Influence of Comorbidity and Obesity on the Occurrence of Vascular Events in Obstructive Apnoea Treated with CPAP
Abstract
:1. Introduction
2. Methodology
2.1. Design, Population and Sample
2.2. Variables and Data Collection
- Sociodemographics. Age (years) and sex (male and female).
- Anthropometrics. Weight (kg), height (cm), body mass index (BMI) (kg/m2), waist circumference (WC, cm), neck circumference (NC, cm), basal saturation (%), systolic (SST, mmHg) and diastolic (DBT, mmHg) blood pressure and the taper index [41] were calculated to estimate cardiovascular and metabolic risks.
- Clinical. Vascular event prior to OSA diagnosis and CPAP treatment (yes/no), abbreviated Charlson comorbidity index [42,43]: chronic obstructive pulmonary disease (COPD) (yes/no), heart failure or ischaemic heart disease (yes/no), neurocognitive deficit (yes/no), cerebrovascular disease (yes/no), arterial hypertension (yes/no), renal failure (yes/no), cancer (yes/no); in addition to whether the patient was a smoker (yes/no) and symptomatology collected in the Epworth Sleepiness Scale [44,45].
- Related to CPAP treatment: hours of compliance measured by the memory of each device.
- Variables of the diagnostic study of polygraphy and polysomnography calculated per hour of recording in polygraphy or total sleep time in polysomnography. AHI: sum of apnoeas and hypopnoeas/hour; ODI: number of decreases ≥ 3% in O2 saturation (SpO2)/h; T90: percentage of time with SpO2 < 90% [20].
2.3. Ethical and Legal Aspects
2.4. Statistical Analysis
3. Results
3.1. Incidence of Cardiovascular Events
3.2. Description of the Sample
3.3. Variables Related to the Occurrence of Vascular Events
3.4. Kaplan–Meier Survival Analysis
3.5. Multivariate Survival Analysis
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OSA | Obstructive Sleep Apnoea |
AHI | Apnoea and Hypopnoea Index |
EV | Vascular Diseases |
HBP | High Blood Pressure |
CPAP | Continuous Positive Airway Pressure |
BMI | Body Mass Index |
PG | Respiratory Polygraphy |
PSG | Polysomnography |
T90% | Percentage of time with peripheral oxygen saturation ≤ 90% |
ID3 | Oxygen Desaturation Index or number of drops in peripheral oxygen saturation ≥ 3%/h of recording |
HR | Heart Rate |
SpO2 | Peripheral Oxygen Saturation |
References
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Ortega, J.L.; Arrieta-Cerdán, E.; Lozano-Alonso, J.E.; Gil Costa, M.; Gutiérrez-Araus, A.M.; Cordero-Guevara, J.A.; Vega Alonso, T.; Grupo de Trabajo para la Investigación de Sobrepeso; Obesidad y Desarrollo Infantil en Castilla y León. Prevalence of overweight and obesity in child population. A study of a cohort in Castile and Leon, Spain. Endocrinol. Diabetes Nutr. 2019, 66, 173–180. [Google Scholar] [CrossRef] [PubMed]
- López-Sobaler, A.M.; Aparicio, A.; Aranceta-Bartrina, J.; Gil, Á.; González-Gross, M.; Serra-Majem, L.; Varela-Moreiras, G.; Ortega, R.M. Overweight and General and Abdominal Obesity in a Representative Sample of Spanish Adults: Findings from the ANIBES Study. Biomed Res. Int. 2016, 2016, 8341487. [Google Scholar] [CrossRef]
