Assessment of Supplementation with Different Biomolecules in the Prevention and Treatment of COVID-19
Abstract
:1. Introduction
2. Results
2.1. Vitamin D
2.1.1. Vitamin D and Prevention of Infection by SARS-CoV-2
2.1.2. Vitamin D and Complications Associated with SARS-CoV-2 Infection
2.2. Antioxidant Vitamins
2.2.1. Vitamin A
2.2.2. Vitamin E
2.2.3. Vitamin C
2.3. Melatonin
2.4. Lactoferrin
2.5. Natural Products Found in Food as Supplements in SARS-CoV-2 Infection
2.5.1. Curcumin
2.5.2. Luteolin
2.5.3. Ginger
2.5.4. Allicin
2.5.5. Magnesium
2.5.6. Zinc
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aimrane, A.; Laaradia, M.A.; Sereno, D.; Perrin, P.; Draoui, A.; Bougadir, B.; Hadach, M.; Zahir, M.; Fdil, N.; El Hiba, O.; et al. Insight into COVID-19’s Epidemiology, Pathology, and Treatment. Heliyon 2022, 8, e08799. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Coronavirus Disease (COVID-19). World Health Organization: Geneva, Switzerland. 2023. Available online: http://www.who.int/es/news-room/fact-sheets/detail/coronavirus-disease-(covid-19) (accessed on 3 August 2024).
- Yesudhas, D.; Srivastava, A.; Gromiha, M.M. COVID-19 Outbreak: History, Mechanism, Transmission, Structural Studies and Therapeutics. Infection 2021, 49, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Mouffak, S.; Shubbar, Q.; Saleh, E.; El-Awady, R. Recent Advances in Management of COVID-19: A Review. Biomed. Pharmacother. 2021, 143, 112107. [Google Scholar] [CrossRef]
- Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.J.; van Goor, H. Tissue Distribution of ACE2 Protein, the Functional Receptor for SARS Coronavirus. A First Step in Understanding SARS Pathogenesis. J. Pathol. 2004, 203, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Cui, B.; Duan, X.; Zhang, P.; Zhou, X.; Yuan, Q. Saliva: Potential Diagnostic Value and Transmission of 2019-nCoV. Int J Oral Sci 2020, 12, 11. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, W.; Yang, L.; You, R. Physiological and Pathological Regulation of ACE2, the SARS-CoV-2 Receptor. Pharmacol. Res. 2020, 157, 104833. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sapra, L.; Saini, C.; Azam, Z.; Mishra, P.K.; Verma, B.; Mishra, G.C.; Srivastava, R.K. COVID-19: Immunology, Immunopathogenesis and Potential Therapies. Int. Rev. Immunol. 2022, 41, 171–206. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, L. The Therapeutic Potential of Natural Dietary Flavonoids against SARS-CoV-2 Infection. Nutrients 2023, 15, 3443. [Google Scholar] [CrossRef]
- Tsang, H.F.; Chan, L.W.C.; Cho, W.C.S.; Yu, A.C.S.; Yim, A.K.Y.; Chan, A.K.C.; Ng, L.P.W.; Wong, Y.K.E.; Pei, X.M.; Li, M.J.W.; et al. An Update on COVID-19 Pandemic: The Epidemiology, Pathogenesis, Prevention and Treatment Strategies. Expert. Rev. Anti Infect. Ther. 2021, 19, 877–888. [Google Scholar] [CrossRef]
- Rehman, S.U.; Rehman, S.U.; Yoo, H.H. COVID-19 Challenges and Its Therapeutics. Biomed. Pharmacother. 2021, 142, 112015. [Google Scholar] [CrossRef]
- Witteveen, A.B.; Young, S.Y.; Cuijpers, P.; Ayuso-Mateos, J.L.; Barbui, C.; Bertolini, F.; Cabello, M.; Cadorin, C.; Downes, N.; Franzoi, D.; et al. COVID-19 and Common Mental Health Symptoms in the Early Phase of the Pandemic: An Umbrella Review of the Evidence. PLoS Med. 2023, 20, e1004206. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943. [Google Scholar] [CrossRef]
- Costela-Ruiz, V.J.; Illescas-Montes, R.; Puerta-Puerta, J.M.; Ruiz, C.; Melguizo-Rodríguez, L. SARS-CoV-2 Infection: The Role of Cytokines in COVID-19 Disease. Cytokine Growth Factor. Rev. 2020, 54, 62–75. [Google Scholar] [CrossRef]
- Bahrampour Juybari, K.; Pourhanifeh, M.H.; Hosseinzadeh, A.; Hemati, K.; Mehrzadi, S. Melatonin Potentials against Viral Infections Including COVID-19: Current Evidence and New Findings. Virus Res. 2020, 287, 198108. [Google Scholar] [CrossRef]
- Bae, M.; Kim, H. The Role of Vitamin C, Vitamin D, and Selenium in Immune System against COVID-19. Molecules 2020, 25, 5346. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, P.; Wang, H.; Luo, Y.; Wan, L.; Jiang, M.; Chu, Y. Lactoferrin for the Treatment of COVID-19 (Review). Exp. Ther. Med. 2020, 20, 272. [Google Scholar] [CrossRef]
- Subedi, L.; Tchen, S.; Gaire, B.P.; Hu, B.; Hu, K. Adjunctive Nutraceutical Therapies for COVID-19. Int. J. Mol. Sci. 2021, 22, 1963. [Google Scholar] [CrossRef] [PubMed]
- Verdoia, M.; De Luca, G. Potential Role of Hypovitaminosis D and Vitamin D Supplementation during COVID-19 Pandemic. QJM 2021, 114, 3–10. [Google Scholar] [CrossRef]
- Cross, K.M.; Landis, D.M.; Sehgal, L.; Payne, J.D. Melatonin for the Early Treatment of COVID-19: A Narrative Review of Current Evidence and Possible Efficacy. Endocr. Pr. 2021, 27, 850–855. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Binkley, N.; De Luca, H.F.; Fassio, A.; Formenti, A.M.; Fuleihan, G.E.-H.; Heijboer, A.C.; Giustina, A. Consensus and Controversial Aspects of Vitamin D and COVID-19. J. Clin. Endocrinol. Metab. 2023, 108, 1034–1042. [Google Scholar] [CrossRef]
- Giustina, A. Hypovitaminosis D and the Endocrine Phenotype of COVID-19. Endocrine 2021, 72, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chiodini, I.; Gatti, D.; Soranna, D.; Merlotti, D.; Mingiano, C.; Fassio, A.; Adami, G.; Falchetti, A.; Eller-Vainicher, C.; Rossini, M.; et al. Vitamin D Status and SARS-CoV-2 Infection and COVID-19 Clinical Outcomes. Front. Public. Health 2021, 9, 736665. [Google Scholar] [CrossRef]
- Di Filippo, L.; Formenti, A.M.; Rovere-Querini, P.; Carlucci, M.; Conte, C.; Ciceri, F.; Zangrillo, A.; Giustina, A. Hypocalcemia Is Highly Prevalent and Predicts Hospitalization in Patients with COVID-19. Endocrine 2020, 68, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Di Filippo, L.; Allora, A.; Locatelli, M.; Rovere Querini, P.; Frara, S.; Banfi, G.; Giustina, A. Hypocalcemia in COVID-19 Is Associated with Low Vitamin D Levels and Impaired Compensatory PTH Response. Endocrine 2021, 74, 219–225. [Google Scholar] [CrossRef]
- Dissanayake, H.A.; de Silva, N.L.; Sumanatilleke, M.; de Silva, S.D.N.; Gamage, K.K.K.; Dematapitiya, C.; Kuruppu, D.C.; Ranasinghe, P.; Pathmanathan, S.; Katulanda, P. Prognostic and Therapeutic Role of Vitamin D in COVID-19: Systematic Review and Meta-Analysis. J. Clin. Endocrinol. Metab. 2022, 107, 1484–1502. [Google Scholar] [CrossRef]
- Kaufman, H.W.; Niles, J.K.; Kroll, M.H.; Bi, C.; Holick, M.F. SARS-CoV-2 Positivity Rates Associated with Circulating 25-Hydroxyvitamin D Levels. PLoS ONE 2020, 15, e0239252. [Google Scholar] [CrossRef]
- Ferrari, D.; Locatelli, M.; Faraldi, M.; Lombardi, G. Changes in 25-(OH) Vitamin D Levels during the SARS-CoV-2 Outbreak: Lockdown-Related Effects and First-to-Second Wave Difference—An Observational Study from Northern Italy. Biology 2021, 10, 237. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, D.A.; Holt, H.; Greenig, M.; Talaei, M.; Perdek, N.; Pfeffer, P.; Vivaldi, G.; Maltby, S.; Symons, J.; Barlow, N.L.; et al. Effect of a Test-and-Treat Approach to Vitamin D Supplementation on Risk of All Cause Acute Respiratory Tract Infection and Covid-19: Phase 3 Randomised Controlled Trial (CORONAVIT). BMJ 2022, 378, e071230. [Google Scholar] [CrossRef]
- Pereira, M.; Dantas Damascena, A.; Galvão Azevedo, L.M.; de Almeida Oliveira, T.; da Mota Santana, J. Vitamin D Deficiency Aggravates COVID-19: Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 1308–1316. [Google Scholar] [CrossRef]
- Wang, Z.; Joshi, A.; Leopold, K.; Jackson, S.; Christensen, S.; Nayfeh, T.; Mohammed, K.; Creo, A.; Tebben, P.; Kumar, S. Association of Vitamin D Deficiency with COVID-19 Infection Severity: Systematic Review and Meta-Analysis. Clin. Endocrinol. 2022, 96, 281–287. [Google Scholar] [CrossRef]
- De Smet, D.; De Smet, K.; Herroelen, P.; Gryspeerdt, S.; Martens, G.A. Serum 25(OH)D Level on Hospital Admission Associated With COVID-19 Stage and Mortality. Am. J. Clin. Pathol. 2021, 155, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Khojah, H.M.J.; Ahmed, S.A.; Al-Thagfan, S.S.; Alahmadi, Y.M.; Abdou, Y.A. The Impact of Serum Levels of Vitamin D3 and Its Metabolites on the Prognosis and Disease Severity of COVID-19. Nutrients 2022, 14, 5329. [Google Scholar] [CrossRef] [PubMed]
