The Evaluation of Selected Trace Elements in Blood, Serum and Blood Cells of Type 2 Diabetes Patients with and without Renal Disorder
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Results of Chromium Determination in Whole Blood, Serum, and Blood Cells
3.2. Results of Nickel Determination in Whole Blood, Serum, and Blood Cells
3.3. Results of Cobalt Determination in Whole Blood, Serum, and Blood Cells
3.4. Results of Manganese Determination in Whole Blood, Serum, and Blood Cells
3.5. Results of Zinc Determination in Whole Blood, Serum, and Blood Cells
3.6. Results of Assessment of Elemental Contents in the Diet of Diabetic and Healthy People
4. Discussion
4.1. Chromium
4.2. Nickel
4.3. Cobalt
4.4. Manganese
4.5. Zinc
4.6. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global. Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Ruze, R.; Liu, T.; Zou, X.; Song, J.; Chen, Y.; Xu, R.; Yin, X.; Xu, Q. Obesity and Type 2 Diabetes Mellitus: Connections in Epidemiology. Pathogenesis. and Treatments. Front. Endocrinol. 2023, 14, 1161521. [Google Scholar] [CrossRef] [PubMed]
- Magkos, F.; Hjorth, M.F.; Astrup, A. Diet and Exercise in the Prevention and Treatment of Type 2 Diabetes Mellitus. Nat. Rev. Endocrinol. 2020, 16, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Ngala, R.A.; Awe, M.A.; Nsiah, P. The Effects of Plasma Chromium on Lipid Profile. Glucose Metabolism and Cardiovascular Risk in Type 2 Diabetes Mellitus. A Case—Control Study. PLoS ONE 2018, 13, e0197977. [Google Scholar] [CrossRef]
- Kazi, T.G.; Afridi, H.I.; Kazi, N.; Jamali, M.K.; Arain, M.B.; Jalbani, N.; Kandhro, G.A. Copper, Chromium, Manganese, Iron, Nickel, and Zinc Levels in Biological Samples of Diabetes Mellitus Patients. Biol. Trace Elem. Res. 2008, 122, 1–18. [Google Scholar] [CrossRef]
- Bjørklund, G.; Dadar, M.; Pivina, L.; Doşa, M.D.; Semenova, Y.; Aaseth, J. The Role of Zinc and Copper in Insulin Resistance and Diabetes Mellitus. Curr. Med. Chem. 2020, 27, 6643–6657. [Google Scholar] [CrossRef]
- Hansen, A.F.; Simić, A.; Åsvold, B.O.; Romundstad, P.R.; Midthjell, K.; Syversen, T.; Flaten, T.P. Trace Elements in Early Phase Type 2 Diabetes Mellitus—A Population-Based Study. The HUNT Study in Norway. J. Trace Elem. Med. Biol. 2017, 40, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Kautzky-Willer, A.; Harreiter, J.; Pacini, G. Sex and Gender Differences in Risk. Pathophysiology and Complications of Type 2 Diabetes Mellitus. Endocr. Rev. 2016, 37, 278–316. [Google Scholar] [CrossRef]
- Springmann, M.; Wiebe, K.; Mason-D’Croz, D.; Sulser, T.B.; Rayner, M.; Scarborough, P. Health and Nutritional Aspects of Sustainable Diet Strategies and Their Association with Environmental Impacts: A Global Modelling Analysis with Country-Level Detail. Lancet Planet. Health 2018, 2, e451–e461. [Google Scholar] [CrossRef]