- Lopez-Jimenez, F.; Almahmeed, W.; Bays, H.; Cuevas, A.; Di Angelantonio, E.; le Roux, C.W.; Sattar, N.; Sun, M.C.; Wittert, G.; Pinto, F.J.; et al. Obesity and cardiovascular disease: Mechanistic insights and management strategies. A joint position paper by the World Heart Federation and World Obesity Federation. Eur. J. Prev. Cardiol. 2022, 29, 2218–2237. [Google Scholar] [CrossRef]
- Volpe, M.; Gallo, G. Obesity and cardiovascular disease: An executive document on pathophysiological and clinical links promoted by the Italian Society of Cardiovascular Prevention (SIPREC). Front. Cardiovasc. Med. 2023, 10, 1136340. [Google Scholar] [CrossRef]
- Koliaki, C.; Liatis, S.; Kokkinos, A. Obesity and cardiovascular disease: Revisiting an old relationship. Metabolism 2019, 92, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef]
- Perone, F.; Pingitore, A.; Conte, E.; Halasz, G.; Ambrosetti, M.; Peruzzi, M.; Cavarretta, E. Obesity and Cardiovascular Risk: Systematic Intervention Is the Key for Prevention. Healthcare 2023, 11, 902. [Google Scholar] [CrossRef]
- Mostaza, J.M.; Pintó, X.; Armario, P.; Masana, L.; Real, J.T.; Valdivielso, P.; Arrobas-Velilla, T.; Baeza-Trinidad, R.; Calmarza, P.; Cebollada, J.; et al. SEA 2022 Standards for Global Control of Cardiovascular Risk. Clin. Investig. Arterioscler. 2022, 34, 130–179. [Google Scholar] [CrossRef]
- Deng, H.; Duan, X.; Huang, J.; Zheng, M.; Lao, M.; Weng, F.; Su, Q.Y.; Zheng, Z.F.; Mei, Y.; Huang, L.; et al. Association of adiposity with risk of obstructive sleep apnea: A population-based study. BMC Public Health 2023, 23, 1835. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M.; Allen, N.B.; Anderson, C.A.M.; Black, T.; Brewer, L.C.; Foraker, R.E.; Grandner, M.A.; Lavretsky, H.; Perak, A.M.; Sharma, G.; et al. Life’s Essential 8: Updating and Enhancing the American Heart Association’s Construct of Cardiovascular Health: A Presidential Advisory From the American Heart Association. Circulation 2022, 146, e18–e43. [Google Scholar] [CrossRef] [PubMed]
- Kurnool, S.; McCowen, K.C.; Bernstein, N.A.; Malhotra, A. Sleep Apnea, Obesity, and Diabetes—An Intertwined Trio. Curr. Diabetes Rep. 2023, 23, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Labarca, G.; Horta, G. Metabolic associations of the obstructive sleep apnea (OSA) and hypoventilation obesity syndrome (HOS). Rev. Médica Clínica Condes 2021, 32, 570–576. [Google Scholar] [CrossRef]
- Nousseir, H.M. Obesity: The major preventable risk factor of obstructive sleep apnea. J. Curr. Med. Res. Pract. 2019, 4, 1–5. [Google Scholar] [CrossRef]
- Chang, J.L.; Goldberg, A.N.; Alt, J.A.; Mohammed, A.; Ashbrook, L.; Auckley, D.; Ayappa, I.; Bakhtiar, H.; Barrera, J.E.; Bartley, B.L.; et al. International Consensus Statement on Obstructive Sleep Apnea. Int. Forum Allergy Rhinol. 2023, 13, 1061–1482. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fan, J.; Guo, R.; Hao, W.; Gong, W.; Yan, Y.; Zheng, W.; Ai, H.; Que, B.; Hu, D.; et al. Association of obstructive sleep apnoea with cardiovascular events in women and men with acute coronary syndrome. Eur. Respir. J. 2023, 61, 2201110. [Google Scholar] [CrossRef]