- Baxter, B.A.; Ryan, M.G.; LaVergne, S.M.; Stromberg, S.; Berry, K.; Tipton, M.; Natter, N.; Nudell, N.; McFann, K.; Dunn, J.; et al. Correlation between 25-Hydroxyvitamin D/D3 Deficiency and COVID-19 Disease Severity in Adults from Northern Colorado. Nutrients 2022, 14, 5204. [Google Scholar] [CrossRef] [PubMed]
- Seal, K.H.; Bertenthal, D.; Carey, E.; Grunfeld, C.; Bikle, D.D.; Lu, C.M. Association of Vitamin D Status and COVID-19-Related Hospitalization and Mortality. J. Gen. Intern. Med. 2022, 37, 853–861. [Google Scholar] [CrossRef]
- Vanegas-Cedillo, P.E.; Bello-Chavolla, O.Y.; Ramírez-Pedraza, N.; Rodríguez Encinas, B.; Pérez Carrión, C.I.; Jasso-Ávila, M.I.; Valladares-García, J.C.; Hernández-Juárez, D.; Vargas-Vázquez, A.; Antonio-Villa, N.E.; et al. Serum Vitamin D Levels Are Associated With Increased COVID-19 Severity and Mortality Independent of Whole-Body and Visceral Adiposity. Front. Nutr. 2022, 9, 813485. [Google Scholar]
- Neves, F.F.; Pott-Junior, H.; de Sousa Santos, S.; Cominetti, M.R.; de Melo Freire, C.C.; da Cunha, A.F.; Júnior, A.A.J. Vitamin D Deficiency Predicts 30-Day Hospital Mortality of Adults with COVID-19. Clin. Nutr. ESPEN 2022, 50, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Di Filippo, L.; Allora, A.; Doga, M.; Formenti, A.M.; Locatelli, M.; Rovere Querini, P.; Frara, S.; Giustina, A. Vitamin D Levels Are Associated With Blood Glucose and BMI in COVID-19 Patients, Predicting Disease Severity. J. Clin. Endocrinol. Metab. 2022, 107, e348–e360. [Google Scholar] [CrossRef]
- Butler-Laporte, G.; Nakanishi, T.; Mooser, V.; Morrison, D.R.; Abdullah, T.; Adeleye, O.; Mamlouk, N.; Kimchi, N.; Afrasiabi, Z.; Rezk, N.; et al. Vitamin D and COVID-19 Susceptibility and Severity in the COVID-19 Host Genetics Initiative: A Mendelian Randomization Study. PLoS Med. 2021, 18, e1003605. [Google Scholar] [CrossRef]
- Domazet Bugarin, J.; Dosenovic, S.; Ilic, D.; Delic, N.; Saric, I.; Ugrina, I.; Stojanovic Stipic, S.; Duplancic, B.; Saric, L. Vitamin D Supplementation and Clinical Outcomes in Severe COVID-19 Patients-Randomized Controlled Trial. Nutrients 2023, 15, 1234. [Google Scholar] [CrossRef]
- Abroug, H.; Maatouk, A.; Bennasrallah, C.; Dhouib, W.; Ben Fredj, M.; Zemni, I.; Kacem, M.; Mhalla, S.; Nouira, S.; Ben Belgacem, M.; et al. Effect of Vitamin D Supplementation versus Placebo on Recovery Delay among COVID-19 Tunisian Patients: A Randomized-Controlled Clinical Trial. Trials 2023, 24, 123. [Google Scholar] [CrossRef]
- Dilokpattanamongkol, P.; Yan, C.; Jayanama, K.; Ngamjanyaporn, P.; Sungkanuparph, S.; Rotjanapan, P. Impact of Vitamin D Supplementation on the Clinical Outcomes of COVID-19 Pneumonia Patients: A Single-Center Randomized Controlled Trial. BMC Complement. Med. Ther. 2024, 24, 97. [Google Scholar] [CrossRef] [PubMed]
- Rohani, M.; Mozaffar, H.; Mesri, M.; Shokri, M.; Delaney, D.; Karimy, M. Evaluation and Comparison of Vitamin A Supplementation with Standard Therapies in the Treatment of Patients with COVID-19. East. Mediterr. Health J. 2022, 28, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Somi, M.H.; Faghih Dinevari, M.; Taghizadieh, A.; Varshochi, M.; Sadeghi Majd, E.; Abbasian, S.; Nikniaz, Z. Effect of Vitamin A Supplementation on the Outcome Severity of COVID-19 in Hospitalized Patients: A Pilot Randomized Clinical Trial. Nutr. Health 2022, 2601060221129144. [Google Scholar] [CrossRef] [PubMed]
- Sarohan, A.R.; Akelma, H.; Araç, E.; Aslan, Ö.; Cen, O. Retinol Depletion in COVID-19. Clin. Nutr. Open Sci. 2022, 43, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Chavarría, A.P.; Vázquez, R.R.V.; Cherit, J.G.D.; Bello, H.H.; Suastegui, H.C.; Moreno-Castañeda, L.; Alanís Estrada, G.; Hernández, F.; González-Marcos, O.; Saucedo-Orozco, H.; et al. Antioxidants and Pentoxifylline as Coadjuvant Measures to Standard Therapy to Improve Prognosis of Patients with Pneumonia by COVID-19. Comput. Struct. Biotechnol. J. 2021, 19, 1379–1390. [Google Scholar] [CrossRef]
- Beigmohammadi, M.T.; Bitarafan, S.; Hoseindokht, A.; Abdollahi, A.; Amoozadeh, L.; Soltani, D. The Effect of Supplementation with Vitamins A, B, C, D, and E on Disease Severity and Inflammatory Responses in Patients with COVID-19: A Randomized Clinical Trial. Trials 2021, 22, 802. [Google Scholar] [CrossRef]
- Rawat, D.; Roy, A.; Maitra, S.; Gulati, A.; Khanna, P.; Baidya, D.K. Vitamin C and COVID-19 Treatment: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Diabetes Metab. Syndr. 2021, 15, 102324. [Google Scholar] [CrossRef]
- Xing, Y.; Zhao, B.; Yin, L.; Guo, M.; Shi, H.; Zhu, Z.; Zhang, L.; He, J.; Ling, Y.; Gao, M.; et al. Vitamin C Supplementation Is Necessary for Patients with Coronavirus Disease: An Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry Finding. J. Pharm. Biomed. Anal. 2021, 196, 113927. [Google Scholar] [CrossRef]
- Majidi, N.; Rabbani, F.; Gholami, S.; Gholamalizadeh, M.; BourBour, F.; Rastgoo, S.; Hajipour, A.; Shadnoosh, M.; Akbari, M.E.; Bahar, B.; et al. The Effect of Vitamin C on Pathological Parameters and Survival Duration of Critically Ill Coronavirus Disease 2019 Patients: A Randomized Clinical Trial. Front Immunol 2021, 12, 717816. [Google Scholar] [CrossRef]
- JamaliMoghadamSiahkali, S.; Zarezade, B.; Koolaji, S.; SeyedAlinaghi, S.; Zendehdel, A.; Tabarestani, M.; Sekhavati Moghadam, E.; Abbasian, L.; Dehghan Manshadi, S.A.; Salehi, M.; et al. Safety and Effectiveness of High-Dose Vitamin C in Patients with COVID-19: A Randomized Open-Label Clinical Trial. Eur. J. Med. Res. 2021, 26, 20. [Google Scholar] [CrossRef]
- Al Sulaiman, K.; Aljuhani, O.; Saleh, K.B.; Badreldin, H.A.; Al Harthi, A.; Alenazi, M.; Alharbi, A.; Algarni, R.; Al Harbi, S.; Alhammad, A.M.; et al. Ascorbic Acid as an Adjunctive Therapy in Critically Ill Patients with COVID-19: A Propensity Score Matched Study. Sci. Rep. 2021, 11, 17648. [Google Scholar] [CrossRef]
- Tehrani, S.; Yadegarynia, D.; Abrishami, A.; Moradi, H.; Gharaei, B.; Rauofi, M.; Maghsoudi Nejad, F.; Sali, S.; Khabiri, N.; Abolghasemi, S. An Investigation into the Effects of Intravenous Vitamin C on Pulmonary CT Findings and Clinical Outcomes of Patients with COVID 19 Pneumonia A Randomized Clinical Trial. Urol. J. 2022, 19, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Fogleman, C.; Cohen, D.; Mercier, A.; Farrell, D.; Rutz, J.; Bresz, K.; Vernon, T. A Pilot of a Randomized Control Trial of Melatonin and Vitamin C for Mild-to-Moderate COVID-19. J. Am. Board. Fam. Med. 2022, 35, 695–707. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Patel, D.; Bittel, B.; Wolski, K.; Wang, Q.; Kumar, A.; Il’Giovine, Z.J.; Mehra, R.; McWilliams, C.; Nissen, S.E.; et al. Effect of High-Dose Zinc and Ascorbic Acid Supplementation vs Usual Care on Symptom Length and Reduction Among Ambulatory Patients With SARS-CoV-2 Infection: The COVID A to Z Randomized Clinical Trial. JAMA Netw. Open 2021, 4, e210369. [Google Scholar] [CrossRef] [PubMed]
- Quek, A.M.L.; Ooi, D.S.Q.; Teng, O.; Chan, C.Y.; Ng, G.J.L.; Ng, M.Y.; Yee, S.; Cheong, E.W.; Weng, R.; Cook, A.R.; et al. Zinc and Vitamin C Intake Increases Spike and Neutralising Antibody Production Following SARS-CoV-2 Infection. Clin. Transl. Med. 2022, 12, e731. [Google Scholar]
- Tosato, M.; Calvani, R.; Picca, A.; Ciciarello, F.; Galluzzo, V.; Coelho-Júnior, H.J.; Di Giorgio, A.; Di Mario, C.; Gervasoni, J.; Gremese, E.; et al. Effects of L-Arginine Plus Vitamin C Supplementation on Physical Performance, Endothelial Function, and Persistent Fatigue in Adults with Long COVID: A Single-Blind Randomized Controlled Trial. Nutrients 2022, 14, 4984. [Google Scholar] [CrossRef]
- Calvani, R.; Gervasoni, J.; Picca, A.; Ciciarello, F.; Galluzzo, V.; Coelho-Júnior, H.J.; Di Mario, C.; Gremese, E.; Lomuscio, S.; Paglionico, A.M.; et al. Effects of L-Arginine Plus Vitamin C Supplementation on l-Arginine Metabolism in Adults with Long COVID: Secondary Analysis of a Randomized Clinical Trial. Int. J. Mol. Sci. 2023, 24, 5078. [Google Scholar] [CrossRef] [PubMed]
- García-García, I.; Seco-Meseguer, E.; Ruiz-Seco, P.; Navarro-Jimenez, G.; Martínez-Porqueras, R.; Espinosa-Díaz, M.; Ortega-Albás, J.J.; Sagastagoitia, I.; García-Morales, M.T.; Jiménez-González, M.; et al. Melatonin in the Prophylaxis of SARS-CoV-2 Infection in Healthcare Workers (MeCOVID): A Randomised Clinical Trial. J. Clin. Med. 2022, 11, 1139. [Google Scholar] [CrossRef]