- Toi, P.L.; Anothaisintawee, T.; Chaikledkaew, U.; Briones, J.R.; Reutrakul, S.; Thakkinstian, A. Preventive Role of Diet Interventions and Dietary Factors in Type 2 Diabetes Mellitus: An Umbrella Review. Nutrients 2020, 12, 2722. [Google Scholar] [CrossRef]
- Petroni, M.L.; Brodosi, L.; Marchignoli, F.; Sasdelli, A.S.; Caraceni, P.; Marchesini, G.; Ravaioli, F. Nutrition in Patients with Type 2 Diabetes: Present Knowledge and Remaining Challenges. Nutrients 2021, 13, 2748. [Google Scholar] [CrossRef]
- Jarosz, M.; Jarosz, M. Normy Żywienia Dla Populacji Polskiej—Nowelizacja; Instytut Żywności i Żywienia: Warszawa, Poland, 2012; ISBN 978-83-86060-83-2. [Google Scholar]
- Reynolds, A.; Mitri, J. Dietary Advice For Individuals with Diabetes. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com. Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Ko, G.; Kalantar-Zadeh, K.; Goldstein-Fuchs, J.; Rhee, C. Dietary Approaches in the Management of Diabetic Patients with Kidney Disease. Nutrients 2017, 9, 824. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee; ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Beverly, E.A.; Bruemmer, D.; Collins, B.S.; Darville, A.; Ekhlaspour, L.; Hassanein, M.; et al. 5. Facilitating Positive Health Behaviors and Well-Being to Improve Health Outcomes: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S77–S110. [Google Scholar] [CrossRef]
- Araszkiewicz, A.; Bandurska-Stankiewicz, E.; Borys, S.; Broncel, M.; Budzyński, A.; Cyganek, K.; Cypryk, K.; Cyranka, K.; Czupryniak, L.; Dzida, G.; et al. Standards of Care in Diabetes. The Position of Diabetes Poland—2024. Curr. Top. Diabetes 2024, 3, 1–348. [Google Scholar] [CrossRef]
- Reddy, S.; Anoop, S.; Jebasingh, F.K.; Dasgupta, R.; Joseph, M.; Saravanan, B.; Volena, R.; Mani, T.; Somasundaram, S.; Bhattacharji, S.; et al. Differentials in Dietary Intake of Macro and Micronutrients in Patients with Type 2 Diabetes and Foot Ulcers: Observations from a Pilot Study. Clin. Nutr. ESPEN 2022, 47, 170–176. [Google Scholar] [CrossRef]
- Anderson, R.A. Chromium Metabolism and Its Role in Disease Processes in Man. Clin. Physiol. Biochem. 1986, 4, 31–41. [Google Scholar]
- Vincent, J.B.; Lukaski, H.C. Chromium. Adv. Nutr. 2018, 9, 505–506. [Google Scholar] [CrossRef]
- Havel, P.J. A Scientific Review: The Role of Chromium in Insulin Resistance. Diabetes Educ. 2004, 3, 2–14. [Google Scholar]
- Zhao, F.; Pan, D.; Wang, N.; Xia, H.; Zhang, H.; Wang, S.; Sun, G. Effect of Chromium Supplementation on Blood Glucose and Lipid Levels in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Biol. Trace Elem. Res. 2022, 200, 516–525. [Google Scholar] [CrossRef]