- Witmans, M.; Tablizo, M.A. Current Concepts in Pediatric Obstructive Sleep Apnea. Children 2023, 10, 480. [Google Scholar] [CrossRef]
- Gonzalez, N.; Egea-Santaolalla, C.J.; Chiner, E.; Mediano, O. Sleep Obstructive Apnea. Open Respir. Arch. 2020, 2, 46–66. [Google Scholar] [CrossRef]
- Mediano, O.; González Mangado, N.; Montserrat, J.M.; Alonso-Álvarez, M.L.; Almendros, I.; Alonso-Fernández, A.; Barbé, F.; Borsini, E.; Caballero-Eraso, C.; Cano-Pumarega, I.; et al. International Consensus Document on Obstructive Sleep Apnea. Arch. Bronchopneumol. 2022, 58, 52–68. [Google Scholar] [CrossRef]
- Roncero, A.; Castro, S.; Herrero, J.; Romero, S.; Caballero, C.; Rodriguez, P. Apnea obstructiva de sueño. Open Respir. Arch. 2022, 4, 100185. [Google Scholar] [CrossRef]
- Jurado-García, A.; Molina-Recio, G.; Feu-Collado, N.; Palomares-Muriana, A.; Gómez-González, A.M.; Márquez-Pérez, F.L.; Jurado-Gamez, B. Effect of a Graduated Walking Program on the Severity of Obstructive Sleep Apnea Syndrome. A Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2020, 17, 6334. [Google Scholar] [CrossRef] [PubMed]
- Carneiro-Barrera, A.; Amaro-Gahete, F.J.; Díaz-Román, A.; Guillén-Riquelme, A.; Jurado-Fasoli, L.; Sáez-Roca, G.; Martín-Carrasco, C.; Ruiz, J.R.; Buela-Casal, G. Interdisciplinary Weight Loss and Lifestyle Intervention for Obstructive Sleep Apnoea in Adults: Rationale, Design and Methodology of the INTERAPNEA Study. Nutrients 2019, 11, 2227. [Google Scholar] [CrossRef] [PubMed]
- Peña, M.D.; Lorenzi-Filho, G. Síndrome de apnea obstructive del sueño y sus consecuencias cardiovasculares [Obstructive sleep apnea syndrome and its cardiovascular consequences]. Rev. Med. Clin. Condes. 2021, 32, 561–569. [Google Scholar] [CrossRef]
- Jung, E.; Ryu, H.H.; Ro, Y.S.; Cha, K.C.; Shin, S.D.; Hwang, S.O. Interactions between Sleep Apnea and Coronary Artery Disease on the Incidence of Sudden Cardiac Arrest: A Multi-Center Case-Control Study. Yonsei Med. J. 2023, 64, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Badran, M.; Bender, S.B.; Gozal, D. Cardiovascular Disease in Obstructive Sleep Apnea: Putative Contributions of Mineralocorticoid Receptors. Int. J. Mol. Sci. 2023, 24, 2245. [Google Scholar] [CrossRef]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e56–e67. [Google Scholar] [CrossRef]
- Zdravkovic, M.; Popadic, V.; Klasnja, S.; Milic, N.; Rajovic, N.; Divac, A.; Manojlovic, A.; Nikolic, N.; Lukic, F.; Rasiti, E.; et al. Obstructive Sleep Apnea and Cardiovascular Risk: The Role of Dyslipidemia, Inflammation, and Obesity. Front. Pharmacol. 2022, 13, 898072. [Google Scholar] [CrossRef]
- Agossou, M.; Awanou, B.; Inamo, J.; Dufeal, M.; Arnal, J.M.; Dramé, M. Association between Previous CPAP and Comorbidities at Diagnosis of Obesity-Hypoventilation Syndrome Associated with Obstructive Sleep Apnea: A Comparative Retrospective Observational Study. J. Clin. Med. 2023, 12, 2448. [Google Scholar] [CrossRef]