- Ameri, A.; Asadi, M.F.; Kamali, M.; Vatankhah, M.; Ziaei, A.; Safa, O.; Mahmudi, M.; Fathalipour, M. Evaluation of the Effect of Melatonin in Patients with COVID-19-Induced Pneumonia Admitted to the Intensive Care Unit: A Structured Summary of a Study Protocol for a Randomized Controlled Trial. Trials 2021, 22, 194. [Google Scholar] [CrossRef]
- Sánchez-Rico, M.; de la Muela, P.; Herrera-Morueco, J.J.; Geoffroy, P.A.; Limosin, F.; Hoertel, N.; AP-HP/Université de Paris/INSERM COVID-19 Research Collaboration/AP-HP COVID CDR Initiative/Entrepôt de Données de Santé AP-HP Consortium. Melatonin Does Not Reduce Mortality in Adult Hospitalized Patients with COVID-19: A Multicenter Retrospective Observational Study. J. Travel. Med. 2022, 29, taab195. [Google Scholar] [CrossRef]
- Alizadeh, N.; Dianatkhah, M.; Alimohamadi, Y.; Moradi, H.; Akbarpour, S.; Akrami, M.; Mansouri, F.; Faraji, N.; Rezaie, Z.; Alizadeh, M.; et al. High Dose Melatonin as an Adjuvant Therapy in Intubated Patients with COVID-19: A Randomized Clinical Trial. J. Taibah Univ. Med. Sci. 2022, 17, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Farnoosh, G.; Akbariqomi, M.; Badri, T.; Bagheri, M.; Izadi, M.; Saeedi-Boroujeni, A.; Rezaie, E.; Ghaleh, H.E.G.; Aghamollaei, H.; Fasihi-Ramandi, M.; et al. Efficacy of a Low Dose of Melatonin as an Adjunctive Therapy in Hospitalized Patients with COVID-19: A Randomized, Double-Blind Clinical Trial. Arch. Med. Res. 2022, 53, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.A.; Heydari, K.; Mehravaran, H.; Saeedi, M.; Alizadeh-Navaei, R.; Hedayatizadeh-Omran, A.; Shamshirian, A. Melatonin Effects on Sleep Quality and Outcomes of COVID-19 Patients: An Open-Label, Randomized, Controlled Trial. J. Med. Virol. 2022, 94, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Hasan, Z.T.; Atrakji, D.M.Q.Y.M.A.A.; Mehuaiden, D.A.K. The Effect of Melatonin on Thrombosis, Sepsis and Mortality Rate in COVID-19 Patients. Int. J. Infect. Dis. 2022, 114, 79–84. [Google Scholar] [CrossRef]
- Ameri, A.; Frouz Asadi, M.; Ziaei, A.; Vatankhah, M.; Safa, O.; Kamali, M.; Fathalipour, M.; Mahmoodi, M.; Hassanipour, S. Efficacy and Safety of Oral Melatonin in Patients with Severe COVID-19: A Randomized Controlled Trial. Inflammopharmacology 2023, 31, 265–274. [Google Scholar] [CrossRef]
- Campione, E.; Lanna, C.; Cosio, T.; Rosa, L.; Conte, M.P.; Iacovelli, F.; Romeo, A.; Falconi, M.; Del Vecchio, C.; Franchin, E.; et al. Lactoferrin as Antiviral Treatment in COVID-19 Management: Preliminary Evidence. Int. J. Environ. Res. Public. Health 2021, 18, 10985. [Google Scholar] [CrossRef]
- Serrano, G.; Kochergina, I.; Albors, A.; Diaz, E.; Oroval, M.; Hueso, G.; Serrano, J. Liposomal Lactoferrin as Potential Preventative and Cure for COVID-19. Int. J. Res. Health Sci. 2020, 8, 8–15. [Google Scholar] [CrossRef]
- Algahtani, F.D.; Elabbasy, M.T.; Samak, M.A.; Adeboye, A.A.; Yusuf, R.A.; Ghoniem, M.E. The Prospect of Lactoferrin Use as Adjunctive Agent in Management of SARS-CoV-2 Patients: A Randomized Pilot Study. Medicina 2021, 57, 842. [Google Scholar] [CrossRef]
- Rosa, L.; Tripepi, G.; Naldi, E.; Aimati, M.; Santangeli, S.; Venditto, F.; Caldarelli, M.; Valenti, P. Ambulatory COVID-19 Patients Treated with Lactoferrin as a Supplementary Antiviral Agent: A Preliminary Study. J. Clin. Med. 2021, 10, 4276. [Google Scholar] [CrossRef]
- Navarro, R.; Paredes, J.L.; Tucto, L.; Medina, C.; Angles-Yanqui, E.; Nario, J.C.; Ruiz-Cabrejos, J.; Quintana, J.L.; Turpo-Espinoza, K.; Mejia-Cordero, F.; et al. Bovine Lactoferrin for the Prevention of COVID-19 Infection in Health Care Personnel: A Double-Blinded Randomized Clinical Trial (LF-COVID). Biometals 2023, 36, 463–472. [Google Scholar] [CrossRef]
- Matino, E.; Tavella, E.; Rizzi, M.; Avanzi, G.C.; Azzolina, D.; Battaglia, A.; Becco, P.; Bellan, M.; Bertinieri, G.; Bertoletti, M.; et al. Effect of Lactoferrin on Clinical Outcomes of Hospitalized Patients with COVID-19: The LAC Randomized Clinical Trial. Nutrients 2023, 15, 1285. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, A.; Komiyama, M.; Wada, H.; Satoh-Asahara, N.; Yamakage, H.; Ajiro, Y.; Aoyama, H.; Katsuura, Y.; Imaizumi, A.; Hashimoto, T.; et al. Efficacy of Highly Bioavailable Oral Curcumin in Asymptomatic or Mild COVID-19 Patients: A Double-Blind, Randomized, Placebo-Controlled Trial. J. Health Popul. Nutr. 2024, 43, 93. [Google Scholar] [CrossRef] [PubMed]
- Sadeghizadeh, M.; Asadollahi, E.; Jahangiri, B.; Yadollahzadeh, M.; Mohajeri, M.; Afsharpad, M.; Najafi, F.; Rezaie, N.; Eskandari, M.; Tavakoli-Ardakani, M.; et al. Promising Clinical Outcomes of Nano-Curcumin Treatment as an Adjunct Therapy in Hospitalized COVID-19 Patients: A Randomized, Double-Blinded, Placebo-Controlled Trial. Phytother. Res. 2023, 37, 3631–3644. [Google Scholar] [CrossRef] [PubMed]
- Fessler, S.N.; Chang, Y.; Liu, L.; Johnston, C.S. Curcumin Confers Anti-Inflammatory Effects in Adults Who Recovered from COVID-19 and Were Subsequently Vaccinated: A Randomized Controlled Trial. Nutrients 2023, 15, 1548. [Google Scholar] [CrossRef]
- Asadirad, A.; Nashibi, R.; Khodadadi, A.; Ghadiri, A.A.; Sadeghi, M.; Aminian, A.; Dehnavi, S. Antiinflammatory Potential of Nano-Curcumin as an Alternative Therapeutic Agent for the Treatment of Mild-to-Moderate Hospitalized COVID-19 Patients in a Placebo-Controlled Clinical Trial. Phytother. Res. 2022, 36, 1023–1031. [Google Scholar] [CrossRef]
- Ahmadi, S.; Mehrabi, Z.; Zare, M.; Ghadir, S.; Masoumi, S.J. Efficacy of Nanocurcumin as an Add-On Treatment for Patients Hospitalized with COVID-19: A Double-Blind, Randomized Clinical Trial. Int. J. Clin. Pr. 2023, 2023, 5734675. [Google Scholar] [CrossRef]
- Di Stadio, A.; Gallina, S.; Cocuzza, S.; De Luca, P.; Ingrassia, A.; Oliva, S.; Sireci, F.; Camaioni, A.; Ferreli, F.; Mercante, G.; et al. Treatment of COVID-19 Olfactory Dysfunction with Olfactory Training, Palmitoylethanolamide with Luteolin, or Combined Therapy: A Blinded Controlled Multicenter Randomized Trial. Eur. Arch. Otorhinolaryngol. 2023, 280, 4949–4961. [Google Scholar] [CrossRef]
- Di Stadio, A.; D’Ascanio, L.; Vaira, L.A.; Cantone, E.; De Luca, P.; Cingolani, C.; Motta, G.; De Riu, G.; Vitelli, F.; Spriano, G.; et al. Ultramicronized Palmitoylethanolamide and Luteolin Supplement Combined with Olfactory Training to Treat Post-COVID-19 Olfactory Impairment: A Multi-Center Double-Blinded Randomized Placebo- Controlled Clinical Trial. Curr. Neuropharmacol. 2022, 20, 2001–2012. [Google Scholar] [CrossRef] [PubMed]
- De Luca, P.; Camaioni, A.; Marra, P.; Salzano, G.; Carriere, G.; Ricciardi, L.; Pucci, R.; Montemurro, N.; Brenner, M.J.; Di Stadio, A. Effect of Ultra-Micronized Palmitoylethanolamide and Luteolin on Olfaction and Memory in Patients with Long COVID: Results of a Longitudinal Study. Cells 2022, 11, 2552. [Google Scholar] [CrossRef]
- Mesri, M.; Esmaeili Saber, S.S.; Godazi, M.; Roustaei Shirdel, A.; Montazer, R.; Koohestani, H.R.; Baghcheghi, N.; Karimy, M.; Azizi, N. The Effects of Combination of Zingiber Officinale and Echinacea on Alleviation of Clinical Symptoms and Hospitalization Rate of Suspected COVID-19 Outpatients: A Randomized Controlled Trial. J. Complement. Integr. Med. 2021, 18, 775–781. [Google Scholar] [CrossRef]
- Singh, H.; Yadav, B.; Rai, A.K.; Srivastava, S.; Saiprasad, A.; Jameela, S.; Singhal, R.; Muralidharan, S.; Mohan, R.; Chaudhary, S.; et al. Ashwagandha (Withania somnifera) and Shunthi (Zingiber officinale) in Mild and Moderate COVID-19: An Open-Label Randomized Controlled Exploratory Trial. Complement. Ther. Med. 2023, 76, 102966. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubian, H.; Niktale, H.; Yazdi, A.P.; Ghorani, V.; Rashed, M.M.; Hashemian, A.M. Evaluate the Therapeutic Effect of Allicin (L-Cysteine) on Clinical Presentation and Prognosis in Patients with COVID-19. Eur. J. Transl. Myol. 2021, 31, 9518. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.W.; Ho, L.P.; Kalimuddin, S.; Cherng, B.P.Z.; Teh, Y.E.; Thien, S.Y.; Wong, H.M.; Tern, P.J.W.; Chandran, M.; Chay, J.W.M.; et al. Cohort Study to Evaluate the Effect of Vitamin D, Magnesium, and Vitamin B12 in Combination on Progression to Severe Outcomes in Older Patients with Coronavirus (COVID-19). Nutrition 2020, 79–80, 111017. [Google Scholar] [CrossRef] [PubMed]
