Dietary Carbohydrates, Genetic Susceptibility, and Gout Risk: A Prospective Cohort Study in the UK
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. Measurement of Dietary Carbohydrates Intake
2.3. Ascertainment of Gout
2.4. Genetic Risk Score Calculation
2.5. Measurements of Covariates and Biomarkers
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dehlin, M.; Jacobsson, L.; Roddy, E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 2020, 16, 380–390. [Google Scholar] [CrossRef]
- Kannuthurai, V.; Gaffo, A. Management of Patients with Gout and Kidney Disease: A Review of Available Therapies and Common Missteps. Kidney360 2023, 4, e1332–e1340. [Google Scholar] [CrossRef] [PubMed]
- Cipolletta, E.; Tata, L.J.; Nakafero, G.; Avery, A.J.; Mamas, M.A.; Abhishek, A. Association Between Gout Flare and Subsequent Cardiovascular Events among Patients with Gout. JAMA 2022, 328, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; McCormick, N.; Sayre, E.C.; Esdaile, J.M.; Lacaille, D.; Xie, H.; Choi, H.K.; Aviña-Zubieta, J.A. Trends of venous thromboembolism risk before and after diagnosis of gout: A general population-based study. Rheumatology 2020, 59, 1099–1107. [Google Scholar] [CrossRef]
- Thottam, G.E.; Krasnokutsky, S.; Pillinger, M.H. Gout and Metabolic Syndrome: A Tangled Web. Curr. Rheumatol. Rep. 2017, 19, 60. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, S.; Yuan, M.; Xu, Y.; Xu, H. Gout and Diet: A Comprehensive Review of Mechanisms and Management. Nutrients 2022, 14, 3525. [Google Scholar] [CrossRef]
- Liu, Y.S.; Wu, Q.J.; Lv, J.L.; Jiang, Y.T.; Sun, H.; Xia, Y.; Chang, Q.; Zhao, Y.H. Dietary Carbohydrate and Diverse Health Outcomes: Umbrella Review of 30 Systematic Reviews and Meta-Analyses of 281 Observational Studies. Front. Nutr. 2021, 8, 670411. [Google Scholar] [CrossRef]
- Ludwig, D.S.; Aronne, L.J.; Astrup, A.; de Cabo, R.; Cantley, L.C.; Friedman, M.I.; Heymsfield, S.B.; Johnson, J.D.; King, J.C.; Krauss, R.M.; et al. The carbohydrate-insulin model: A physiological perspective on the obesity pandemic. Am. J. Clin. Nutr. 2021, 114, 1873–1885. [Google Scholar] [CrossRef]
- Bazzano, L.A.; Hu, T.; Reynolds, K.; Yao, L.; Bunol, C.; Liu, Y.; Chen, C.S.; Klag, M.J.; Whelton, P.K.; He, J. Effects of low-carbohydrate and low-fat diets: A randomized trial. Ann. Intern. Med. 2014, 161, 309–318. [Google Scholar] [CrossRef]
- Seidelmann, S.B.; Claggett, B.; Cheng, S.; Henglin, M.; Shah, A.; Steffen, L.M.; Folsom, A.R.; Rimm, E.B.; Willett, W.C.; Solomon, S.D. Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. Lancet Public Health 2018, 3, e419–e428. [Google Scholar] [CrossRef]
- Yokose, C.; McCormick, N.; Rai, S.K.; Lu, N.; Curhan, G.; Schwarzfuchs, D.; Shai, I.; Choi, H.K. Effects of Low-Fat, Mediterranean, or Low-Carbohydrate Weight Loss Diets on Serum Urate and Cardiometabolic Risk Factors: A Secondary Analysis of the Dietary Intervention Randomized Controlled Trial (DIRECT). Diabetes Care 2020, 43, 2812–2820. [Google Scholar] [CrossRef]
- Carbohydrates. Available online: https://medlineplus.gov/ency/article/002469.htm (accessed on 4 January 2024).