- Davies, S.; Howard, J.M.; Hunnisett, A.; Howard, M. Age-Related Decreases in Chromium Levels in 51.665 Hair. Sweat. and Serum Samples from 40.872 Patients—Implications for the Prevention of Cardiovascular Disease and Type II Diabetes Mellitus. Metabolism 1997, 46, 469–473. [Google Scholar] [CrossRef]
- Rajendran, K. Serum Chromium Levels in Type 2 Diabetic Patients and Its Association with Glycaemic Control. J. Clin. Diagn. Res. 2015, 9, OC05. [Google Scholar] [CrossRef]
- Eva, H.; Akter, Q.S.; Alam, M.K. Relationship between Glycemic Status and Serum Chromium Level with Type 2 Diabetes Mellitus. Mymensingh Med. J. MMJ 2020, 29, 183–186. [Google Scholar] [PubMed]
- Yakout, S.; Faqeeh, F.; Al-Attas, O.; Hussain, S.D.; Saadawy, G.M.; Alokail, M.S. Patterns of Essential Trace Elements (Cr. Mn. Ni. and Se) in Saudi Patients with Type 2 Diabetes Mellitus. Am. J. Transl. Res. 2022, 14, 8175. [Google Scholar] [PubMed]
- Chen, S.; Jin, X.; Shan, Z.; Li, S.; Yin, J.; Sun, T.; Luo, C.; Yang, W.; Yao, P.; Yu, K.; et al. Inverse Association of Plasma Chromium Levels with Newly Diagnosed Type 2 Diabetes: A Case-Control Study. Nutrients 2017, 9, 294. [Google Scholar] [CrossRef]
- Rükgauer, M.; Zeyfang, A. Chromium Determinations in Blood Cells. Biol. Trace Elem. Res. 2002, 86, 193–202. [Google Scholar] [CrossRef]
- Lin, C.-C.; Shih, C.-T.; Lee, C.-H.; Huang, Y.-L. Changes in Trace Elements During Early Stages of Chronic Kidney Disease in Type 2 Diabetic Patients. Biol. Trace Elem. Res. 2018, 186, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Makhlough, A.; Makhlough, M.; Shokrzadeh, M.; Mohammadian, M.; Sedighi, O.; Faghihan, M. Comparing the Levels of Trace Elements in Patients With Diabetic Nephropathy and Healthy Individuals. Nephro-Urol. Mon. 2015, 7, e28576. [Google Scholar] [CrossRef]
- Chen, Y.W.; Yang, C.Y.; Huang, C.F.; Hung, D.Z.; Leung, Y.M.; Liu, S.H. Heavy Metals. Islet Function and Diabetes Development. Islets 2009, 1, 169–176. [Google Scholar] [CrossRef]
- Mansouri, B.; Rezaei, A.; Sharafi, K.; Azadi, N.; Pirsaheb, M.; Rezaei, M.; Nakhaee, S. Mixture Effects of Trace Element Levels on Cardiovascular Diseases and Type 2 Diabetes Risk in Adults Using G-Computation Analysis. Sci. Rep. 2024, 14, 5743. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, J.; Yao, Z.; Zhang, H.; Wang, Z.; Lei, J.; Guo, H. The Relationship between Plasma Nickel Concentrations and Type 2 Diabetes Mellitus Risk: A Protective Effect within a Specific Range. J. Trace Elem. Med. Biol. 2024, 82, 127362. [Google Scholar] [CrossRef]
- Cartañà, J.; Arola, L. Nickel-Induced Hyperglycaemia: The Role of Insulin and Glucagon. Toxicology 1992, 71, 181–192. [Google Scholar] [CrossRef]