- Rostami, S.; Alavi, S.M.; Daghagheleh, R.; Maraghi, E.; Hosseini, S.A. A Randomized Clinical Trial Investigating the Impact of Magnesium Supplementation on Clinical and Biochemical Measures in COVID-19 Patients. Virol. J. 2024, 21, 91. [Google Scholar] [CrossRef]
- Margolin, L.; Luchins, J.; Margolin, D.; Margolin, M.; Lefkowitz, S. 20-Week Study of Clinical Outcomes of Over-the-Counter COVID-19 Prophylaxis and Treatment. J. Evid. Based Integr. Med. 2021, 26, 2515690X211026193. [Google Scholar] [CrossRef]
- Patel, O.; Chinni, V.; El-Khoury, J.; Perera, M.; Neto, A.S.; McDonald, C.; See, E.; Jones, D.; Bolton, D.; Bellomo, R.; et al. A Pilot Double-Blind Safety and Feasibility Randomized Controlled Trial of High-Dose Intravenous Zinc in Hospitalized COVID-19 Patients. J. Med. Virol. 2021, 93, 3261–3267. [Google Scholar] [CrossRef]
- Delrue, C.; Speeckaert, M.M. Vitamin D and Vitamin D-Binding Protein in Health and Disease. Int. J. Mol. Sci. 2023, 24, 4642. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D: A Millenium Perspective. J. Cell Biochem. 2003, 88, 296–307. [Google Scholar] [CrossRef]
- Bouillon, R.; Carmeliet, G. Vitamin D Insufficiency: Definition, Diagnosis and Management. Best. Pr. Res. Clin. Endocrinol. Metab. 2018, 32, 669–684. [Google Scholar] [CrossRef]
- Cesareo, R.; Falchetti, A.; Attanasio, R.; Tabacco, G.; Naciu, A.M.; Palermo, A. Hypovitaminosis D: Is It Time to Consider the Use of Calcifediol? Nutrients 2019, 11, 1016. [Google Scholar] [CrossRef]
- Chibuzor, M.T.; Graham-Kalio, D.; Osaji, J.O.; Meremikwu, M.M. Vitamin D, Calcium or a Combination of Vitamin D and Calcium for the Treatment of Nutritional Rickets in Children. Cochrane Database Syst. Rev. 2020, 4, CD012581. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Agrawal, D.K. Vitamin D and Inflammatory Diseases. J. Inflamm. Res. 2014, 7, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Panfili, F.M.; Roversi, M.; D’Argenio, P.; Rossi, P.; Cappa, M.; Fintini, D. Possible Role of Vitamin D in Covid-19 Infection in Pediatric Population. J. Endocrinol. Investig. 2021, 44, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Carlberg, C. Vitamin D Signaling in the Context of Innate Immunity: Focus on Human Monocytes. Front. Immunol. 2019, 10, 2211. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.E.; Cook, N.R.; Lee, I.-M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D’Agostino, D.; et al. Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. N. Engl. J. Med. 2019, 380, 33–44. [Google Scholar] [CrossRef]
- Grant, W.B.; Al Anouti, F.; Moukayed, M. Targeted 25-Hydroxyvitamin D Concentration Measurements and Vitamin D3 Supplementation Can Have Important Patient and Public Health Benefits. Eur. J. Clin. Nutr. 2020, 74, 366–376. [Google Scholar] [CrossRef]
- Martineau, A.R.; Jolliffe, D.A.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; Goodall, E.C.; et al. Vitamin D Supplementation to Prevent Acute Respiratory Infections: Individual Participant Data Meta-Analysis. Health Technol. Assess. 2019, 23, 1–44. [Google Scholar] [CrossRef]
- Illescas-Montes, R.; Melguizo-Rodríguez, L.; Ruiz, C.; Costela-Ruiz, V.J. Vitamin D and Autoimmune Diseases. Life Sci. 2019, 233, 116744. [Google Scholar] [CrossRef]
- Hayes, C.E.; Ntambi, J.M. Multiple Sclerosis: Lipids, Lymphocytes, and Vitamin D. Immunometabolism 2020, 2, e200019. [Google Scholar] [CrossRef]
- Greiller, C.L.; Martineau, A.R. Modulation of the Immune Response to Respiratory Viruses by Vitamin D. Nutrients 2015, 7, 4240–4270. [Google Scholar] [CrossRef]
- Azrielant, S.; Shoenfeld, Y. Vitamin D and the Immune System. Isr. Med. Assoc. J. 2017, 19, 510–511. [Google Scholar] [PubMed]
- Beard, J.A.; Bearden, A.; Striker, R. Vitamin D and the Anti-Viral State. J. Clin. Virol. 2011, 50, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Gal-Tanamy, M.; Bachmetov, L.; Ravid, A.; Koren, R.; Erman, A.; Tur-Kaspa, R.; Zemel, R. Vitamin D: An Innate Antiviral Agent Suppressing Hepatitis C Virus in Human Hepatocytes. Hepatology 2011, 54, 1570–1579. [Google Scholar] [CrossRef] [PubMed]
- Campbell, G.R.; Spector, S.A. Vitamin D Inhibits Human Immunodeficiency Virus Type 1 and Mycobacterium Tuberculosis Infection in Macrophages through the Induction of Autophagy. PLoS Pathog. 2012, 8, e1002689. [Google Scholar] [CrossRef]
- Arboleda Alzate, J.F.; Rodenhuis-Zybert, I.A.; Hernández, J.C.; Smit, J.M.; Urcuqui-Inchima, S. Human Macrophages Differentiated in the Presence of Vitamin D3 Restrict Dengue Virus Infection and Innate Responses by Downregulating Mannose Receptor Expression. PLoS Negl. Trop. Dis. 2017, 11, e0005904. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin D and Bone. Curr. Osteoporos. Rep. 2012, 10, 151–159. [Google Scholar] [CrossRef]
- Bergman, P.; Walter-Jallow, L.; Broliden, K.; Agerberth, B.; Söderlund, J. The Antimicrobial Peptide LL-37 Inhibits HIV-1 Replication. Curr. HIV Res. 2007, 5, 410–415. [Google Scholar] [CrossRef]
- Lee, C.-J.; Buznyk, O.; Kuffova, L.; Rajendran, V.; Forrester, J.V.; Phopase, J.; Islam, M.M.; Skog, M.; Ahlqvist, J.; Griffith, M. Cathelicidin LL-37 and HSV-1 Corneal Infection: Peptide Versus Gene Therapy. Transl. Vis. Sci. Technol. 2014, 3, 4. [Google Scholar] [CrossRef]
- Tangpricha, V.; Judd, S.E.; Ziegler, T.R.; Hao, L.; Alvarez, J.A.; Fitzpatrick, A.M.; McComsey, G.A.; Eckard, A.R. LL-37 Concentrations and the Relationship to Vitamin D, Immune Status, and Inflammation in HIV-Infected Children and Young Adults. AIDS Res. Hum. Retroviruses 2014, 30, 670–676. [Google Scholar] [CrossRef]
- Schögler, A.; Muster, R.J.; Kieninger, E.; Casaulta, C.; Tapparel, C.; Jung, A.; Moeller, A.; Geiser, T.; Regamey, N.; Alves, M.P. Vitamin D Represses Rhinovirus Replication in Cystic Fibrosis Cells by Inducing LL-37. Eur. Respir. J. 2016, 47, 520–530. [Google Scholar] [CrossRef]
- Arboleda, J.F.; Urcuqui-Inchima, S. Vitamin D Supplementation: A Potential Approach for Coronavirus/COVID-19 Therapeutics? Front. Immunol. 2020, 11, 1523. [Google Scholar] [CrossRef] [PubMed]
- Nicoll, R.; Henein, M.Y. COVID-19 Prevention: Vitamin D Is Still a Valid Remedy. J. Clin. Med. 2022, 11, 6818. [Google Scholar] [CrossRef]
- Masnadi Shirazi, K.; Nikniaz, Z.; Masnadi Shirazi, A.; Rohani, M. Vitamin A Supplementation Decreases Disease Activity Index in Patients with Ulcerative Colitis: A Randomized Controlled Clinical Trial. Complement. Ther. Med. 2018, 41, 215–219. [Google Scholar] [CrossRef]
- Mora, J.R.; Iwata, M.; von Andrian, U.H. Vitamin Effects on the Immune System: Vitamins A and D Take Centre Stage. Nat. Rev. Immunol. 2008, 8, 685–698. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, W.; Zhang, C.; Zhu, C.; Yi, X.; Zhou, Y.; Lv, Y. Effects of Vitamin A on Expressions of Apoptosis Genes Bax and Bcl-2 in Epithelial Cells of Corneal Tissues Induced by Benzalkonium Chloride in Mice with Dry Eye. Med. Sci. Monit. 2019, 25, 4583–4589. [Google Scholar] [CrossRef]
- Li, R.; Wu, K.; Li, Y.; Liang, X.; Tse, W.K.F.; Yang, L.; Lai, K.P. Revealing the Targets and Mechanisms of Vitamin A in the Treatment of COVID-19. Aging 2020, 12, 15784–15796. [Google Scholar] [CrossRef] [PubMed]
- Stephensen, C.B. Vitamin A, Infection, and Immune Function. Annu. Rev. Nutr. 2001, 21, 167–192. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Liu, Y.; Qi, G.; Brand, D.; Zheng, S.G. Role of Vitamin A in the Immune System. J. Clin. Med. 2018, 7, 258. [Google Scholar] [CrossRef]
- Al-Saleh, I.; Alrushud, N.; Alnuwaysir, H.; Elkhatib, R.; Shoukri, M.; Aldayel, F.; Bakheet, R.; Almozaini, M. Essential Metals, Vitamins and Antioxidant Enzyme Activities in COVID-19 Patients and Their Potential Associations with the Disease Severity. Biometals 2022, 35, 125–145. [Google Scholar] [CrossRef]
- Sarohan, A.R. COVID-19: Endogenous Retinoic Acid Theory and Retinoic Acid Depletion Syndrome. Med. Hypotheses 2020, 144, 110250. [Google Scholar] [CrossRef]
- Xing, Y.; Sheng, K.; Xiao, X.; Li, J.; Wei, H.; Liu, L.; Zhou, W.; Tong, X. Vitamin A Deficiency Is Associated with Severe Mycoplasma Pneumoniae Pneumonia in Children. Ann. Transl. Med. 2020, 8, 120. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhao, W.; Wang, H.; Toshiyoshi, M.; Zhao, Y.; Bu, H. Vitamin A in children’s pneumonia for a COVID-19 perspective: A systematic review and meta-analysis of 15 trials. Medicine 2022, 101, e31289. [Google Scholar] [CrossRef]