- Li, R.; Yu, K.; Li, C. Dietary factors and risk of gout and hyperuricemia: A meta-analysis and systematic review. Asia Pac. J. Clin. Nutr. 2018, 27, 1344–1356. [Google Scholar] [CrossRef] [PubMed]
- Jamnik, J.; Rehman, S.; Blanco Mejia, S.; de Souza, R.J.; Khan, T.A.; Leiter, L.A.; Wolever, T.M.; Kendall, C.W.; Jenkins, D.J.; Sievenpiper, J.L. Fructose intake and risk of gout and hyperuricemia: A systematic review and meta-analysis of prospective cohort studies. BMJ Open 2016, 6, e013191. [Google Scholar] [CrossRef]
- Ayoub-Charette, S.; Liu, Q.; Khan, T.A.; Au-Yeung, F.; Blanco Mejia, S.; de Souza, R.J.; Wolever, T.M.; Leiter, L.A.; Kendall, C.; Sievenpiper, J.L. Important food sources of fructose-containing sugars and incident gout: A systematic review and meta-analysis of prospective cohort studies. BMJ Open 2019, 9, e024171. [Google Scholar] [CrossRef] [PubMed]
- FitzGerald, J.D.; Dalbeth, N.; Mikuls, T.; Brignardello-Petersen, R.; Guyatt, G.; Abeles, A.M.; Gelber, A.C.; Harrold, L.R.; Khanna, D.; King, C.; et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Care Res. 2020, 72, 744–760. [Google Scholar] [CrossRef] [PubMed]
- Lyu, L.C.; Hsu, C.Y.; Yeh, C.Y.; Lee, M.S.; Huang, S.H.; Chen, C.L. A case-control study of the association of diet and obesity with gout in Taiwan. Am. J. Clin. Nutr. 2003, 78, 690–701. [Google Scholar] [CrossRef]
- Lin, K.; McCormick, N.; Yokose, C.; Joshi, A.D.; Lu, N.; Curhan, G.C.; Merriman, T.R.; Saag, K.G.; Ridker, P.M.; Buring, J.E.; et al. Interactions between Genetic Risk and Diet Influencing Risk of Incident Female Gout: Discovery and Replication Analysis of Four Prospective Cohorts. Arthritis Rheumatol. 2023, 75, 1028–1038. [Google Scholar] [CrossRef]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef]
- Gao, M.; Jebb, S.A.; Aveyard, P.; Ambrosini, G.L.; Perez-Cornago, A.; Papier, K.; Carter, J.; Piernas, C. Associations between Dietary Patterns and Incident Type 2 Diabetes: Prospective Cohort Study of 120,343 UK Biobank Participants. Diabetes Care 2022, 45, 1315–1325. [Google Scholar] [CrossRef]
- Liu, B.; Young, H.; Crowe, F.L.; Benson, V.S.; Spencer, E.A.; Key, T.J.; Appleby, P.N.; Beral, V. Development and evaluation of the Oxford WebQ, a low-cost, web-based method for assessment of previous 24 h dietary intakes in large-scale prospective studies. Public Health Nutr. 2011, 14, 1998–2005. [Google Scholar] [CrossRef]
- Galante, J.; Adamska, L.; Young, A.; Young, H.; Littlejohns, T.J.; Gallacher, J.; Allen, N. The acceptability of repeat Internet-based hybrid diet assessment of previous 24-h dietary intake: Administration of the Oxford WebQ in UK Biobank. Br. J. Nutr. 2016, 115, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Perez-Cornago, A.; Pollard, Z.; Young, H.; van Uden, M.; Andrews, C.; Piernas, C.; Key, T.J.; Mulligan, A.; Lentjes, M. Description of the updated nutrition calculation of the Oxford WebQ questionnaire and comparison with the previous version among 207,144 participants in UK Biobank. Eur. J. Nutr. 2021, 60, 4019–4030. [Google Scholar] [CrossRef] [PubMed]