- Serdar, M.; Bakir, F.; Hasimi, A.; Celik, T.; Akin, O.; Kenar, L.; Aykut, O.; Yildirimkaya, M. Trace and Toxic Element Patterns in Nonsmoker Patients with Noninsulin-Dependent Diabetes Mellitus. Impaired Glucose Tolerance. and Fasting Glucose. Int. J. Diabetes Dev. Ctries. 2009, 29, 35. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Vecoli, C.; Neglia, D.; Tavazzi, B.; Lazzarino, G.; Novelli, M.; Masiello, P.; Wang, Y.; Puri, N.; Paolocci, N.; et al. Cobalt-Protoporphyrin Improves Heart Function by Blunting Oxidative Stress and Restoring NO Synthase Equilibrium in an Animal Model of Experimental Diabetes. Front. Physiol. 2012, 3, 160. [Google Scholar] [CrossRef]
- Cao, B.; Fang, C.; Peng, X.; Li, X.; Hu, X.; Xiang, P.; Zhou, L.; Liu, H.; Huang, Y.; Zhang, Q.; et al. U-Shaped Association between Plasma Cobalt Levels and Type 2 Diabetes. Chemosphere 2021, 267, 129224. [Google Scholar] [CrossRef]
- Vasudevan, H.; McNeill, J.H. Chronic Cobalt Treatment Decreases Hyperglycemia in Streptozotocin-Diabetic Rats. BioMetals 2007, 20, 129–134. [Google Scholar] [CrossRef]
- Luan, F.; Chen, Y.; Xu, Y.; Jiang, X.; Liu, B.; Wang, Y. Associations between Whole Blood Trace Elements Concentrations and HbA1c Levels in Patients with Type 2 Diabetes. BioMetals 2022, 35, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Ohtomo, S.; Nangaku, M.; Izuhara, Y.; Takizawa, S.; Strihou, C.V.Y.D.; Miyata, T. Cobalt Ameliorates Renal Injury in an Obese. Hypertensive Type 2 Diabetes Rat Model. Nephrol. Dial. Transplant. 2007, 23, 1166–1172. [Google Scholar] [CrossRef]
- Aguirre, J.D.; Culotta, V.C. Battles with Iron: Manganese in Oxidative Stress Protection. J. Biol. Chem. 2012, 287, 13541–13548. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Wu, X.; Han, T.; Duan, W.; Liu, L.; Qi, J.; Niu, Y.; Na, L.; Sun, C. Dietary Manganese and Type 2 Diabetes Mellitus: Two Prospective Cohort Studies in China. Diabetologia 2018, 61, 1985–1995. [Google Scholar] [CrossRef]
- Gong, J.H.; Lo, K.; Liu, Q.; Li, J.; Lai, S.; Shadyab, A.H.; Arcan, C.; Snetselaar, L.; Liu, S. Dietary Manganese. Plasma Markers of Inflammation. and the Development of Type 2 Diabetes in Postmenopausal Women: Findings From the Women’s Health Initiative. Diabetes Care 2020, 43, 1344–1351. [Google Scholar] [CrossRef]
- Sanjeevi, N.; Freeland-Graves, J.; Beretvas, N.S.; Sachdev, P.K. Trace Element Status in Type 2 Diabetes: A Meta-Analysis. J. Clin. Diagn. Res. 2018, 12, OE01. [Google Scholar] [CrossRef]
- Koh, E.S.; Kim, S.J.; Yoon, H.E.; Chung, J.H.; Chung, S.; Park, C.W.; Chang, Y.S.; Shin, S.J. Association of Blood Manganese Level with Diabetes and Renal Dysfunction: A Cross-Sectional Study of the Korean General Population. BMC Endocr. Disord. 2014, 14, 24. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.M.; Uriu-Hare, J.Y.; Olin, K.L.; Oster, M.H.; Anawalt, B.D.; Critchfield, J.W.; Keen, C.L. Copper. Zinc. Manganese. and Magnesium Status and Complications of Diabetes Mellitus. Diabetes Care 1991, 14, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Al-Maroof, R.A.; Al-Sharbatti, S.S. Serum Zinc Levels in Diabetic Patients and Effect of Zinc Supplementation on Glycemic Control of Type 2 Diabetics. Saudi Med. J. 2006, 27, 344–350. [Google Scholar] [PubMed]