- Navarro-Soriano, C.; Martínez-García, M.A.; Torres, G.; Barbé, F.; Sánchez-de-la-Torre, M.; Caballero-Eraso, C.; Lloberes, P.; Cambriles, T.D.; Somoza, M.; Masa, J.F.; et al. Long-term Effect of CPAP Treatment on Cardiovascular Events in Patients with Resistant Hypertension and Sleep Apnea. Data From the HIPARCO-2 Study. Arch. Bronconeumol. 2021, 57, 165–171. [Google Scholar] [CrossRef]
- Osanai, S. Clinical Question: Can CPAP suppress cardiovascular events in resistant hypertension patients with obstructive sleep apnea? Hypertens. Res. 2023, 46, 1606–1608. [Google Scholar] [CrossRef]
- Li, H.; Pan, Y.; Lou, Y.; Zhang, Y.; Yin, L.; E Sanderson, J.; Fang, F. The Effects of Continuous Positive Airway Pressure Therapy for Secondary Cardiovascular Prevention in Patients with Obstructive Sleep Apnoea: A Systematic Review and Meta-Analysis. Rev. Cardiovasc. Med. 2022, 23, 195. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Zhuge, P.; Zhang, Z.; Ma, J. The impact of continuous positive airway pressure therapy on cardiovascular events in patients with obstructive sleep apnoea: An updated systematic review and meta-analysis. Sleep Breath 2024. [Google Scholar] [CrossRef] [PubMed]
- Campos-Rodriguez, F.; Asensio-Cruz, M.I.; Cordero-Guevara, J.; Jurado-Gamez, B.; Carmona-Bernal, C.; Gonzalez-Martinez, M.; Troncoso, M.F.; Sanchez-Lopez, V.; Arellano-Orden, E.; Garcia-Sanchez, M.I.; et al. Effect of continuous positive airway pressure on inflammatory, antioxidant, and depression biomarkers in women with obstructive sleep apnea: A randomized controlled trial. Sleep 2019, 42, zsz145. [Google Scholar] [CrossRef]
- Xu, P.H.; Fong, D.Y.T.; Lui, M.M.S.; Lam, D.C.L.; Ip, M.S.M. Cardiovascular outcomes in obstructive sleep apnoea and implications of clinical phenotyping on effect of CPAP treatment. Thorax 2023, 78, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Azarbarzin, A.; Zinchuk, A.; Wellman, A.; Labarca, G.; Vena, D.; Gell, L.; Messineo, L.; White, D.P.; Gottlieb, D.J.; Redline, S.; et al. Cardiovascular Benefit of Continuous Positive Airway Pressure in Adults with Coronary Artery Disease and Obstructive Sleep Apnea without Excessive Sleepiness. Am. J. Respir. Crit. Care Med. 2022, 206, 767–774. [Google Scholar] [CrossRef]
- Kawada, T. Obstructive sleep apnea and mortality: A risk assessment. Sleep Breath 2024, 28, 1857–1858. [Google Scholar] [CrossRef]
- Jurado Gámez, B.; Redel Montero, J.; Muñoz Cabrera, L.; Fernández Marín, M.C.; Muñoz Gomáriz, E.; Martín Pérez, M.A.; Cosano Povedano, A. Cost-effectiveness and degree of satisfaction with home sleep monitoring in patients with symptoms of sleep apnea [Coste-eficiencia y grado de satisfacción de la poligrafía domiciliaria en pacientes con síntomas de apnea del sueño [Cost-effectiveness and degree of satisfaction with home sleep monitoring in patients with symptoms of sleep apnea]. Arch. Bronchopneumol. 2007, 43, 605–610. [Google Scholar] [CrossRef]