- Orliacq, J.; Pérez-Cornago, A.; Parry, S.A.; Kelly, R.K.; Koutoukidis, D.A.; Carter, J.L. Associations between types and sources of dietary carbohydrates and liver fat: A UK Biobank study. BMC Med. 2023, 21, 444. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.K.; Tong, T.Y.N.; Watling, C.Z.; Reynolds, A.; Piernas, C.; Schmidt, J.A.; Papier, K.; Carter, J.L.; Key, T.J.; Perez-Cornago, A. Associations between types and sources of dietary carbohydrates and cardiovascular disease risk: A prospective cohort study of UK Biobank participants. BMC Med. 2023, 21, 34. [Google Scholar] [CrossRef]
- Swan, G.E.; Powell, N.A.; Knowles, B.L.; Bush, M.T.; Levy, L.B. A definition of free sugars for the UK. Public Health Nutr. 2018, 21, 1636–1638. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef]
- McCullough, L.E.; Byrd, D.A. Total Energy Intake: Implications for Epidemiologic Analyses. Am. J. Epidemiol. 2023, 192, 1801–1805. [Google Scholar] [CrossRef]
- Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [Google Scholar] [CrossRef]
- Tin, A.; Marten, J.; Halperin Kuhns, V.L.; Li, Y.; Wuttke, M.; Kirsten, H.; Sieber, K.B.; Qiu, C.; Gorski, M.; Yu, Z.; et al. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat. Genet. 2019, 51, 1459–1474. [Google Scholar] [CrossRef]
- Qian, Y.; Xia, J.; Liu, K.Q.; Xu, L.; Xie, S.Y.; Chen, G.B.; Cong, P.K.; Khederzadeh, S.; Zheng, H.F. Observational and genetic evidence highlight the association of human sleep behaviors with the incidence of fracture. Commun. Biol. 2021, 4, 1339. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.B.; Chen, C.; Pan, X.F.; Guo, J.; Li, Y.; Franco, O.H.; Liu, G.; Pan, A. Associations of healthy lifestyle and socioeconomic status with mortality and incident cardiovascular disease: Two prospective cohort studies. BMJ Clin. Res. Ed. 2021, 373, n604. [Google Scholar] [CrossRef]
- Zykova, S.N.; Storhaug, H.M.; Toft, I.; Chadban, S.J.; Jenssen, T.G.; White, S.L. Cross-sectional analysis of nutrition and serum uric acid in two Caucasian cohorts: The AusDiab Study and the Tromso study. Nutr. J. 2015, 14, 49. [Google Scholar] [CrossRef]
- Juraschek, S.P.; McAdams-Demarco, M.; Gelber, A.C.; Sacks, F.M.; Appel, L.J.; White, K.J.; Miller, E.R., 3rd. Effects of Lowering Glycemic Index of Dietary Carbohydrate on Plasma Uric Acid Levels: The OmniCarb Randomized Clinical Trial. Arthritis Rheumatol. 2016, 68, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Teng, G.G.; Pan, A.; Yuan, J.M.; Koh, W.P. Food Sources of Protein and Risk of Incident Gout in the Singapore Chinese Health Study. Arthritis Rheumatol. 2015, 67, 1933–1942. [Google Scholar] [CrossRef] [PubMed]
- Yokose, C.; McCormick, N.; Lu, N.; Joshi, A.D.; Curhan, G.; Choi, H.K. Adherence to 2020 to 2025 Dietary Guidelines for Americans and the Risk of New-Onset Female Gout. JAMA Intern. Med. 2022, 182, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.T. Effects of diet, physical activity and performance, and body weight on incident gout in ostensibly healthy, vigorously active men. Am. J. Clin. Nutr. 2008, 87, 1480–1487. [Google Scholar] [CrossRef]