- Fernández-Cao, J.C.; Warthon-Medina, M.; Moran, V.H.; Arija, V.; Doepking, C.; Serra-Majem, L.; Lowe, N.M. Zinc Intake and Status and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 1027. [Google Scholar] [CrossRef]
- Marreiro, D.D.N.; Geloneze, B.; Tambascia, M.A.; Lerário, A.C.; Halpern, A.; Cozzolino, S.M.F. Effect of Zinc Supplementation on Serum Leptin Levels and Insulin Resistance of Obese Women. Biol. Trace Elem. Res. 2006, 112, 109–118. [Google Scholar] [CrossRef]
Chromium [µg/L] | Manganese [µg/L] | Cobalt [µg/L] | Nickel [µg/L] | Zinc [mg/L] | |
---|---|---|---|---|---|
Declared content in the reference serum | 4.8 | 19.9 | 3.2 | 9.8 | 2.440 |
Determined content in the reference serum | 4.20 ± 0.11 | 19.00 ± 0.03 | 3.2 ± 0.18 | 9.2 ± 0.31 | 2.742 ± 0.311 |
Range of 95% compliance | 4.4–5.2 | 18.8–21.0 | 3.0–3.4 | 9.2–10.4 | 2.107–2.773 |
Acceptable range | 4.0–5.6 | 17.7–22.1 | 2.8–3.6 | 8.6–11.0 | 1.774–3.106 |
Element | Sample | Control | T2DM and GFR > 60 | T2DM and GFR < 60 | |
---|---|---|---|---|---|
Chromium [µg/L] | All | Whole blood | 6.85 ± 2.80 | 7.32 ± 3.07 | 9.55 ± 4.36 ** |
Serum | 4.8 ± 3.09 | 4.97 ± 2.84 | 11.98 ± 5.1 ** | ||
Erythrocytes | 6.52 ± 3.05 | 8.017 ± 3.371 | 11.44 ± 3.62 ** | ||
F | Whole blood | 7.70 ± 3.31 | 7.90 ± 3.05 | 10.30 ± 4.09 * | |
Serum | 4.10 ± 3.10 | 5.30 ± 2.62 | 13.75 ± 5.10 * | ||
Erythrocytes | 6.48 ± 3.23 | 7.50 ± 3.33 | 10.54 ± 3.44 ** | ||
M | Whole blood | 6.00 ± 2.29 | 6.50 ± 3.11 | 7.50 ± 5.11 ** | |
Serum | 5.50 ± 3.08 | 4.50 ± 3.16 | 7.10 ± 5.10 | ||
Erythrocytes | 6.56 ± 2.87 | 8.75 ± 3.43 | 13.91 ± 4.12 ** | ||
Nickel [µg/L] | All | Whole blood | 4.1 ± 1.81 | 8.31 ± 3.05 ** | 11.37 ± 4.59 ** |
Serum | 10.75 ± 3.81 | 10.03 ± 3.21 | 9.31 ± 3.49 | ||
Erythrocytes | 1 ± 0.345 | 5.943 ± 2.618 ** | 14.70 ± 8.87 ** | ||
F | Whole blood | 3.1 ± 1.37 | 12.9 ± 4.33 ** | 13.8 ± 5.36 ** | |
Serum | 13.7 ± 4.23 | 15.7 ± 5.25 | 12.00 ± 4.31 | ||
Erythrocytes | 1.00 ± 0.30 | 9.03 ± 3.45 ** | 16.29 ± 9.23 ** | ||
M | Whole blood | 5.1 ± 2.24 | 1.80 ± 1.23 ** | 4.7 ± 2.47 | |
Serum | 7.80 ± 3.38 | 2.00 ± 0.31 ** | 1.90 ± 1.24 ** | ||
Erythrocytes | 1.00 ± 0.39 | 1.57 ± 1.44 | 10.34 ± 7.88 | ||
Cobalt [µg/L] | All | Whole blood | 6.96 ± 2.84 | 7.37 ± 3.91 | 6.79 ± 4.39 |
Serum | 1.20 ± 0.8 | 1.22 ± 0.64 | 1.42 ± 1.11 | ||
Erythrocytes | 15.68 ± 6.36 | 16.67 ± 6.42 | 15.62 ± 7.60 | ||
F | Whole blood | 7.02 ± 3.15 | 6.96 ± 3.33 | 6.78 ± 4.32 | |
Serum | 1.10 ± 0.90 | 1.30 ± 0.60 | 1.50 ± 1.30 | ||
Erythrocytes | 16.71 ± 6.71 | 16.53 ± 5.99 | 16.04 ± 7.99 | ||