- Nogueira, F.; Borsini, E.; Cambursano, H.; Smurra, M.; Dibur, E.; Franceschini, C.; Pérez-Chada, D.; Larrateguy, L.; Nigro, C. Practical guidelines for diagnosis and treatment of obstructive sleep apnea and hypopnea syndrome: 2019 update. Am. J. Respir. Med. 2019, 1, 59–90. [Google Scholar]
- Spanish Sleep Group (GES). Consenso Nacional sobre el sindrome de apneas-Hipopneas del sueño (SAHS) [National Consensus on sleep apnea-hypopnea syndrome]. Arch. Bronchopneumol. 2005, 41, 7–9. [Google Scholar] [CrossRef]
- Kapur, V.K.; Auckley, D.H.; Chowdhuri, S.; Kuhlmann, D.C.; Mehra, R.; Ramar, K.; Harrod, C.G. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2017, 13, 479–504. [Google Scholar] [CrossRef]
- Segura-Fragoso, A.; Rodríguez-Padial, L.; Alonso-Moreno, F.J.; Villarín-Castro, A.; Rojas-Martelo, G.A.; Rodríguez-Roca, G.C.; Sánchez-Pérez, M. Medidas antropométricas de obesidad general y central y capacidad discriminativa sobre el riesgo cardiovascular: Estudio RICARTO [Anthropometric measurements of general and central obesity and discriminative capacity on cardiovascular risk: RICARTO study]. Semergen 2019, 45, 323–332. (In Spanish) [Google Scholar] [CrossRef] [PubMed]
- González, Y.; Abad, L.; Fernández, M.J.; Martín-Vallejo, J.; Red, H.; Pérez-Castrillón, J.L. Utility of the Charlson Comorbidity Index in older people and concordance with other comorbidity indices. Rev. Clín. Med. 2021, 14, 64–70. [Google Scholar]
- Charlson, M.E.; Carrozzino, D.; Guidi, J.; Patierno, C. Charlson Comorbidity Index: A Critical Review of Clinimetric Properties. Psychother. Psychosom. 2022, 91, 8–35. [Google Scholar] [CrossRef] [PubMed]
- Chiner, E.; Arriero, J.M.; Signes-Costa, J.; Marco, J.; Fuentes, I. Validation of the Spanish version of the Epworth Sleepiness Scale in patients with a sleep apnea syndrome [Validación de la versión española del test de somnolencia Epworth en pacientes con síndrome de apnea de sueño [Validation of the Spanish version of the Epworth Sleepiness Scale in patients with a sleep apnea syndrome]. Arch. Bronconeumol. 1999, 35, 422–427. [Google Scholar] [CrossRef]
- Gomez, M.; Deck, B.; Santelices, P.; Cavada, G.; Volpi, C.; Serra, L. Transcultural adaptation and validation of the Epworth sleepiness scale in the Chilean population [Adaptación transcultural y validación de la escala de somnolencia de Epworth en la población chilena]. Rev. Otorrino. Cirug. 2020, 80, 434–441. [Google Scholar] [CrossRef]
- Ferguson, G.T.; Benoist, J. Nasal continuous positive airway pressure in the treatment of tracheobronchomalacia. Am. Rev. Respir. Dis. 1993, 147, 457–461. [Google Scholar] [CrossRef]
- Berry, R.B.; Parish, J.M.; Hartse, K.M. The use of auto-titrating continuous positive airway pressure for treatment of adult obstructive sleep apnea. An American Academy of Sleep Medicine review. Sleep 2002, 25, 148–173. [Google Scholar]
- Hsieh, F.Y.; Lavori, P.W. Sample-size calculations for the Cox proportional hazards regression model with nonbinary covariates. Control Clin. Trials. 2000, 21, 552–560. [Google Scholar] [CrossRef]
