and nutritional status markers of elite U.S. Army Special Operations Forces soldiers. Nutr. J. 2017, 16, 41. [Google Scholar] [CrossRef]
- Singh, A.S.; Chinapaw, M.J.; Uijtdewilligen, L.; Vik, F.N.; van Lippevelde, W.; Fernández-Alvira, J.M.; Stomfai, S.; Manios, Y.; van der Sluijs, M.; Terwee, C.; et al. Test-retest reliability and construct validity of the ENERGY-parent questionnaire on parenting practices, energy balance-related behaviours and their potential behavioural determinants: The ENERGY-project. BMC Res. Notes 2012, 5, 434. [Google Scholar] [CrossRef]
- McNair, D.M. Profile of Mood States. Educational and Industrial Testing Service. Published Online 1992. Available online: https://cir.nii.ac.jp/crid/1573950399047802368 (accessed on 12 February 2023).
- Lieberman, H.R.; Karl, J.P.; Niro, P.J.; Williams, K.W.; Farina, E.K.; Cable, S.J.; McClung, J.P. Positive effects of basic training on cognitive performance and mood of adult females. Hum. Factors 2014, 56, 1113–1123. [Google Scholar] [CrossRef]
- Salehi, Z.; Ghosn, B.; Rahbarinejad, P.; Azadbakht, L. Macronutrients and the state of happiness and mood in undergraduate youth of a military training course. Clin. Nutr. ESPEN 2023, 53, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Connor, K.M.; Davidson, J.R.T. Development of a new resilience scale: The Connor-Davidson Resilience Scale (CD-RISC). Depress. Anxiety 2003, 18, 76–82. [Google Scholar] [CrossRef]
- Pasiakos, S.M.; Sepowitz, J.J.; Deuster, P.A. US military dietary protein recommendations: A simple but often confused topic. J. Spec. Oper. Med. 2015, 15, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.E., 3rd; Casperson, S.L.; Kho, H.; Flack, K.D. The role of dietary protein in body weight regulation among active-duty military personnel during energy deficit: A systematic review. Nutrients 2023, 15, 3948. [Google Scholar] [CrossRef] [PubMed]
- Murphy, N.E.; Carrigan, C.T.; Karl, J.P.; Pasiakos, S.M.; Margolis, L.M. Threshold of energy deficit and lower-body performance declines in military personnel: A meta-regression. Sports Med. 2018, 48, 2169–2178. [Google Scholar] [CrossRef] [PubMed]
- Nindl, B.C.; Barnes, B.R.; Alemany, J.A.; Frykman, P.N.; Shippee, R.L.; Friedl, K.E. Physiological consequences of U.S. Army Ranger training. Med. Sci. Sports Exerc. 2007, 39, 1380–1387. [Google Scholar] [CrossRef]
- Lieberman, H.R.; Bathalon, G.P.; Falco, C.M.; Kramer, F.M.; Morgan, C.A.; Niro, P.J. Severe decrements in cognitive function and mood induced by sleep loss, heat, dehydration, and undernutrition during simulated combat. Biol. Psychiatry 2005, 57, 422–429. [Google Scholar] [CrossRef]
- Brandt, R.; Bevilacqua, G.G.; Coimbra, D.R.; Pombo, L.C.; Miarka, B.; Lane, A.M. Body weight and mood state modifications in mixed martial arts: An exploratory pilot. J. Strength. Cond. Res. 2018, 32, 2548–2554. [Google Scholar] [CrossRef]
- Choma, C.W.; Sforzo, G.A.; Keller, B.A. Impact of rapid weight loss on cognitive function in collegiate wrestlers. Med. Sci. Sports Exerc. 1998, 30, 746–749. [Google Scholar] [CrossRef]
- Beckner, M.E.; Lieberman, H.R.; Hatch-McChesney, A.; Allen, J.T.; Niro, P.J.; Thompson, L.A.; Karl, J.; Gwin, J.A.; Margolis, L.M.; Hennigar, S.R.; et al. Effects of energy balance on cognitive performance, risk-taking, ambulatory vigilance and mood during simulated military sustained operations (SUSOPS). Physiol. Behav. 2023, 258, 114010. [Google Scholar] [CrossRef] [PubMed]