- Moriguchi, S.; Muraga, M. Vitamin E and Immunity. Vitam. Horm. 2000, 59, 305–336. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente, M.; Hernanz, A.; Guayerbas, N.; Manuel Victor, V.; Arnalich, F. Vitamin E Ingestion Improves Several Immune Functions in Elderly Men and Women. Free Radic. Res. 2008, 42, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.Y.; Han, S.N. The Role of Vitamin E in Immunity. Nutrients 2018, 10, 1614. [Google Scholar] [CrossRef] [PubMed]
- Gasmi, A.; Tippairote, T.; Mujawdiya, P.K.; Peana, M.; Menzel, A.; Dadar, M.; Gasmi Benahmed, A.; Bjørklund, G. Micronutrients as Immunomodulatory Tools for COVID-19 Management. Clin. Immunol. 2020, 220, 108545. [Google Scholar] [CrossRef]
- Meydani, S.N.; Han, S.N.; Wu, D. Vitamin E and Immune Response in the Aged: Molecular Mechanisms and Clinical Implications. Immunol. Rev. 2005, 205, 269–284. [Google Scholar] [CrossRef]
- Wang, J.-Z.; Zhang, R.-Y.; Bai, J. An Anti-Oxidative Therapy for Ameliorating Cardiac Injuries of Critically Ill COVID-19-Infected Patients. Int. J. Cardiol. 2020, 312, 137–138. [Google Scholar] [CrossRef]
- Erol, S.A.; Tanacan, A.; Anuk, A.T.; Tokalioglu, E.O.; Biriken, D.; Keskin, H.L.; Moraloglu, O.T.; Yazihan, N.; Sahin, D. Evaluation of Maternal Serum Afamin and Vitamin E Levels in Pregnant Women with COVID-19 and Its Association with Composite Adverse Perinatal Outcomes. J. Med. Virol. 2021, 93, 2350–2358. [Google Scholar] [CrossRef]
- BourBour, F.; Mirzaei Dahka, S.; Gholamalizadeh, M.; Akbari, M.E.; Shadnoush, M.; Haghighi, M.; Taghvaye-Masoumi, H.; Ashoori, N.; Doaei, S. Nutrients in Prevention, Treatment, and Management of Viral Infections; Special Focus on Coronavirus. Arch. Physiol. Biochem. 2023, 129, 16–25. [Google Scholar] [CrossRef]
- Liu, F.; Zhu, Y.; Zhang, J.; Li, Y.; Peng, Z. Intravenous High-Dose Vitamin C for the Treatment of Severe COVID-19: Study Protocol for a Multicentre Randomised Controlled Trial. BMJ Open 2020, 10, e039519. [Google Scholar] [CrossRef] [PubMed]
- Huijskens, M.J.A.J.; Walczak, M.; Sarkar, S.; Atrafi, F.; Senden-Gijsbers, B.L.M.G.; Tilanus, M.G.J.; Bos, G.M.J.; Wieten, L.; Germeraad, W.T.V. Ascorbic Acid Promotes Proliferation of Natural Killer Cell Populations in Culture Systems Applicable for Natural Killer Cell Therapy. Cytotherapy 2015, 17, 613–620. [Google Scholar] [CrossRef] [PubMed]
- De Melo, A.F.; Homem-de-Mello, M. High-Dose Intravenous Vitamin C May Help in Cytokine Storm in Severe SARS-CoV-2 Infection. Crit. Care 2020, 24, 500. [Google Scholar] [CrossRef]
- Hellou, E.; Mohsin, J.; Elemy, A.; Hakim, F.; Mustafa-Hellou, M.; Hamoud, S. Effect of ArtemiC in Patients with COVID-19: A Phase II Prospective Study. J. Cell Mol. Med. 2022, 26, 3281–3289. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Patel, K.K.; Dehari, D.; Agrawal, A.K.; Singh, S. Melatonin and Its Ubiquitous Anticancer Effects. Mol. Cell Biochem. 2019, 462, 133–155. [Google Scholar] [CrossRef]
- Tan, H.Y.; Ng, K.Y.; Koh, R.Y.; Chye, S.M. Pharmacological Effects of Melatonin as Neuroprotectant in Rodent Model: A Review on the Current Biological Evidence. Cell Mol. Neurobiol. 2020, 40, 25–51. [Google Scholar] [CrossRef]
- Claustrat, B.; Leston, J. Melatonin: Physiological Effects in Humans. Neurochirurgie 2015, 61, 77–84. [Google Scholar] [CrossRef]
- Sánchez-López, A.L.; Ortiz, G.G.; Pacheco-Moises, F.P.; Mireles-Ramírez, M.A.; Bitzer-Quintero, O.K.; Delgado-Lara, D.L.C.; Ramírez-Jirano, L.J.; Velázquez-Brizuela, I.E. Efficacy of Melatonin on Serum Pro-Inflammatory Cytokines and Oxidative Stress Markers in Relapsing Remitting Multiple Sclerosis. Arch. Med. Res. 2018, 49, 391–398. [Google Scholar] [CrossRef]
- Marzougui, H.; Hammouda, O.; Ben Dhia, I.; Maaloul, R.; Agrebi, I.; Chaker, H.; Kammoun, K.; Ben Hmida, M.; Ayadi, F.; Kallel, C.; et al. Melatonin Ingestion before Intradialytic Exercise Improves Immune Responses in Hemodialysis Patients. Int. Urol. Nephrol. 2021, 53, 553–562. [Google Scholar] [CrossRef]
- Wirtz, P.H.; Bärtschi, C.; Spillmann, M.; Ehlert, U.; von Känel, R. Effect of Oral Melatonin on the Procoagulant Response to Acute Psychosocial Stress in Healthy Men: A Randomized Placebo-Controlled Study. J. Pineal Res. 2008, 44, 358–365. [Google Scholar] [CrossRef]
- Wang, B.; Timilsena, Y.P.; Blanch, E.; Adhikari, B. Lactoferrin: Structure, Function, Denaturation and Digestion. Crit. Rev. Food Sci. Nutr. 2019, 59, 580–596. [Google Scholar] [CrossRef] [PubMed]
- Baveye, S.; Elass, E.; Mazurier, J.; Spik, G.; Legrand, D. Lactoferrin: A Multifunctional Glycoprotein Involved in the Modulation of the Inflammatory Process. Clin. Chem. Lab. Med. 1999, 37, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.; Cutone, A.; Lepanto, M.S.; Paesano, R.; Valenti, P. Lactoferrin: A Natural Glycoprotein Involved in Iron and Inflammatory Homeostasis. Int. J. Mol. Sci. 2017, 18, 1985. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Expósito, L.; Illescas-Montes, R.; Melguizo-Rodríguez, L.; Ruiz, C.; Ramos-Torrecillas, J.; de Luna-Bertos, E. Multifunctional Capacity and Therapeutic Potential of Lactoferrin. Life Sci. 2018, 195, 61–64. [Google Scholar] [CrossRef]
- Chang, R.; Ng, T.B.; Sun, W.-Z. Lactoferrin as Potential Preventative and Adjunct Treatment for COVID-19. Int. J. Antimicrob. Agents 2020, 56, 106118. [Google Scholar] [CrossRef]
- Kim, S.Y.; Jin, W.; Sood, A.; Montgomery, D.W.; Grant, O.C.; Fuster, M.M.; Fu, L.; Dordick, J.S.; Woods, R.J.; Zhang, F.; et al. Characterization of Heparin and Severe Acute Respiratory Syndrome-Related Coronavirus 2 (SARS-CoV-2) Spike Glycoprotein Binding Interactions. Antivir. Res. 2020, 181, 104873. [Google Scholar] [CrossRef]
- Clausen, T.M.; Sandoval, D.R.; Spliid, C.B.; Pihl, J.; Perrett, H.R.; Painter, C.D.; Narayanan, A.; Majowicz, S.A.; Kwong, E.M.; McVicar, R.N.; et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell 2020, 183, 1043–1057.e15. [Google Scholar] [CrossRef]
- Hu, Y.; Meng, X.; Zhang, F.; Xiang, Y.; Wang, J. The in Vitro Antiviral Activity of Lactoferrin against Common Human Coronaviruses and SARS-CoV-2 Is Mediated by Targeting the Heparan Sulfate Co-Receptor. Emerg. Microbes Infect. 2021, 10, 317–330. [Google Scholar] [CrossRef]
- Spear, P.G. Herpes Simplex Virus: Receptors and Ligands for Cell Entry. Cell Microbiol. 2004, 6, 401–410. [Google Scholar] [CrossRef]
- Einerhand, A.W.C.; van Loo-Bouwman, C.A.; Weiss, G.A.; Wang, C.; Ba, G.; Fan, Q.; He, B.; Smit, G. Can Lactoferrin, a Natural Mammalian Milk Protein, Assist in the Battle against COVID-19? Nutrients 2022, 14, 5274. [Google Scholar] [CrossRef]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal Coagulation Parameters Are Associated with Poor Prognosis in Patients with Novel Coronavirus Pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.; Fatima, R.; Assaly, R. Elevated Interleukin-6 and Severe COVID-19: A Meta-Analysis. J. Med. Virol. 2020, 92, 2283–2285. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Generally Recognized As Safe (GRAS) Notice: The Use of Bovine Millk-Derived Lactoferrin In Term Milk-Based Infant Formulas and Toddler Formulas; Center for Food Safety and Applied Nutrition: College Park, MD, USA, 2016. [Google Scholar]
- Valenti, P.; Rosa, L.; Capobianco, D.; Lepanto, M.S.; Schiavi, E.; Cutone, A.; Paesano, R.; Mastromarino, P. Role of Lactobacilli and Lactoferrin in the Mucosal Cervicovaginal Defense. Front. Immunol. 2018, 9, 376. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.S.; Hasan, S.S.; Kow, C.S.; Merchant, H.A. Lactoferrin Reduces the Risk of Respiratory Tract Infections: A Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. ESPEN 2021, 45, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Muscedere, J.; Maslove, D.M.; Boyd, J.G.; O’Callaghan, N.; Sibley, S.; Reynolds, S.; Albert, M.; Hall, R.; Jiang, X.; Day, A.G.; et al. Prevention of Nosocomial Infections in Critically Ill Patients With Lactoferrin: A Randomized, Double-Blind, Placebo-Controlled Study. Crit. Care Med. 2018, 46, 1450–1456. [Google Scholar] [CrossRef]
- Li, F.; Wu, S.S.; Berseth, C.L.; Harris, C.L.; Richards, J.D.; Wampler, J.L.; Zhuang, W.; Cleghorn, G.; Rudolph, C.D.; Liu, B.; et al. Improved Neurodevelopmental Outcomes Associated with Bovine Milk Fat Globule Membrane and Lactoferrin in Infant Formula: A Randomized, Controlled Trial. J. Pediatr. 2019, 215, 24–31.e8. [Google Scholar] [CrossRef]