- McEvoy, R.D.; Antic, N.A.; Heeley, E.; Luo, Y.; Ou, Q.; Zhang, X.; Mediano, O.; Chen, R.; Drager, L.F.; Liu, Z.; et al. CPAP for Prevention of Cardiovascular Events in Obstructive Sleep Apnea. N. Engl. J. Med. 2016, 375, 919–931. [Google Scholar] [CrossRef]
- Sánchez-de-la-Torre, M.; Gracia-Lavedan, E.; Benitez, I.D.; Sánchez-de-la-Torre, A.; Moncusí-Moix, A.; Torres, G.; Loffler, K.; Woodman, R.; Adams, R.; Labarca, G.; et al. Adherence to CPAP Treatment and the Risk of Recurrent Cardiovascular Events: A Meta-Analysis. JAMA 2023, 330, 1255–1265. [Google Scholar] [CrossRef]
- Campo, F.; Sanabria, F.; Hidalgo, P. Tratamiento del syndrome de apnea-hipopnea obstructive del sueño (SAHOS) con presión positiva en la vía aérea (PAP) [Treatment of obstructive sleep apnea-hypopnea syndrome (OSAHS) with positive airway pressure (PAP)]. Rev. Fac. Med. 2017, 65, 129–134. [Google Scholar] [CrossRef]
- Qiu, Z.H.; Luo, Y.M.; McEvoy, R.D. The Sleep Apnea Cardiovascular Endpoints (SAVE) study: Implications for health services and sleep research in China and elsewhere. J. Thorac. Dis. 2017, 9, 2217–2220. [Google Scholar] [CrossRef] [PubMed]
- Lorente, A.; Rajjoub, E.A.; Martínez, R.; Zamorano, J.L. Cardiovascular risk factors. Medicine 2021, 13, 2071–2080. [Google Scholar] [CrossRef]
- Rezaianzadeh, A.; Moftakhar, L.; Seif, M.; Johari, M.G.; Hosseini, S.V.; Dehghani, S.S. Incidence and risk factors of cardiovascular disease among population aged 40-70 years: A population-based cohort study in the South of Iran. Trop. Med. Health 2023, 51, 35. [Google Scholar] [CrossRef] [PubMed]
- Peñacoba Toribio, P.; Fortuna Gutiérrez, A.M.; Mayos Pérez, M. Management of obstructive sleep apnea in primary care in relation to the new international consensus document [Manejo de la apnea obstructiva del sueño en atención primaria en relación con el nuevo documento de consenso internacional]. Open Respir. Arch. 2021, 4, 100150. [Google Scholar] [CrossRef]
- Sánchez-de-la-Torre, M.; Sánchez-de-la-Torre, A.; Bertran, S.; Abad, J.; Duran-Cantolla, J.; Cabriada, V.; Mediano, O.; Masdeu, M.J.; Alonso, M.L.; Masa, J.F.; et al. Effect of obstructive sleep apnoea and its treatment with continuous positive airway pressure on the prevalence of cardiovascular events in patients with acute coronary syndrome (ISAACC study): A randomised controlled trial. Lancet Respir. Med. 2020, 8, 359–367. [Google Scholar] [CrossRef]
- Mediano, O.; Lorenzi-Filho, G.; García-Río, F. Obstructive Sleep Apnea and Cardiovascular Risk: From Evidence to Experience in Cardiology. Rev. Esp. Cardiol. 2018, 71, 323–326. [Google Scholar] [CrossRef]
- Chacón, E.B.; Mengana, L.O.; Rodriguez, D.F.; Arjona, I.; Leal, E.; Cabrera, I. Índice de CHARLSON como predictor de supervivencia tras un síndrome coronario agudo [Index of CHARLSON like predictor of survival after an acute coronary syndrome]. Cuba. J. Cardiol. Cardiovasc. Surg. 2017, 23, 312–321. [Google Scholar]