Variable | N | Mean ± SD OR Frequency (%) |
---|---|---|
Age, years | 46 | 30.3 ± 3.5 |
Body mass index, kg/m2 | 46 | 27.8 ± 3.4 |
Body height, cm | 46 | 179.1 ± 6.6 |
Combat deployment, # of deployments | 46 | 2.5 ± 1.6 |
Deployment experience, months | 46 | 20.0 ± 14.0 |
Service time, years | 46 | 8.9 ± 3.9 |
Sleep, hours | 45 | 6.8 ± 0.9 |
Body mass, kg | 46 | 88.8 ± 7.5 |
Variable | Mean (SD) | Correlation Coefficient | p-Value |
---|---|---|---|
Fat intake (total grams) | 107.79 (45.36) | −0.257 | 0.100 |
Carbohydrate intake (total grams) | 274.57 (130.63) | −0.244 | 0.119 |
Protein intake (total grams) | 113.80 (47.52) | −0.161 | 0.308 |
Fiber intake (total grams) | 20.34 (8.57) | −0.220 | 0.161 |
Ration reliance | 3.13 (2.51) | −0.112 | 0.481 |
Presence of gastrointestinal stress (Yes/No) | 0.161 | 0.309 | |
Gastrointestinal composite score | 4.15 (3.52) | −0.070 | 0.660 |
Combat deployments | 2.59 (1.78) | 0.168 | 0.288 |
Total deployment experience (months) | 20.02 (14.05) | 0.150 | 0.342 |
Total service experience (months) | 107.08 (47.08) | 0.158 | 0.318 |
Age | 30.07 (3.50) | 0.237 | 0.131 |
Sleep (hours) | 6.93 (0.94) | 0.136 | 0.398 |
Profile of Mood States tension | 6.87 (5.85) | 0.143 | 0.373 |
Profile of Mood States depression | 3.73 (5.84) | 0.517 ** | <0.001 ** |
Profile of Mood States confusion | 5.93 (5.08) | 0.257 | 0.105 |
Profile of Mood States vigor | 14.76 (6.48) | −0.002 | 0.989 |
Profile of Mood States fatigue | 5.73 (5.05) | −0.018 | 0.912 |
Profile of Mood States anger | 6.82 (6.43) | 0.363 * | 0.020 * |
Profile of Mood States Total Mood Disturbance | 14.33 (25.11) | 0.299 | 0.057 |
Connor Davidson Resilience Scale | 82.09 (11.72) | 0.084 | 0.607 |
Independent Variable | β | t-Value | p-Value | Adjusted R Square |
---|---|---|---|---|
Constant | −3099.517 | −24.098 | <0.001 | 0.231 |
Profile of Mood States depression | 50.768 | 2.680 | 0.011 * | |
Profile of Mood States anger | 6.61 | 0.68 | 0.702 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tryon, E.G.; Barringer, N.D.; Lieberman, H.R.; Conkright, W.R. Energy Deficit and Factors Associated with Energy Balance during a Combat Deployment in U.S. Army Special Operation Forces Soldiers. Nutrients 2024, 16, 3072. https://doi.org/10.3390/nu16183072
Tryon EG, Barringer ND, Lieberman HR, Conkright WR. Energy Deficit and Factors Associated with Energy Balance during a Combat Deployment in U.S. Army Special Operation Forces Soldiers. Nutrients. 2024; 16(18):3072. https://doi.org/10.3390/nu16183072
Chicago/Turabian StyleTryon, Evan G., Nicholas D. Barringer, Harris R. Lieberman, and William R. Conkright. 2024. "Energy Deficit and Factors Associated with Energy Balance during a Combat Deployment in U.S. Army Special Operation Forces Soldiers" Nutrients 16, no. 18: 3072. https://doi.org/10.3390/nu16183072
APA StyleTryon, E. G., Barringer, N. D., Lieberman, H. R., & Conkright, W. R. (2024). Energy Deficit and Factors Associated with Energy Balance during a Combat Deployment in U.S. Army Special Operation Forces Soldiers. Nutrients, 16(18), 3072. https://doi.org/10.3390/nu16183072