- Oda, H.; Wakabayashi, H.; Tanaka, M.; Yamauchi, K.; Sugita, C.; Yoshida, H.; Abe, F.; Sonoda, T.; Kurokawa, M. Effects of Lactoferrin on Infectious Diseases in Japanese Summer: A Randomized, Double-Blinded, Placebo-Controlled Trial. J. Microbiol. Immunol. Infect. 2021, 54, 566–574. [Google Scholar] [CrossRef]
- Abe, T.; Horisawa, Y.; Kikuchi, O.; Ozawa-Umeta, H.; Kishimoto, A.; Katsuura, Y.; Imaizumi, A.; Hashimoto, T.; Shirakawa, K.; Takaori-Kondo, A.; et al. Pharmacologic Characterization of TBP1901, a Prodrug Form of Aglycone Curcumin, and CRISPR-Cas9 Screen for Therapeutic Targets of Aglycone Curcumin. Eur. J. Pharmacol. 2022, 935, 175321. [Google Scholar] [CrossRef]
- Mercante, G.; Ferreli, F.; De Virgilio, A.; Gaino, F.; Di Bari, M.; Colombo, G.; Russo, E.; Costantino, A.; Pirola, F.; Cugini, G.; et al. Prevalence of Taste and Smell Dysfunction in Coronavirus Disease 2019. JAMA Otolaryngol Head Neck Surg 2020, 146, 1–6. [Google Scholar] [CrossRef]
- Ferreli, F.; Gaino, F.; Russo, E.; Di Bari, M.; Rossi, V.; De Virgilio, A.; Di Stadio, A.; Spriano, G.; Mercante, G. Long-Term Olfactory Dysfunction in COVID-19 Patients: 18-Month Follow-up Study. Int. Forum Allergy Rhinol. 2022, 12, 1078–1080. [Google Scholar] [CrossRef]
- Cocco, A.; Amami, P.; Desai, A.; Voza, A.; Ferreli, F.; Albanese, A. Neurological Features in SARS-CoV-2-Infected Patients with Smell and Taste Disorder. J. Neurol. 2021, 268, 1570–1572. [Google Scholar] [CrossRef] [PubMed]
- Xydakis, M.S.; Albers, M.W.; Holbrook, E.H.; Lyon, D.M.; Shih, R.Y.; Frasnelli, J.A.; Pagenstecher, A.; Kupke, A.; Enquist, L.W.; Perlman, S. Post-Viral Effects of COVID-19 in the Olfactory System and Their Implications. Lancet Neurol. 2021, 20, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, M.; Khalvat, A.; Tolliat, T.; Fallah Hosseini, H.; Jalaee, S.; Eshraghian, M.R.; Ebrahimi Varkiani, A. The Effect of Ginger Extract (Zingiber Officinale) on Reduction of Pain In. Physiol. Pharmacol. 2003, 7, 65–72. [Google Scholar]
- Farzin, D.; Sharifpour, A.; Mansouri, S.N.; Âliyali, M.; Âbedi, S. Efficacy of Ginger in Patients Uncontrolled on Standard Moderate Asthma Treatment. J. Maz. Univ. Med. Sci. 2011, 20, 137–140. [Google Scholar]
- Slusarenko, A.; Patel, A.; Portz, D. Control of Plant Diseases by Natural Products: Allicin from Garlic as a Case Study. Sustain. Dis. Manag. A Eur. Context 2008, 121, 313–322. [Google Scholar] [CrossRef]
- Catanzaro, E.; Canistro, D.; Pellicioni, V.; Vivarelli, F.; Fimognari, C. Anticancer Potential of Allicin: A Review. Pharmacol. Res. 2022, 177, 106118. [Google Scholar] [CrossRef]
- Harris, J.C.; Cottrell, S.L.; Plummer, S.; Lloyd, D. Antimicrobial Properties of Allium sativum (Garlic). Appl. Microbiol. Biotechnol. 2001, 57, 282–286. [Google Scholar] [CrossRef]
- Melguizo-Rodríguez, L.; García-Recio, E.; Ruiz, C.; De Luna-Bertos, E.; Illescas-Montes, R.; Costela-Ruiz, V.J. Biological Properties and Therapeutic Applications of Garlic and Its Components. Food Funct. 2022, 13, 2415–2426. [Google Scholar] [CrossRef]
- Mösbauer, K.; Fritsch, V.N.; Adrian, L.; Bernhardt, J.; Gruhlke, M.C.H.; Slusarenko, A.J.; Niemeyer, D.; Antelmann, H. The Effect of Allicin on the Proteome of SARS-CoV-2 Infected Calu-3 Cells. Front. Microbiol. 2021, 12, 746795. [Google Scholar] [CrossRef]
- Konrad, M.; Schlingmann, K.P.; Gudermann, T. Insights into the Molecular Nature of Magnesium Homeostasis. Am. J. Physiol. Ren. Physiol. 2004, 286, F599-605. [Google Scholar] [CrossRef]
- Pham, P.-C.T.; Pham, P.-M.T.; Pham, S.V.; Miller, J.M.; Pham, P.-T.T. Hypomagnesemia in Patients with Type 2 Diabetes. Clin. J. Am. Soc. Nephrol. 2007, 2, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Tarsitano, M.G.; Quinzi, F.; Folino, K.; Greco, F.; Oranges, F.P.; Cerulli, C.; Emerenziani, G.P. Effects of Magnesium Supplementation on Muscle Soreness in Different Type of Physical Activities: A Systematic Review. J. Transl. Med. 2024, 22, 629. [Google Scholar] [CrossRef] [PubMed]
- Laires, M.J.; Monteiro, C. Exercise, Magnesium and Immune Function. Magnes. Res. 2008, 21, 92–96. [Google Scholar] [PubMed]
- DiNicolantonio, J.J.; O’Keefe, J.H. Magnesium and Vitamin D Deficiency as a Potential Cause of Immune Dysfunction, Cytokine Storm and Disseminated Intravascular Coagulation in Covid-19 Patients. Mo. Med. 2021, 118, 68–73. [Google Scholar]
- Saper, R.B.; Rash, R. Zinc: An Essential Micronutrient. Am. Fam. Physician 2009, 79, 768–772. [Google Scholar]
- Tabatabaeizadeh, S.-A. Zinc Supplementation and COVID-19 Mortality: A Meta-Analysis. Eur. J. Med. Res. 2022, 27, 70. [Google Scholar] [CrossRef]
Biomolecule | Methodology | Main Findings | Reference |
---|---|---|---|
Vitamin D | Consensus document between professionals | Consistence evidences that stablish and association between vitamin D levels and poor COVID-19 outcomes. On the other side, the low vitamin D status in COVID-19 patients might also reflect reverse causality. Vitamin D supplementation might have a positive role in COVID-19 prevention. | Bilezikian et al., 2022 [21] |
Review | Most of the known conditions (aging and sex) and endocrine comorbidities (diabetes mellitus, obesity and body composition…), which associate with severe outcomes of COVID-19 that are characterized or caused by low VD levels. | Giustina, 2021 [22] | |
Meta-analysis | Low vitamin D levels are related to an increased risk of severe COVID-19 infection, requiring admission to intensive care units or mortality, as well as a higher susceptibility to SARS-CoV-2 infection and related hospitalization. | Chiodini et al., 2021 [23] | |
Retrospective cohort study | Very high incidence of hypocalcemia in COVID-19 patients and it predicts the need for hospitalization. | Di Filippo et al., 2020 [24] | |
Retrospective cohort study | High prevalence of hypocalcemia in COVID-19 patients. It occurred in the context of marked hypovitaminosis D not adequately compensated by secondary hyperparathyroidism. | Di Filippo et al., 2021 [25] | |
Systematic review and meta-analysis | Various studies with around 2 million adults suggest that low levels of vitamin D increases susceptibility to COVID-19 and severe COVID-19. | Dissanayake et al., 2022 [26] | |
Retrospective, observational analysis | SARS-CoV-2 positivity is strongly and inversely associated with vitamin D levels. | Kaufman et al., 2020 [27] | |
Analytic study | No direct relationship between vitamin D status, sun exposure, and SARS-CoV-2. | Ferrari et al., 2021 [28] | |
Phase 3 open label randomized controlled trial. | Implementation of a population level test and intervention approach to vitamin D supplementation was not associated with a reduction in risk of all cause acute respiratory tract infection or COVID-19. | Jolliffe et al., 2022 [29] | |
Systematic review and meta-analysis | An insufficient level of vitamin D increased hospitalization and mortality from COVID-19. There was a positive association between vitamin D deficiency and the severity of the disease. | Pereira et al., 2022 [30] | |
Review of observational studies | Vitamin D deficiency is associated with greater severity of COVID-19 infection. | Wang et al., 2022 [31] | |
Retrospective observational clinical trial | The study showed that 59% of sample patients that required hospitalization for severe COVID-19 pneumonia were vitamin D deficient. Presence of vitamin D deficiency on hospital admission is associated with COVID-19 mortality. | De Smet et al., 2021 [32] | |
Analytical study | COVID-19 infection severity is associated with a significant decrease in vitamin D and its metabolites, with a significant increase in ACE2, Il-6, and NLR. Higher levels of vitamin D and its metabolites are protective against severe infection. | Khojah et al., 2022 [33] | |
Longitudinal descriptive study | People with chronic conditions (obesity, hypertension, chronic obstructive pulmonary disease, and diabetes) combined with vitamin D deficiencies could be patients in high risk for infection and poorer outcomes. Vitamin D supplementation may assist in reducing risk of severe disease from COVID-19 particularly for individuals with pre-existing conditions. | Baxter et al., 2022 [34] | |
Retrospective cohort study | Low vitamin D concentrations have a relationship with adverse clinical outcomes of COVID-19 infection, namely hospitalization and mortality. | Seal et al., 2022 [35] | |