- Kjeldsen, S.E. Hypertension and cardiovascular risk: General aspects. Pharmacol. Res. 2018, 129, 95–99. [Google Scholar] [CrossRef]
- Viteri, L.A.; Lascano, R.S.; Benítez, P.A.; Aucancela, H.I.; Aispur, J.A.; Paca, A.S.; Jara, M.M.; Ascencio, D.M.; Tenezaca, J.D. Hypertension as a cardiovascular risk factor. Rev. Latino. Hipert. 2022, 17, 410. [Google Scholar] [CrossRef]
- Read, S.H.; Fischbacher, C.M.; Colhoun, H.M.; Gasevic, D.; Kerssens, J.J.; McAllister, D.A.; Sattar, N.; Wild, S.H.; Scottish Diabetes Research Network Epidemiology Group. Trends in incidence and case fatality of acute myocardial infarction, angina and coronary revascularisation in people with and without type 2 diabetes in Scotland between 2006 and 2015. Diabetologia 2019, 62, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Gyldenkerne, C.; Mortensen, M.B.; Kahlert, J.; Thrane, P.G.; Warnakula Olesen, K.K.; Sørensen, H.T.; Thomsen, R.W.; Maeng, M. 10-Year Cardiovascular Risk in Patients with Newly Diagnosed Type 2 Diabetes Mellitus. J. Am. Coll. Cardiol. 2023, 82, 1583–1594. [Google Scholar] [CrossRef] [PubMed]
- Salazar, P.; Manterola, C.; Quiroz, G.; García, N.; Otzen, T.; Mora, M.; Mora, M.; Duque, G. Estudio de Cohortes 1a parte [Cohort studies. 1st part]. Description, methodology and applications. Rev. Cir. 2019, 71, 5. [Google Scholar] [CrossRef]
Total (2751) | With Event (290) | Without Event (2461) | HR | 95%CI | p | ||
---|---|---|---|---|---|---|---|
Age Initial (years) | 56 ± 11 | 61 ± 10 | 55 ± 11 | 1.049 | 1.037–1.061 | <0.001 | |
Sex, n (%) | 0.757–1.262 | 0.859 | |||||
Male | 1990 (72.3%) | 208 (10.4%) | 1782 (89.6%) | 0.977 | |||
Female | 761 (27.7%) | 82 (10.8%) | 679 (89.2%) | 1 (ref) | |||
Previous event n (%) | 394 (14.3%) | 100 (25.4%) | 294 (74.6%) | 3.758 | 2.947–4.793 | <0.001 | |
DM n (%) | 782 (28.4%) | 115 (14.7%) | 667 (85.3%) | 1.715 | 1.355–2.170 | <0.001 | |
COPD n (%) | 181 (6.6%) | 34 (18.8%) | 147 (81.2%) | 1.904 | 1.332–2.723 | <0.001 | |
Dementia n (%) | 2 (0.1%) | 0 (0%) | 2 (100%) | 0.050 | 0.000–5,679,451.284 | 0.751 | |
HBP n (%) | 1800 (65.4%) | 252 (14%) | 1548 (86%) | 3.676 | 2.613–5.170 | <0.001 | |
Dialysis n (%) | 10 (0.4%) | 3 (30%) | 7 (70%) | 2.727 | 0.874–8.505 | 0.084 | |
Cancer n (%) | 217 (7.9%) | 30 (13.8%) | 187 (86.2%) | 1.347 | 0.923–1.966 | 0.122 | |
Charlson Comorbidity n (score) | 1.1 ± 0.9 | 1.6 ± 0.8 | 1.1 ± 0.9 | 1.750 | 1.552–1.973 | <0.001 | |
Smoker n (%) | 491 (17.8%) | 51 (10.4%) | 440 (89.6%) | 0.959 | 0.708–1.397 | 0.784 | |
Alcohol consumption n (%) | 107 (3.9%) | 11 (10.3%) | 96 (89.7%) | 0.891 | 0.487–1.627 | 0.706 | |
AHI (Events/h) | 50.1 ± 24.9 | 48.2 ± 24.6 | 50.2 ± 24.9 | 0.996 | 0.990–1.001 | 0.128 | |
ODI (Events/h) | 50.1 ± 29.3 | 48.2 ± 25.7 | 60.3 ± 29.6 | 0.996 | 0.991–1.001 | 0.122 | |
T90 (%) | 17.7 ± 26.4 | 20.6 ± 23.9 | 17.4 ± 26.6 | 1.002 | 0.999–1.005 | 0.133 | |
Prior ESS (score) | 11.6 ± 4.2 | 11.2 ± 4.3 | 11.6 ± 4.2 | 0.981 | 0.948–1.014 | 0.255 | |
SpO2 Basal (%) | 96.7 ± 1.5 | 96.6 ± 1.6 | 96.8 ± 1.5 | 0.943 | 0.863–1.031 | 0.198 | |