M | Whole blood | 6.90 ± 2.53 | 7.94 ± 4.73 | 6.81 ± 4.57 | |
Serum | 1.30 ± 0.70 | 1.10 ± 0.70 | 1.20 ± 0.60 | ||
Erythrocytes | 14.64 ± 6.01 | 16.88 ± 7.02 | 14.47 ± 6.52 | ||
Manganese [µg/L] | All | Whole blood | 42.95 ± 7.56 | 46.21 ± 8.34 | 40.95 ± 9.36 |
Serum | 14 ± 6.11 | 16.43 ± 6.71 | 18.31 ± 7.22 * | ||
Erythrocytes | 95.82 ± 27.12 | 104 ± 43.5 | 93.69 ± 39.94 | ||
F | Whole blood | 42.1 ± 6.7 | 44.6 ± 8.3 | 41.2 ± 9.4 | |
Serum | 16.6 ± 6.0 | 17.3 ± 7.0 | 18.1 ± 7.4 | ||
Erythrocytes | 99.5 ± 23.3 | 105.2 ± 44.5 | 97.1 ± 39.7 | ||
M | Whole blood | 43.8 ± 8.4 | 48.5 ± 8.4 | 40.2 ± 9.4 | |
Serum | 11.4 ± 6.2 | 15.2 ± 6.2 | 18.9 ± 6.8 ** | ||
Erythrocytes | 92.1 ± 30.9 | 102.3 ± 42.1 | 84.5 ± 40.5 | ||
Zinc [mg/L] | All | Whole blood | 6.447 ± 3.441 | 4.563 ± 2.911 | 4.902 ± 3.000 |
Serum | 3.544 ± 1.999 | 1.641 ± 1.337 ** | 2.249 ± 1.507 * | ||
Erythrocytes | 6.447 ± 3.441 | 4.563 ± 2.911 | 4.902 ± 3.000 | ||
F | Whole blood | 6.788 ± 3.771 | 4.933 ± 2.921 | 4.780 ± 3.002 | |
Serum | 3.513 ± 2.001 | 1.752 ± 1.567 ** | 1.744 ± 1.211 ** | ||
Erythrocytes | 11.31 ± 5.56 | 9.33 ± 6.45 | 8.97 ± 5.21 | ||
M | Whole blood | 6.106 ± 3.111 | 4.040 ± 2.899 | 5.239 ± 2.998 | |
Serum | 3.575 ± 1.998 | 1.484 ± 1.011 ** | 3.637 ± 2.322 | ||
Erythrocytes | 8.96 ± 5.62 | 6.92 ± 4.45 | 7.05 ± 3.95 |
Trace Element | Control | T2DM with or without CKD | p | ||
---|---|---|---|---|---|
Average | SD | Average | SD | ||
Zn | 9.6 | 2.84 | 11.51 | 2.99 | <0.01 * |
Mn | 4.16 | 1.48 | 6.29 | 1.72 | <0.01 * |
Ni | 0.227 | 0.108 | 0.320 | 0.155 | <0.01 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosmalski, M.; Frankowski, R.; Leszczyńska, J.; Różycka-Kosmalska, M.; Pietras, T.; Majak, I. The Evaluation of Selected Trace Elements in Blood, Serum and Blood Cells of Type 2 Diabetes Patients with and without Renal Disorder. Nutrients 2024, 16, 2989. https://doi.org/10.3390/nu16172989
Kosmalski M, Frankowski R, Leszczyńska J, Różycka-Kosmalska M, Pietras T, Majak I. The Evaluation of Selected Trace Elements in Blood, Serum and Blood Cells of Type 2 Diabetes Patients with and without Renal Disorder. Nutrients. 2024; 16(17):2989. https://doi.org/10.3390/nu16172989
Chicago/Turabian StyleKosmalski, Marcin, Rafał Frankowski, Joanna Leszczyńska, Monika Różycka-Kosmalska, Tadeusz Pietras, and Iwona Majak. 2024. "The Evaluation of Selected Trace Elements in Blood, Serum and Blood Cells of Type 2 Diabetes Patients with and without Renal Disorder" Nutrients 16, no. 17: 2989. https://doi.org/10.3390/nu16172989
APA StyleKosmalski, M., Frankowski, R., Leszczyńska, J., Różycka-Kosmalska, M., Pietras, T., & Majak, I. (2024). The Evaluation of Selected Trace Elements in Blood, Serum and Blood Cells of Type 2 Diabetes Patients with and without Renal Disorder. Nutrients, 16(17), 2989. https://doi.org/10.3390/nu16172989