Analytical study | Vitamin D deficiency is associated with COVID-19 mortality. Low vitamin D may contribute to a pro-inflammatory and pro-thrombotic state, increasing the risk for adverse COVID-19 outcomes. | Vanegas-Cedillo et al., 2022 [36] | |
Retrospective cohort study | Patients with vitamin D deficiency had a significantly higher mortality risk than those without vitamin D deficiency. | Neves et al., 2022 [37] | |
Analytical study | Vitamin D deficiency was more frequently in male patients and in those affected by severe COVID-19. Patients with low levels of vitamin D and diabetes mellitus, as well those with low levels of vitamin D and overweight, were more frequently affected by a severe disease with worse inflammatory response and respiratory parameters. | di Filippo et al., 2022 [38] | |
Mendelian randomization study | The authors did not observe an association between vitamin D levels and COVID-19 susceptibility, severity, or hospitalization. | Butler-Laporte et al., 2021 [39] | |
Randomized controlled trial | The number of days on respiratory support did not show a statistically significant difference, even though the trial lacked sufficient power for the main outcome. | Domazet Bugarin et al., 2023 [40] | |
Randomized controlled trial | Vitamin D did not contribute to a shorter recovery time in patients who still tested positive by RT-PCR on the 14th day. | Abroug et al., 2023 [41] | |
Randomized controlled trial | The intervention group showed a more substantial reduction in the pneumonia severity index from enrollment to discharge. Additionally, patients with C-reactive protein levels greater than 30 mg/L also experienced a significant decrease. | Dilokpattanamongkol et al., 2024 [42] | |
Vitamin A | Triple-blind controlled clinical trial | After 10 days, post-intervention in the experimental group, vitamin A supplementation demonstrated showed significantly greater decreases such as fever, body ache, weakness and fatigue, paraclinical symptoms, white blood cell count, and C-reactive protein showed. | Rohani et al., 2022 [43] |
Pilot randomized controlled clinical trial | Intramuscular vitamin A administration for two weeks was not significantly different between the two groups for either clinical response or time to clinical response. There were also no significant differences in terms of need for mechanical ventilation, time to hospital admission, or hospital death. | Somi et al., 2022 [44] | |
Analytical study | Results show a correlation between serum retinol level and severe COVID-19 infection. Despite the continued use of Favipiravir and hydroxychloroquine, which inhibit retinol metabolism, and the presence of vitamins, including vitamin A, in the nutritional formulas administered, the serum retinol level was significantly lower in severe COVID-19 cases. | Sarohan et al., 2022 [45] | |
Vitamin E | Open, quasi-experimental, analytical, prospective, and longitudinal (before–after) study | Treatment with antioxidant supplements, such as vitamins C and E, among others, plus pentoxifylline (Px) reversed low levels of LPO and inflammatory mediators (IL-6, CRP, and PCT). Improving survival scores including SOFA, Apache II, SAPS II, COVIDGRAM, and GCS. | Chavarría et al., 2021 [46] |
Randomized controlled clinical trial | Significant changes were detected in serum levels of vitamins, ESR, CRP, IL6, TNF-a, and SOFA score after intervention compared with the control group. The prolonged hospitalization rate to more than 7 days was significantly lower in the intervention group. However, the effect on mortality showed no significant difference. | Beigmohammadi et al., 2021 [47] | |
Vitamin C | Systematic review and meta-analysis of Randomized controlled clinical trials | VC treatment didn’t reduce mortality, ICU length of stay, hospital length of stay or need for invasive mechanical ventilation. | Rawat et al., 2021 [48] |
Observational study | VC plasma concentration in patients with COVID-19 was almost 5-fold lower than that in healthy volunteers. Thus, supplementation is considered highly essential. | Xing et al., 2021 [49] | |
Randomized controlled clinical trial | VC supplementation resulted in a higher survival duration. There was a linear association between the number of days of vitamin C intake and survival duration. Level of serum K+ was lower in the patients compared with the control group, which also seems to be related to longer survival. | Majidi et al., 2021 [50] | |
Open-label, randomized controlled clinical trial | After 3 days of hospitalization, patients receiving high doses of VC in addition to conventional treatment had lower temperature and higher peripheral capillary oxygen saturations, but the length of hospitalization was also higher. | JamaliMoghadamSiahkali et al., 2021 [51] | |
Retrospective study | VC supplementation in addition to conventional treatment in ICU patients was associated with a lower incidence of thrombosis. | Al Sulaiman et al., 2021 [52] | |
Randomized controlled clinical trial | Patients treated with VC plus standard treatment had higher oxygen saturation and lower respiratory rate. They also showed less lung involvement measured on chest CT. | Tehrani et al., 2022 [53] | |
Randomized controlled clinical trial | Patients taking VC showed no better results than those taking melatonin or pacebo. | Fogleman et al., 2022 [54] | |
Randomized controlled clinical trial | Patients treated with VC achieved a 50% reduction in a shorter time than patients with standard treatment. | Thomas et al., 2021 [55] | |
Open label, randomized clinical trial | Patients treated with a combination of Zn+VC had higher levels of IgG anti SARS-CoV-2 and higher levels of transitional B cells | Quek et al., 2022 [56] | |
Single-blind randomized controlled trial | Patients with long COVID treated with VC+L-arginine for 28 days improved walking performance, muscle hand strength, endothelial-vascular function and fatigue. | Tosato et al., 2022 [57] | |
Randomized controlled trial | After 28 days of supplementation with l-arginine plus vitamin C, there was a significant increase in serum l-arginine concentrations and the l-arginine/ADMA ratio compared to the placebo group. | Calvani et al., 2023 [58] | |
Melatonin | Randomized controlled clinical trial | RCT in healthcare workers with high exposure to SARS-CoV-2 using oral melatonin (2 mg/day for 12 weeks) prophylactically to prevent SARS-CoV-2 infection. The results showed that prophylactic oral melatonin administration was not effective in preventing SARS-CoV-2 infection in healthcare workers. | García-García et al., 2022 [59] |
Randomized controlled clinical trial | The mortality rate observed in patients treated with melatonin (test group) was significantly lower (67%) than in the control group (94%). Likewise, the need for invasive mechanical ventilation (IMV) was significantly lower in the test group (51.4%) than in the control group (70.9%), like the mean number of days of hospitalization (15 days, test group; 21 days, control group). | Ameri et al., 2022 [60] | |
Multicenter retrospective observational study | This observational restrospective study failed to observe a reduction in mortality in adult patients hospitalized for COVID-19 who were treated with a mean melatonin dose of 2.1 mg for a mean of 15 days. | Sánchez-Rico et al., 2022 [61] | |
Randomized controlled clinical trial | RCT using high doses of melatonin (21 mg/day) as adjuvant therapy in patients intubated for COVID-19. Although C-reactive protein (CRP) levels decreased significantly in the melatonin-treated group, indicating a decrease in the inflammatory response, they did not observe significant differences in the mortality rate, nor in the duration of mechanical ventilation in these patients with respect to the control group. | Alizadeh et al., 2022 [62] | |
Randomized controlled clinical trial | The use of oral melatonin at low doses (3 mg, 3 times/day) in patients hospitalized for COVID-19 (test group) had a significant effect (p < 0.05) on the decrease of cough, dyspnea, fatigue, and CRP levels compared to the control group (conventional treatment). | Farnoosh et al., 2022 [63] | |
Randomized controlled clinical trial (RCT) | The administration of low doses of oral melatonin (3 mg before bedtime) in patients hospitalized for COVID-19 showed a significant improvement in the quality of sleep (p < 0.001), as well as in the oxygen saturation levels (p = 0.003) of these patients. | Mousavi et al., 2021 [64] | |