- Choi, H.K.; Atkinson, K.; Karlson, E.W.; Willett, W.; Curhan, G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N. Engl. J. Med. 2004, 350, 1093–1103. [Google Scholar] [CrossRef]
- Underwood, M. Sugary drinks, fruit, and increased risk of gout. BMJ Clin. Res. Ed. 2008, 336, 285–286. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Chen, B.; Li, J.; Yuan, X.; Li, J.; Wang, W.; Dai, T.; Chen, H.; Wang, Y.; et al. Dietary sugar consumption and health: Umbrella review. BMJ Clin. Res. Ed. 2023, 381, e071609. [Google Scholar] [CrossRef]
- Ebrahimpour-Koujan, S.; Saneei, P.; Larijani, B.; Esmaillzadeh, A. Consumption of sugar sweetened beverages and dietary fructose in relation to risk of gout and hyperuricemia: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2020, 60, 1–10. [Google Scholar] [CrossRef]
- Zhu, Q.; Yu, L.; Li, Y.; Man, Q.; Jia, S.; Zhou, Y.; Zuo, H.; Zhang, J. Association between Dietary Fiber Intake and Hyperuricemia among Chinese Adults: Analysis of the China Adult Chronic Disease and Nutrition Surveillance (2015). Nutrients 2022, 14, 1433. [Google Scholar] [CrossRef]
- Koguchi, T.; Tadokoro, T. Beneficial Effect of Dietary Fiber on Hyperuricemia in Rats and Humans: A Review. Int. J. Vitam. Nutr. Res. 2019, 89, 89–108. [Google Scholar] [CrossRef]
- Vieira, A.T.; Galvao, I.; Macia, L.M.; Sernaglia, E.M.; Vinolo, M.A.; Garcia, C.C.; Tavares, L.P.; Amaral, F.A.; Sousa, L.P.; Martins, F.S.; et al. Dietary fiber and the short-chain fatty acid acetate promote resolution of neutrophilic inflammation in a model of gout in mice. J. Leukoc. Biol. 2017, 101, 275–284. [Google Scholar] [CrossRef]
- Rai, S.K.; Fung, T.T.; Lu, N.; Keller, S.F.; Curhan, G.C.; Choi, H.K. The Dietary Approaches to Stop Hypertension (DASH) diet, Western diet, and risk of gout in men: Prospective cohort study. BMJ Clin. Res. Ed. 2017, 357, j1794. [Google Scholar] [CrossRef]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ Clin. Res. Ed. 2016, 353, i2716. [Google Scholar] [CrossRef]
- Hu, Y.; Willett, W.C.; Manson, J.A.E.; Rosner, B.; Hu, F.B.; Sun, Q. Intake of whole grain foods and risk of coronary heart disease in US men and women. BMC Med. 2022, 20, 192. [Google Scholar] [CrossRef]
- Hu, Y.; Ding, M.; Sampson, L.; Willett, W.C.; Manson, J.E.; Wang, M.; Rosner, B.; Hu, F.B.; Sun, Q. Intake of whole grain foods and risk of type 2 diabetes: Results from three prospective cohort studies. BMJ Clin. Res. Ed. 2020, 370, m2206. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.M.; Knuppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef]
- Aihemaitijiang, S.; Zhang, Y.; Zhang, L.; Yang, J.; Ye, C.; Halimulati, M.; Zhang, W.; Zhang, Z. The Association between Purine-Rich Food Intake and Hyperuricemia: A Cross-Sectional Study in Chinese Adult Residents. Nutrients 2020, 12, 3835. [Google Scholar] [CrossRef]
- Friedman, A.N.; Ogden, L.G.; Foster, G.D.; Klein, S.; Stein, R.; Miller, B.; Hill, J.O.; Brill, C.; Bailer, B.; Rosenbaum, D.R.; et al. Comparative effects of low-carbohydrate high-protein versus low-fat diets on the kidney. Clin. J. Am. Soc. Nephrol. 2012, 7, 1103–1111. [Google Scholar] [CrossRef]