Initial BMI (kg/m2) | 33.8 ± 6.2 | 34.3 ± 6 | 33.7 ± 6.2 | 1.013 | 0.992–1.033 | 0.224 | |
Initial obesity n (%) | 1726 (62.7%) | 174 (10.1%) | 1552 (89.9%) | 1.283 | 0.949–1.734 | 0.105 | |
Initial TI (index) | 1.4 ± 0.1 | 1.4 ± 0.1 | 1.8 ± 0.1 | 2.101 | 0.340–12.983 | 0.424 | |
Initial waist circumference (cm) | 111.8 ± 13.7 | 112.9 ± 13 | 111.7 ± 13.9 | 1.006 | 0.992–1.020 | 0.410 | |
Initial neck circumference (cm) | 39.1 ± 5.8 | 39.9 ± 5.8 | 39 ± 5.8 | 1.022 | 0.962–1.085 | 0.486 | |
Initial SBP (mmHg) | 133.3 ± 14.4 | 132.7 ± 14 | 133.4 ± 14.4 | 0.998 | 0.988–1.008 | 0.699 | |
Initial DBP (mmHg) | 76.6 ± 11.5 | 75.2 ± 11 | 76.7 ± 11.5 | 0.990 | 0.977–1.003 | 0.127 | |
Age Last (years) | 63.8 ± 11.3 | 65.2 ± 10.6 | 63.6 ± 11.4 | 1.009 | 0.999–1.020 | 0.084 | |
BMI Last (kg/m2) | 33.6 ± 6.1 | 34 ± 6.1 | 33.5 ± 6.1 | 1.011 | 0.991–1.031 | 0.278 | |
Obesity Last n (%) | 1907 (69.3%) | 187 (9.8%) | 1720 (90.2%) | 1.235 | 0.930–1.641 | 0.145 | |
Final SBP (mmHg) | 137 ± 16 | 135.2 ± 17.2 | 136.8 ± 15.8 | 0.993 | 0.985–1.002 | 0.108 | |
Final DBP (mmHg) | 78.1 ± 9.9 | 76.6 ± 10.7 | 78.3 ± 9.8 | 0.984 | 0.971–0.998 | 0.023 | |
ESS Last (score) | 2.7 ± 3.6 | 2.5 ± 3.6 | 2.8 ± 3.6 | 0.981 | 0.948–1.015 | 0.275 | |
CPAP Pressure (mm Hg) | 8.2 ± 1.2 | 8.1 ± 0.9 | 8.2 ± 1.2 | 0.986 | 0.889–1.094 | 0.797 | |
CPAP Rate (hours/day) | 6.2 ± 1.8 | 6.3 ± 2.2 | 6.1 ± 1.8 | 1.038 | 0.973–1.107 | 0.261 |
Variables | With Event (290) | Without Event (2461) | HR | 95%CI | p |
---|---|---|---|---|---|
Age Initial (years) | 55.5 ± 11.2 | 61.3 ± 10.3 | 1.025 | 1.012–1.037 | <0.001 |
Previous event (%) | |||||
No | 2167 (91.9%) | 190 (8.1%) | |||
Yes | 294 (74.6%) | 100 (25.4%) | 2.530 | 1.959–3.266 | <0.001 |
HBP (%) | |||||
No | 913 (96%) | 38 (4%) | |||
Yes | 1548 (86%) | 252 (14%) | 1.781 | 1.187–2.672 | 0.005 |
Charlson Comorbidity Index | 1.1 ± 0.9 | 1.57 ± 0.8 | 1.289 | 1.100–1.510 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurado-Robles, I.; Jurado-Gámez, B.; Feu Collado, N.; Molina-Luque, R.; Molina-Recio, G. Influence of Comorbidity and Obesity on the Occurrence of Vascular Events in Obstructive Apnoea Treated with CPAP. Nutrients 2024, 16, 3071. https://doi.org/10.3390/nu16183071
Jurado-Robles I, Jurado-Gámez B, Feu Collado N, Molina-Luque R, Molina-Recio G. Influence of Comorbidity and Obesity on the Occurrence of Vascular Events in Obstructive Apnoea Treated with CPAP. Nutrients. 2024; 16(18):3071. https://doi.org/10.3390/nu16183071
Chicago/Turabian StyleJurado-Robles, Inmaculada, Bernabé Jurado-Gámez, Nuria Feu Collado, Rafael Molina-Luque, and Guillermo Molina-Recio. 2024. "Influence of Comorbidity and Obesity on the Occurrence of Vascular Events in Obstructive Apnoea Treated with CPAP" Nutrients 16, no. 18: 3071. https://doi.org/10.3390/nu16183071
APA StyleJurado-Robles, I., Jurado-Gámez, B., Feu Collado, N., Molina-Luque, R., & Molina-Recio, G. (2024). Influence of Comorbidity and Obesity on the Occurrence of Vascular Events in Obstructive Apnoea Treated with CPAP. Nutrients, 16(18), 3071. https://doi.org/10.3390/nu16183071