Randomized controlled clinical trial | The results showed a significant decrease (p < 0.05) in the occurrence of thrombosis and sepsis in patients in the test group (melatonin), as well as a significantly lower mortality rate (p < 0.05). | Hasan et al., 2022 [65] | |
Randomized controlled clinical trial | They observed that patients treated with oral vitamin C (1000 mg/day) did not obtain a significant improvement in symptomatology with respect to the placebo group. However, the group treated with oral melatonin (10 mg/day) obtained better results with respect to symptomatology improvement (p < 0.003) and quality of life improvement with respect to the vitamin C group and placebo group (p < 0.005). | Fogleman et al., 2022 [54] | |
Randomized clinical trial | Melatonin significantly improved clinical status (p < 0.05) (mortality rate, number of days to hospital discharge and time to clinical status improvement) with a safe profile in patients with severe COVID-19 pneumonia. | Ameri et al., 2023 [66] | |
Lactoferrin | Randomized controlled clinical trial | The results showed that patients with COVID-19 treated with oral liposomal bovine lactoferrin (bLf) (1000 mg/day) and intranasal bLf (16 mg/day) have an earlier SARS-CoV-2 RNA negative conversion. Moreover, this treatment achieved a decrease in IL-6 and D dimers and improved the symptoms. | Campione et al., 2021 [67] |
Prospective observational study | Patients with COVID-19 were treated at home with 32 mg of Lf and 12 mg of vitamin C (four or six doses per day for 10 days). The authors observed a complete recession of symptoms after 5 days of treatment. | Serrano et al., 2020 [68] | |
Randomized controlled clinical trial | After administration of Lf at a dose of 400 mg/day, the authors observed an increase in haemoglobin, white blood cell and platelet counts. In addition, improvements in symptoms such as cough, headache, fever and loss of taste were observed in patients with COVID-19. | Algahtani et al., 2021 [69] | |
Retrospective observational study | The addition of bLf at doses of 400 mg/day in asymptomatic, 600 mg/day in mild symptomatic and 1000 mg in moderate symptomatic patients accelerated SARS-CoV-2 RNA negativation. In addition, symptom attenuation was observed in elderly patients. | Rosa et al., 2021 [70] | |
Randomized controlled clinical trial | A comparison was made between daily supplementation with 600 mg of enteral bLF and a placebo over 90 days. bLF had no significant impact on the time to symptomatic infection. Additionally, there were no notable differences in secondary outcomes such as severity, frequency, and duration of symptomatic infection. | Navarro et al., 2023 [71] | |
Randomized controlled clinical trial | No differences were observed between lactoferrin (800 mg) and placebo in the primary outcomes: the proportion of deaths or ICU admissions, the proportion of discharges, or the National Early Warning Score 2. | Matino et al., 2023 [72] | |
Curcumin | Randomized controlled clinical trial | Curcumin had anti-inflammatory effects in asymptomatic or mildly symptomatic COVID-19 patients, as evidenced by a relative reduction in event rates, fewer instances of antipyretic medication use, and a significant decrease in subclinical body temperature. | Kishimoto et al., 2024 [73] |
Randomized controlled clinical trial | A significant reduction in C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) levels from baseline in the nano-curcumin group were observed by day 7. After 14 days, levels of D-dimer, CRP, serum ferritin, ESR, and inflammatory cytokines decreased more markedly in the nano-curcumin-treated group. | Sadeghizadeh et al., 2023 [74] | |
Controlled clinical trial | These results suggest that 4 weeks of curcumin supplementation resulted in significantly lower concentrations of proinflammatory cytokines in adults who recovered from COVID-19 infection and were subsequently vaccinated. | Fessler et al., 2023 [75] | |
Controlled clinical trial | A significant difference in the expression of IFN-γ, IL-1β, and IL-6 was reported between the nano-curcumin and control groups. | Asadirad et al., 2022 [76] | |
Randomized controlled clinical trial | The findings indicate that nanocurcumin amplifies the anti-inflammatory effects when used alongside standard COVID-19 treatment, supporting recovery from the acute inflammatory phase in hospitalized patients with mild-to-moderate disease severity. | Ahmadi et al., 2023 [77] | |
Luteolin | Randomized controlled clinical trial | Their results showed that olfactory training plus once daily with palmitoylethanolamide and luteolin resulted in greater olfactory recovery than either therapy alone in patients with long-term olfactory function due to COVID-19 | Di Stadio et al., 2023 [78] |
Randomized controlled clinical trial | The intervention group demonstrated significantly greater improvements in olfactory threshold, discrimination, and identification scores compared to the control group. | Di Stadio et al., 2022 [79] | |
Longitudinal study | Treatment with palmitoylethanolamide and luteolin leads to improvement in the quantitative or qualitative measures of olfactory dysfunction or relief from mental clouding in patients affected by long COVID-19. | De Luca et al., 2022 [80] | |
Ginger | Randomized controlled clinical trial | The intervention group experienced greater improvement in coughing, dyspnea, and muscle pain. However, there was no significant difference between the two groups regarding other symptoms. | Mesri et al., 2021 [81] |
Randomized controlled clinical trial | The results showed that theses compunds, Withania somnifera (L.) and Zingiber officinale Roscoe, could effectively reduce the duration of clinical recovery and improve time for viral clearance in mild and moderate COVID-19. | Singh et al., 2023 [82] | |
Allicin | Randomized controlled clinical trial | Allicin supplementation (L-cysteine/90 mg/kg), administered three times daily for two weeks, could significantly influence the improvement of signs and symptoms of SARS-CoV-2 infection (cough, dyspnea and myalgias). | Yaghoubian et al., 2021 [83] |
Magnesium | Clinical trial | After the treatment of 17 patients with the combined therapy, it was found that those who had received the supplementation therapy had an 87% lower risk of requiring oxygen therapy, and an 87% lower risk of requiring intensive care. | Tan et al., 2020 [84] |
Clinical trial | The results showed that patients with additional magnesium supplementation therapy had lower oxygen therapy requirements, with improvements in oxygen saturation. | Rostami et al., 2024 [85] | |
Zinc | Clinical trial | The results of this study showed a lower rate of infection in the experimental arm, with 15% SARS-CoV-2 infection in the control group and 0% in the experimental group. | Margolin et al., 2021 [86] |
Randomized controlled clinical trial | The results highlighted worse outcomes in terms of patient outcome in the experimental group compared to the control. | Patel et al., 2021 [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Acedo, A.; Manzano-Moreno, F.J.; García-Recio, E.; Ruiz, C.; Luna-Bertos, E.d.; Costela-Ruiz, V.J. Assessment of Supplementation with Different Biomolecules in the Prevention and Treatment of COVID-19. Nutrients 2024, 16, 3070. https://doi.org/10.3390/nu16183070
González-Acedo A, Manzano-Moreno FJ, García-Recio E, Ruiz C, Luna-Bertos Ed, Costela-Ruiz VJ. Assessment of Supplementation with Different Biomolecules in the Prevention and Treatment of COVID-19. Nutrients. 2024; 16(18):3070. https://doi.org/10.3390/nu16183070
Chicago/Turabian StyleGonzález-Acedo, Anabel, Francisco Javier Manzano-Moreno, Enrique García-Recio, Concepción Ruiz, Elvira de Luna-Bertos, and Víctor Javier Costela-Ruiz. 2024. "Assessment of Supplementation with Different Biomolecules in the Prevention and Treatment of COVID-19" Nutrients 16, no. 18: 3070. https://doi.org/10.3390/nu16183070
APA StyleGonzález-Acedo, A., Manzano-Moreno, F. J., García-Recio, E., Ruiz, C., Luna-Bertos, E. d., & Costela-Ruiz, V. J. (2024). Assessment of Supplementation with Different Biomolecules in the Prevention and Treatment of COVID-19. Nutrients, 16(18), 3070. https://doi.org/10.3390/nu16183070