- Zhang, Q.B.; Zhu, D.; Wen, Z.; Yi, T.; Li, Q.; Qing, Y.F.; Zhou, J.G. High Levels of Serum Uric Acid, Cystain C and Lipids Concentration and their Clinical Significance in Primary Gouty Arthritis Patients. Curr. Rheumatol. Rev. 2019, 15, 141–145. [Google Scholar] [CrossRef]
- Lee, D.H.; Steffen, L.M.; Jacobs, D.R., Jr. Association between serum gamma-glutamyltransferase and dietary factors: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am. J. Clin. Nutr. 2004, 79, 600–605. [Google Scholar] [CrossRef]
- Hernandez-Rubio, A.; Sanvisens, A.; Bolao, F.; Perez-Mana, C.; Garcia-Marchena, N.; Fernandez-Prendes, C.; Munoz, A.; Muga, R. Association of hyperuricemia and gamma glutamyl transferase as a marker of metabolic risk in alcohol use disorder. Sci. Rep. 2020, 10, 20060. [Google Scholar] [CrossRef]
- Piao, W.; Li, S.; Guo, Q.; Cheng, X.; Xu, X.; Zhao, L.; Yu, D. Bean and Nut Intake Were Protective Factors for Comorbid Hypertension and Hyperuricemia in Chinese Adults: Results from China Nutrition and Health Surveillance (2015–2017). Nutrients 2024, 16, 192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, R.; Dove, A.; Li, X.; Yang, H.; Li, S.; Wang, J.; Li, W.D.; Zhao, H.; Xu, W.; et al. Healthy lifestyle counteracts the risk effect of genetic factors on incident gout: A large population-based longitudinal study. BMC Med. 2022, 20, 138. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Energy-Adjusted Total Carbohydrate Intake (g/d) a | |||
---|---|---|---|---|
Q1 (<230.50) | Q2 (≥230.50 & <256.73) | Q3 (≥256.73 & <281.42) | Q4 (≥281.42) | |
N | 46,847 | 46,847 | 46,846 | 46,847 |
Age (years), median (IQR) | 57.0 (13.0) | 57.0 (12.0) | 57.0 (12.0) | 57.0 (14.0) |
Sex, n (%) | ||||
Female | 23,204 (49.5) | 26,754 (57.1) | 26,832 (57.3) | 23,804 (50.8) |
Male | 23,643 (50.5) | 20,093 (42.9) | 20,014 (42.7) | 23,043 (49.2) |
Ethnicity, n (%) | ||||
White | 45,349 (96.8) | 45,183 (96.4) | 45,023 (96.1) | 43,980 (93.9) |
Other | 1498 (3.2) | 1664 (3.6) | 1823 (3.9) | 2867 (6.1) |
Education, n (%) | ||||
High (college or university degree, professional qualifications) | 3064 (6.5) | 3350 (7.2) | 3611 (7.7) | 4273 (9.1) |
Medium (A level/AS level, O level/GCSE, CSE, NVQ or HND or HNC) | 19,731 (42.1) | 20,171 (43.1) | 20,182 (43.1) | 20,525 (43.8) |
Other | 24,052 (51.3) | 23,326 (49.8) | 23,053 (49.2) | 22,049 (47.1) |
BMI (kg/m2), median (IQR) | 26.7 (5.6) | 26.2 (5.5) | 26.0 (5.5) | 26.1 (5.5) |
Household income, n (%) | ||||
<£18,000 | 5641 (12.0) | 6688 (14.3) | 7653 (16.3) | 9057 (19.3) |
£18,000–£30,999 | 9926 (21.2) | 11,272 (24.1) | 11,881 (25.4) | 12,493 (26.7) |
£31,000–£51,999 | 13,422 (28.7) | 13,458 (28.7) | 13,465 (28.7) | 13,125 (28.0) |
£52,000–£100,000 | 12,920 (27.6) | 11,947 (25.5) | 10,934 (23.3) | 9965 (21.3) |
>£100,000 | 4938 (10.5) | 3482 (7.4) | 2913 (6.2) | 2207 (4.7) |
Physical activity, n (%) | ||||
No | 12,955 (27.7) | 12,500 (26.7) | 12,158 (26.0) | 11,394 (24.3) |
Yes | 33,892 (72.3) | 34,347 (73.3) | 34,688 (74.0) | 35,453 (75.7) |
Smoking status, n (%) | ||||
Never | 22,087 (47.1) | 25,986 (55.5) | 28,262 (60.3) | 29,179 (62.3) |
Previous | 19,525 (41.7) | 17,173 (36.7) | 15,576 (33.2) | 14,670 (31.3) |
Current | 5235 (11.2) | 3688 (7.9) | 3008 (6.4) | 2998 (6.4) |
Alcohol drinking status, n (%) | ||||
Never | 444 (0.9) | 938 (2.0) | 1598 (3.4) | 2663 (5.7) |
Previous | 637 (1.4) | 1077 (2.3) | 1521 (3.2) | 2365 (5.0) |
Current | 45,766 (97.7) | 44,832 (95.7) | 43,727 (93.3) | 41,819 (89.3) |
Energy (kJ/d), median (IQR) | 8777.2 (3259.0) | 8105.9 (2818.8) | 8098.0 (2726.8) | 8782.9 (3028.4) |
Energy-adjusted total sugars (g/d), median (IQR) | 96.4 (34.6) | 116.7 (31.5) | 131.2 (33.9) | 154.3 (46.3) |
Energy-adjusted free sugars (g/d), median (IQR) | 47.2 (28.6) | 55.6 (27.6) | 61.2 (30.37) | 70.0 (42.2) |
Energy-adjusted non-free sugars (g/d), median (IQR) | 45.1 (28.0) | 57.5 (28.7) | 66.2 (31.8) | 78.2 (41.8) |
Energy-adjusted total starch (g/d), median (IQR) | 107.2 (36.1) | 127.3 (31.3) | 137.0 (33.3) | 147.3 (43.3) |
Energy-adjusted refined grain starch (g/d), median (IQR) | 120.2 (108.0) | 153.1 (111.1) | 165.7 (121.7) | 181.8 (158.0) |
Energy-adjusted wholegrain starch (g/d), median (IQR) | 71.2 (100.8) | 94.3 (107.7) | 107.6 (113.9) | 118.9 (138.6) |
Energy-adjusted fiber (g/d), median (IQR) | 14.6 (5.8) | 16.9 (5.5) | 18.4 (6.0) | 20.2 (7.4) |
Quartiles of Energy-Adjusted Dietary Carbohydrates (g/d) a | Ptrend | Per IQR Increase | ||||
---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | |||
Energy-adjusted total carbohydrates (g/d) | <230.50 | ≥230.50 & <256.73 | ≥256.73 & <281.42 | ≥281.42 | ||
Cases/total person-years | 899/543,581 | 606/545,461 | 515/546,611 | 528/543,926 | 2548/2,179,579 | |
Model 1 | 1.00 (Ref.) | 0.74 (0.67–0.82) | 0.62 (0.56–0.69) | 0.59 (0.53–0.66) | 6.068 × 10−25 | 0.78 (0.75–0.82) |
Model 2 | 1.00 (Ref.) | 0.79 (0.71–0.88) | 0.69 (0.62–0.77) | 0.67 (0.60–0.74) | 3.073 × 10−15 | 0.83 (0.79–0.87) |
Energy-adjusted total sugars (g/d) | <100.97 | ≥100.97 & <122.91 | ≥122.91 & <146.72 | ≥146.72 | ||
Cases/total person-years | 809/544,383 | 596/546,234 | 541/545,863 | 602/543,099 | 2548/2,179,579 | |
Model 1 | 1.00 (Ref.) | 0.77 (0.69–0.86) | 0.71 (0.64–0.80) | 0.77 (0.69–0.86) | 2.525 × 10−7 | 0.88 (0.84–0.92) |
Model 2 | 1.00 (Ref.) | 0.84 (0.75–0.93) | 0.82 (0.74–0.92) | 0.89 (0.80–0.99) | 0.018 | 0.94 (0.90–0.98) |
Energy-adjusted free sugars (g/d) | <42.44 | ≥42.44 & <57.73 | ≥57.73 & <75.61 | ≥75.61 | ||
Cases/total person-years | 649/545,507 | 579/546,605 | 572/546,010 | 748/541,457 | 2548/2,179,579 | |
Model 1 b | 1.00 (Ref.) | 0.95 (0.85–1.06) | 0.90 (0.80–1.00) | 1.07 (0.96–1.18) | 0.355 | 1.04 (1.00–1.08) |
Model 2 c | 1.00 (Ref.) | 1.01 (0.90–1.13) | 0.99 (0.88–1.11) | 1.15 (1.04–1.28) | 0.014 | 1.06 (1.02–1.10) |
Energy-adjusted non-free sugars (g/d) | <43.88 | ≥43.88 & <60.70 | ≥60.70 & <80.04 | ≥80.04 | ||
Cases/total person-years | 889/542,125 | 625/545,734 | 538/546,193 | 496/545,527 | 2548/2,179,579 | |
Model 1 | 1.00 (Ref.) | 0.72 (0.65–0.80) | 0.64 (0.58–0.71) | 0.63 (0.56–0.70) | 4.423 × 10−19 | 0.78 (0.74–0.83) |
Model 2 | 1.00 (Ref.) | 0.78 (0.71–0.87) | 0.72 (0.64–0.80) | 0.70 (0.63–0.78) | 2.100 × 10−11 | 0.83 (0.79–0.88) |
Energy-adjusted total starch (g/d) | <109.29 | ≥109.29 & <129.26 | ≥129.26 & <149.44 | ≥149.44 | ||
Cases/total person-years | 821/541,939 | 608/545,723 | 542/546,855 | 577/545,062 | 2548/2,179,579 | |
Model 1 | 1.00 (Ref.) | 0.77 (0.69–0.85) | 0.68 (0.61–0.76) | 0.68 (0.61–0.76) | 5.703 × 10−14 | 0.82 (0.79–0.86) |
Model 2 | 1.00 (Ref.) | 0.81 (0.73–0.90) | 0.72 (0.65–0.80) | 0.70 (0.63–0.78) | 7.254 × 10−12 | 0.84 (0.81–0.88) |
Energy-adjusted refined grain starch (g/d) | <96.21 | ≥96.21 & <153.17 | ≥153.17 & <222.30 | ≥222.30 | ||
Cases/total person-years | 809/542,874 | 623/545,155 | 576/546,047 | 540/545,504 | 2548/2,179,579 | |
Model 1 | 1.00 (Ref.) | 0.91 (0.82–1.01) | 0.88 (0.79–0.98) | 0.87 (0.78–0.97) | 0.006 | 0.92 (0.88–0.97) |
Model 2 | 1.00 (Ref.) | 0.91 (0.82–1.02) | 0.88 (0.79–0.98) | 0.85 (0.76–0.95) | 0.002 | 0.92 (0.88–0.96) |
Energy-adjusted wholegrain starch (g/d) | <45.99 | ≥45.99 & <96.03 | ≥96.03 & <162.67 | ≥162.67 | ||
Cases/total person-years | 774/541,364 | 643/545,601 | 583/546,386 | 548/546,228 | 2548/2,179,579 | |
Model 1 | 1.00 (Ref.) | 0.85 (0.77–0.94) | 0.69 (0.62–0.77) | 0.59 (0.53–0.66) | 3.553 × 10−24 | 0.76 (0.72–0.80) |
Model 2 | 1.00 (Ref.) | 0.95 (0.85–1.05) | 0.81 (0.73–0.91) | 0.73 (0.65–0.82) | 1.536 × 10−9 | 0.84 (0.80–0.88) |
Energy-adjusted fiber (g/d) | <14.23 | ≥14.23 & <17.43 | ≥17.43 & <20.98 | ≥20.98 | ||
Cases/total person-years | 905/541,220 | 573/545,731 | 556/546,696 | 514/545,932 | 2548/2,179,579 | |
Model 1 | 1.00 (Ref.) | 0.67 (0.60–0.75) | 0.66 (0.59–0.73) | 0.61 (0.54–0.68) | 7.068 × 10−20 | 0.78 (0.74–0.82) |
Model 2 | 1.00 (Ref.) | 0.74 (0.66–0.82) | 0.76 (0.68–0.84) | 0.72 (0.64–0.80) | 2.638 × 10−9 | 0.85 (0.81–0.89) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, B.; Dong, Z.; Yang, Y.; Liu, W.; Chen, S.; Chen, Y.; Sun, X.; Ye, D.; Li, J.; Mao, Y. Dietary Carbohydrates, Genetic Susceptibility, and Gout Risk: A Prospective Cohort Study in the UK. Nutrients 2024, 16, 2883. https://doi.org/10.3390/nu16172883
Hua B, Dong Z, Yang Y, Liu W, Chen S, Chen Y, Sun X, Ye D, Li J, Mao Y. Dietary Carbohydrates, Genetic Susceptibility, and Gout Risk: A Prospective Cohort Study in the UK. Nutrients. 2024; 16(17):2883. https://doi.org/10.3390/nu16172883
Chicago/Turabian StyleHua, Baojie, Ziwei Dong, Yudan Yang, Wei Liu, Shuhui Chen, Ying Chen, Xiaohui Sun, Ding Ye, Jiayu Li, and Yingying Mao. 2024. "Dietary Carbohydrates, Genetic Susceptibility, and Gout Risk: A Prospective Cohort Study in the UK" Nutrients 16, no. 17: 2883. https://doi.org/10.3390/nu16172883
APA StyleHua, B., Dong, Z., Yang, Y., Liu, W., Chen, S., Chen, Y., Sun, X., Ye, D., Li, J., & Mao, Y. (2024). Dietary Carbohydrates, Genetic Susceptibility, and Gout Risk: A Prospective Cohort Study in the UK. Nutrients, 16(17), 2883. https://doi.org/10.3390/nu16172883